
INFORMATION AND CONTROL 52,  2--7 (1982) 

On the Recursion-Theoretic Complexity of Relative 
Succinctness of Representations of Languages 

Louise HAY 

Department of Mathematics, Statistics, and Computer Science, 
University of Illinois at Chicago, Chicago, Illinois 60680 

1. I N T R O D U C T I O N  

In Hartmanis (1980) a simple proof is given of the fact (originally proved 
in Valiant (1976)) that the relative succinctness of representing deterministic 
context-free languages by deterministic vs. nondeterministic pushdown 
automata is not recursively bounded, in the following sense: there is no 
recursive function which, for deterministic context-free languages L, can 
bound the size of the minimal deterministic pushdown automaton accepting 
L as a function of the size of a nondeterministic pushdown automaton 
accepting L. It is then stated that "...even if we would know (or be given) 
which pushdown automata describe deterministic languages, we still could 
not effectively write down the corresponding deterministic pushdown 
automata because of their enormous size which grows nonrecursively in the 
size of the nondeterministic pushdown automata." This does not, however, 
rule out a priori the possibility that a partial recursive bound might exist, as 
a function of the description of the nondeterministic pushdown automaton 
rather than of its size; indeed, the proof in Hartmanis (1980) uses the fact 
that the bounding function is total. It is the purpose of this note to make a 
case for using partial bounding functions in questions of relative 
succinctness. It will be shown that for the examples considered in Hartmanis 
(1980) (deterministic context-free languages, unambiguous languages, regular 
languages), the best possible partial bound as a function of the description of 
the unrestricted automata, while still nonrecursive, has lower recursion- 
theoretic complexity than the best possible bound as a functions of the size 
of the unrestricted automata. An example wi l l  be given of a class of 
languages for which there exists a partial recursive bound on the size of the 
restricted automata, again as a function of the description of the unrestricted 
automata, while no (total) recursive bound exists as a function of the size of 
the unrestricted automata. 
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2. RECURSION-THEORETIC PRELIMINARIES 

All notation is taken from Rogers (1967). In particular, if {Mi}i~ N is a 
standard enumeration of all Turing machines, 0' denotes the Turing degree 
of the "halting problem" K---- {i: M i halts on input i}. For any set C c N, 
C' = the halting problem relativized to C = {i: M c halts on input i}, where 
M c denotes M i with oracle set C, 0" denotes the Turing degree of K', X 0, II°, 
denote the n-quantifier levels in the arithmetic hierarchy (Rogers, 1967, 
Chap. 14), ~<1 denotes one-one reducibility, and ~ r  Turing reducibility. 

The following well-known recursion-theoretic facts will be used: 

LEMMA 1 (Rogers, 1967, Theorem 14-VIII). I f  X is reeursively 
enumerable in 0', then X C X °. 

LEMMA 2. Let INF = {Mi:L(Mi) is infinite}. Then 

(a) (Rogers, 1967, Theorem 13-VIII) INF is H°z-complete. 

(b) (Rogers, 1967, Theorem 14-VIII) I f  X is H~-eomplete, X q) S °. 

LEMMA 3. Let q) be a partial function recursive in a set C (i.e., the graph 
of q) is recursively enumerable in C). Then q) has a total extension F 
recursive in C'. 

Proof To compute F(x), ask, recursively in C', whether ~0(x) converges. 
If yes, let F(x) = ~0(x). If no, let F(x) = O. 

LENMA 4 (Fixed-point theorem) (Rogers, 1967, Theorem l l-I). I f f  is 
any recursive function, there exists n such that L(Mn)= L(MI~,) ). 

3. RELATIVE BOUNDS 

We consider automata of the usual types, with descriptions over some 
alphabet. For simplicity, we identify the automaton with its description 
when considering it as part of the domain for a function. It will be assumed 
that the length function IAI is a recursive function of (the description of) A, 
and that there are finitely many automata of given length n, which can be 
effectively found given n. 

Let C be a class of languages, with two types of repesentation ~.9~, 3 2 .  
Call a total function F a bounding relation between 31  and ~2 if, for any 
automaton A of type ~1 that accepts a language in C, there exists an 
equivalent automaton B of type ~2  such that 

(a) IBI<~F(A). 
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Call F a bounding size relation if (a) can be replaced by 

(a') IBI <~ F(IA]). 

