JOURNAL OF ALGORITHMS 17, 447-474 (1994)

A Faster Deterministic Maximum Flow Algorithm
V. KinG

University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
S. Rao
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
AND
R. TarIAN

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540,
and Princeton University, Princeton, NJ 08544

Received March 20, 1992, revised January 27, 1994

Cheriyan and Hagerup developed a randomized algorithm to compute the
maximum flow in a graph with n nodes and m edges in O(mn + n?log? n)
expected time. The randomization is used to efficiently play a certain combinato-
rial game that arises during the computation. We give a version of their algorithm
where a general version of their game arises. Then we give a strategy for the game
that yields a deterministic algorithm for computing the maximum flow in a directed
graph with n nodes and m edges that runs in time O(mn(log,, ,, 05 » 1)). Our
algorithm gives an O(mn) deterministic algorithm for all m/n = Q(n®) for any
positive constant €, and is currently the fastest deterministic algorithm for comput-
ing maximum flow as long as m/n = w(log n). © 1994 Academic Press, Inc.

1. INTRODUCTION

The maximum flow problem' is defined on a directed graph, F =
(¥, A), with two distinguished vertices, a source s and a sink t, and a
positive capacity cap(i, j) for every directed edge (i, j) € A. For conve-

"This description is taken from [12].

447

0196-6774 /94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

448 KING, RAO, AND TARIJAN

nience we define cap(i,j) =0 if (i,j) is not in 4. A flow on F is a
real-valued function f on vertex pairs having the following three proper-
ties:

1. Skew symmetry. f(j,i) = —f(,j). If f(i,j) > 0 we say there is
flow from i to j.

2. Capacity constraint. f(i, j) < cap(i, j).
3. Flow conseruvation. Z”_,-)eAf(j,i) =0, for all i € A s, t}.

The value of the flow is the net flow out of the source. The maximum
flow problem is that of finding a flow of maximum value, called a maxi-
mum flow.

Algorithms for this problem are classified as either pseudopolynomial
time, where the running time on an n-node m-edge network with integer
capacities not exceeding B is bounded by a polynomial in n, m, and log B,
or strongly polynomial time, where the running time on an n-node m-edge
graph is bounded by a polynomial in n and m. There is a long history of
work on finding efficient pseudo- and strongly polynomial time algorithms
for the maximum flow problem. A recent survey of work in this area is [7].
In this paper, we primarily discuss the strongly polynomial algorithms of
Cheriyan et al. in [4, 5].

Using a variety of techniques including randomization, Cheriyan and
Hagerup improved the strongly polynomial algorithm of [8] to obtain an
algorithm that runs in O(nm + (n log n)?) expected time. They use ran-
domization to play a combinatorial game that arises during their maximum
flow algorithm. Alon [3] gave a deterministic strategy for playing the game
that yielded a maximum flow algorithm that runs deterministically in time
O(mn + n%?log n). This improved upon the best previous running time
for deterministic maximum flow given by the O(mn log(n?/m)) algorithm
of Goldberg and Tarjan [8] when m/n is sufficiently large. Alon’s ap-
proach yields an O(mn) algorithm when m /n is Q(n?/3 log n).

In 1992 [9], we gave a version of the algorithm of [4] where a slightly
different combinatorial game arose. We also showed how to play this game
deterministically to yield a strongly polynomial maximum flow algorithm
that ran in time O(nm + n?*<). Since that time, Phillips and Westbrook
[10] gave an O(mn log,,, ,,n + log?™¢ n) time algorithm for any constant e.
They also related the combinatorial game to a load balancing problem. In
this paper, we generalize our 1992 result to yield a maximum flow
algorithm that runs in time O(mn 10g,, ,, 10).2 This is a slight improve-
ment over the algorithm of Phillips and Westbrook. For example, if

2We note that this expression only makes sense for m > nlog n. When m < nlog n, the
O(mn log{n? /m)) result of Goldberg and Tarjan dominates ours.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 449

m = nlog n loglog n our algorithm runs a factor of Q(log® n) faster than
that of Phillips and Westbrook.?

(We should remark, however, that the deterministic pseudo-polynomial
time algorithm of Ahuja et al. [2] that runs on a network with integer
capacities not exceeding B in O(nm log(nylog B /m + 2)) time is faster
than ours unless B is rather large, i.e., B > 2('""'/0“'"/""’“)/")2.)

In [6), Cheriyan et al. analyze the total number of real number opera-
tions required by their algorithms. They refer to these operations as flow
operations. They give the first bounds for any maximum flow algorithm
where the number of flow operations is o(nm). In particular, their
randomized algorithm uses

O(n*‘/zm‘/2 log n + n(log n)z/log(2 + n(log n)z/m))

flow operations. We present a deterministic algorithm that for any positive
constant § < 1/2 uses

0(n3/2—8m1/2+6 lOg n)

flow operations and runs in time O(nmlog,, , n) on a graph where
(m/n)*® > c log n for a large enough constant c.

We proceed by describing a general version of the combinatorial game
of [4, 5] in the following section. In Section 3, we describe the connection
between the flow algorithms of [4, 5] and our version of the game. In
Section 4, we describe a strategy for a simplified version of our game
to illustrate the central idea of our solution. In the remainder of the sec-
tions, we present various strategies for playing our version of the com-
binatorial game.

2. THE GAME

In this section, we describe a game which is a variation of the game
described in [4, 6]. The game is played between a player and an adversary
on any undirected bipartite graph G = (U, V, E) with |[U| = |V| = N and
|E] = M, where M > N. There is a parameter K(N, M) = O(N'/?M1/?),

The rules of the game are as follows: Initially, the player “designates”
one edge incident to each node in U. The adversary and the player then
alternate moves as follows.

*We note that the difference between our result and that of Phillips and Westbrook is so
minor that one suspects that they could also obtain our result.

450 KING, RAO, AND TARJAN

An adversary move is one of the following:

1. The adversary can remove any node in V and its incident edges.
He scores a point for each designated edge which is incident to the node.

2. The adversary may remove any number of undesignated edges
from the graph. The adversary may also at the same time remove any
number of designated edges, provided that the total number of designated
edges which he removed during the course of the game does not exceed
the sum of K(N, M) and twice the number of points scored by the
adversary.

The removal of a designated edge is termed an adversary edge kill. The
adversary scores no points for this move.

The player’s move consists of any sequence of the following:

1. She is required to designate an edge for any node in U of positive
degree in the remaining graph that does not have an edge currently
designated to a node in V.

2. She may redesignate an edge; i.e., she may shift a designation from
one edge incident to a node u € U to another edge incident to u. The
adversary scores a point for each redesignation.

The game ends when there are no nodes remaining in V.

Given a strategy, &7, for the player we define P_(N, M) to be the
maximum number of points any adversary can win over all bipartite graphs
with 2N nodes and M edges. We define C (N, M) to be the worst case
cost of implementing the player’s strategy (again over graphs with 2N
nodes and M edges).

Our maximum flow algorithm “plays” this game in the role of the
player, as a coroutine, on a graph where N = 2n* —n and M = m(2n —
1). The maximum flow algorithm needs O(log n) time for each point
scored by the adversary, and needs to implement the player’s strategy.
That is, the running time of the maximum flow algorithm depends upon
(among other things) P_(N, M) and C_(N, M) for some game strategy
o

In this paper, we describe a strategy for playing this game. In particular,
we describe

¢ a player’s deterministic strategy, &7, where

Py (N,M) = O(N"?*M">\/Dlog N/log D)

and C_(N, M) = O(M log, N), for any D where 176 < D <
(M/N)/log N.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 451

We proceed by describing the connection of this game with our maxi-
mum flow algorithm, and then by describing strategies for the player. The
content of the next section is largely a review of previous work and the
algorithms of Cheriyan et al. Our contribution are the new strategies in
the successive sections.

3. THe GAME AND A MaxiMUM FLow ALGORITHM

Informally, a preflow is a flow where the flow conservation constraint
that flow into a node equals the flow out of the node is replaced by the
less restrictive nonnegativity constraint that flow into a node is at least as
much as the flow out of the node. That is, there may be nodes in the
network with excess flow coming into them. The generic push/relabel
maximum flow algorithm of [8] pushes excess flow around a flow network
using an integer labeling as a guide. Each node, i, maintains a current
edge, (i,/), along which some amount of flow can be pushed without
violating its capacity constraint and where the label of j is less than the
label of i. The algorithm proceeds in a series of push /relabel steps where
a push moves around excess flow and a relabel increases the value of the
label of a node. A current edge, (i, j), for a node, /, must be changed
either when the current edge becomes saturated by a push, that is, the
flow across (i, j) equals the capacity of (i, j), or when j is relabeled. A
node may be relabeled when it is not incident to any edges which are
eligible to be the current edge.