Call a partial function ~0 a partial bounding relation between ~ and ,~2 if, 
for any (description A of an) automaton of type ~1 that accepts a language 
in C, (a(A) is defined and there exists an equivalent automaton B of type ~2 
such that 

(b) IBI ~<~0(A). 

Call ~ a partial bounding size relation if, for any automaton A of type ~ l  
that accepts a language in ~0, q~(IA I) is defined and (b) can be replaced by 

(b') pBr ~< ~o(rA I). 

PROPOSITION 5. There is a bounding relation of given reeursion-theoretic 
complexity (i.e., Turing degree) between ,~1 and ,~2 if and only if  there is a 
bounding size relation of the same complexity. 

Proof (~). If Fis a bounding size relation, then G(A)=F(]AI) is a 
bounding relation of the same complexity, since the size function ]A I is 
recursive. 

(~). If F is a bounding relation, let G(n)= max{F(A): IAI = n}. Then G 
has the same complexity as F and is a bounding size relation since 
F(A) <, G(IA l) for all A. II 

It is therefore unnecessary to distinguish between bounding relations and 
bounding size relations tf the functions are total. For partial functions, 
however, the situation is different. We still have, just as above. 

PROPOSITION 6. I f  f9 is a partial bounding size relation between , ~  and 
,C z , then there is a partial bounding relation of the same complexity. 

However, for the other half we have only: 

PROPOSITION 7. I f  9 is a partial bounding relation between 2 l and 3 2 
and ~o is dominated by total function F of the same recursion-theoretic 
complexity, then there is a (total) bounding size relation ~ of the same 
complexity. 

Proof. Assume that ~0 is a partial bounding relation, and that 
9(A) <~ F(A) for all A C domain ~. Then as above, 

~'(n) = max{F(A): IAI = n} 

is a bounding size relation ~, of the same complexity. II 
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Note that for bounding size relations, if there is suitable "padding" 
available it may be assumed that all functions are total. There is reason to 
expect that in general when a partial bounding relation (0 is replaced by a 
bounding size relation the complexity may increase, since (at least in the 
"naive" replacement) we must take a maximum over all (o(A), where [A I = n, 
and for this one must know when q~(A) converges. 

4. SUCCINCTNESS RESULTS ABOUT CONTEXT-FREE LANGUAGES 

Following Hartmanis (1980) we denote pushdown automata by A i and 
deterministic pushdown automata by /9;. Theorem 3 of Hartmanis (1980) 
can now be restated in our terms as follows: 

If C = the class of deterministic context-free languages, 31  = the class of 
nondeterministic pushdown automata which accept a deterministic context- 
free language, and 3 2 - the class of deterministic pushdown automata, then 
there does not exist a recursive bounding relation between ~'~1 and ~ 2 .  

This leaves open the possibility of a partial recursive partial bounding 
relation between ~ and 3 2. The question is settled as follows: 

THEOREM 8. If ~ = the class of deterministic context-free languages, 
,~1 = the class of nondeterministic pushdown automata accepting a language 
in ~ ,  and 3 2 = the class of deterministic pushdown automata, the following 
hold for bounding relations between ~1 and ~2 : 

There does not exist a bounding relation reeursive in 0'. 

There exists a bounding relation recursive in 0". 

There does not exist a (partial) reeursive partial bounding 

(a) 
(b) 

(c) 
relation. 

(d) 

Proof 

There exists a partial bounding relation reeursive in 0'. 

Part (a) follows from a careful examination of the proof of 
Theorem 3 of Hartmanis (1980). If ND = {Ai: L ( A i ) i s  not a deterministic 
context-free language}, the proof of Lemma 1 of Hartmanis (1980) shows 
that I N F , 1 N D .  Now it is easily seen that ND C I1 °, since 

A i C ND ~ Vj(L(Ai) 4= L(Dj)) 

vj 3w(w c z*  e, [(w e L(Ai) - L(Dj)) 

V (w ~ L(Dj) --L(Ai))] ). 

Hence ND is//°-complete, which by Lemma 2(b) implies ND (5 2] °. Now the 
proof of Theorem 3 of Hartmanis (1980) actually shows that if F is any 
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(total) bounding relation between ~1 and ~2 ,  then ND is recursively 
enumerable in F. If there exists such an F recursive in 0', this would make 
ND recursively enumerable in 0' and hence by Lemma 1 would imply 
ND C Z °, which is a contradiction. Part (c) now follows easily from 
Lemma 3, since a partial recursive (i.e., recursive in 0) partial bounding 
relation would have a total extension recursive in 0'; such an extension 
would be a bounding relation, contradicting part (a). For part (d), define ~0 
as follows: given a nondeterministic pushdown automaton A, ask for each j 
in turn whether L(Di)= L(A), i.e., whether 

(Vw s * ) ( w  L(Dj)) ,-, w e L(A)). 

This is a 1-quantifier question, hence recursive in 0'. If L(A) is a deter- 
ministic context-free language, the answer will beyes  for some J0, and we 
can then define ¢p(A)= [Dj0 I. Part (b) now follows by Lemma 3 (or, more 
directly, since ND E H~ is recursive in 0", to define F(A), ask recursivety in 
0" whether A C ND. If yes, let F(A)= 0; if no, apply the algorithm above 
used for q~(A) to compute F(A)). | 

Note that the function ~ exhibited in the proof of part (d) provides a 
"natural" example (i.e., one occurring in nature) of a partial function 
recursive in 0' which has no total extension recursive in 0' (and in fact, by 
Proposition 7, which is not dominated by any total function recursive in 0'). 

Exactly analogous results hold for the complexity of the relative 
succinctness of the representation of unambiguous context-free languages by 
unambiguous and ambiguous context-free grammars (Schmidt and 
Szymanski, 1977) and for the representation of regular sets by finite 
automata and pushdown automata (Meyer and Fischer, 1971) this is seen by 
applying the above analysis to the proofs of Theorems 5 and 6 of Hartmanis 
(1980). 

5. SUCCINCTNESS RESULTS ABOUT k-ELEMENT SETS 

We now show that there exists a partial recursive succinctness bound for 
the representation of k-element sets by finite automata and by unrestricted 
Turing machines, but that there does not exist a total recursive succinctness 
bound (and hence none as a function of the size of the Turing machine 
representation). More precisely, we have 

THEOREM 9. For k ~ I, let C k = the class of k-element sets over the 
alphabet ~, 31 = the class of all Turing machines, ~2 = the class of finite 
automata (or tables) accepting exactly k elements of ~*. The following then 
holds: 
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(a) there is a partial recursive partial bounding relation between 371 
and 3? 2 ; but 

(b) there is no (total) reeursive bounding relation between 371 and 3?2. 

Proof For part (a), define ~ as follows: Let {Si}i~ u be some effective 
one-to-one enumeration of  the k-element subsets of  S* ,  and let {Pi}ieu be an 
enumeration of all finite automata. Let f be a recursive function such that 
Py~i) is a finite automaton that accepts Si and nothing else. If  M is any 
Turing machine, dovetail computations of M on elements of S *  until M has 
accepted exactly k elements, say S;. If  this ever happens, define 
~0(M)=IPI~) [. This evidently defines a partial recursive partial bounding 
relation, since Pro) is equivalent to M if L(M) = S i. For part (b), let F be 
any (total) recursive function; we shall effectively construct a Turing 
machine M which accepts a k-element set but such that F(M) does not 
bound the minimal finite automaton accepting L(M). Given any Turing 
machine M n, construct a Turing machine M '  as follows: Let S ' =  the 
first k elements in some enumeration of Z*  which are not in 
~)i {L(Pi): IPtl <~F(Mn)}" S' can be found effectively from n, and so can a 
Turing machine M '  which accepts exactly S ' ;  hence there is a recursive 
function h such that M ' =  Mh~,, ). By the fixed-point theorem (Lemma 4) 
there exists some n such that L(M,,)=L(Mh~,,)), and M ,  is evidently the 
desired Turing machine M. II 
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