The maximum flow algorithm of Cheriyan et al. [6] generalizes the
generic push /relabel algorithm so that it manipulates a preflow in subnet-
works to eventually compute a maximum flow in the network. They do so
by using a generic operation called add-edge that augments the subnet-
work by a single edge in the network. They use a number of specializations
of this push /relabel /add-edge algorithm to produce a fast algorithm.

One factor in analyzing the running time of their algorithm is the
number of current edge changes. These fall into two classes, those caused
by saturating pushes and those caused by relabelings. The latter are
referred to as premature target relabelings, and the number of such
changes is denoted by #ptr. They limit #ptr by using a randomized
current edge selection strategy. They derive a bound on #ptr by describing
a two-person game and bounding the points that can be obtained by one
of the players in the game.

In our version of the push/relabel /add-edge algorithm, the current
edge of a node can be changed by the algorithm even when this is not
made necessary by a relabeling or a saturating push. We define a prema-
ture edge change to be any current edge change that is not due to a

452 KING, RAO, AND TARJAN

saturating push. That is, a premature edge change is a current edge
change due to a relabeling (a premature target relabeling) or any current
edge change made by the algorithm while the current edge is still eligible.
The number of premature edge changes in the execution of a push/
relabel /add-edge algorithm is denoted by #pec. (In the analysis of [6], this
quantity is denoted by #ptr.)

We show in this section that #pec in an execution of a push/
relabel /add-edge algorithm with our current edge selection strategy can
be limited to the number of points scored by the adversary in a play of the
game defined in Section 2.

We proceed by briefly describing the generic push/relabel /add-edge
algorithm of [6], and then by showing the relationship of the current edge
changes in a push/relabel /add-edge algorithm to our game. We remark
that this analysis is essentially the analysis in [4].

3.1. The Generic Push/Relabel /Add-Edge Algorithm

For any flow network consisting of a directed graph, F = (¢, A), with
a capacity function cap: A - R*U{0} and distinguished vertices {s, t}, a
preflow is defined as a real valued function on vertex pairs with the
following properties.

1. Skew symmetry. f(j,i) = —f(i,j). If f(i,j) > 0 we say there is
flow from i to j.

2. Capacity constraint. f(i, j) < cap(i, j).
3. Flow nonnegativity. ¥, ;e 4f(j,1) 2 0, for all i € 4"\ (s, 1}.

A preflow is a generalization of a flow on a graph, the only difference
being that a flow satisfies the inequality in the third property above with
equality.

A vertex pair (i,) is a residual edge with respect to f if f(i,j) <
cap(i, j). The residual capacity of (i, J), rescap(i,j), is defined as
cap(i, j) — f(i, j) for a residual edge and 0 otherwise. A labeling of F =
(), A) is a function d: 4 — R U {0}). A labeling d is valid for F and a
preflow on F if d(i) < d(j) + 1 for each residual edge (i, j). A vertex pair
(i, j) is an eligible edge if (i, j) is a residual edge and d(i} = d(j) + 1.

The generic push /relabel /add-edge algorithm of [6] maintains a pre-
flow and a labeling on a sequence of subgraphs F* = (¢, A*) of F =
(A4, A) where A* C A. During the algorithm the label of ¢, d(t), is always
0 and the label of s,d(s), is always n where n = |.#]. With these
conditions and the definition of a valid labeling the maximum label for any
node is 2n — 1. See [8, 6]. We proceed with a brief description of the
algorithm.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 453

Given a preflow on a subgraph F* = (4, A*) of a graph F = (%, 4),
we define the excess, e(i), and the visible excess, e*(i), with respect to F as
follows:

e(i) = X f(j.i)

.8

e*(i) = max(O,e(i) -) cap(i,j)).

(i, HeAA*

We define .#™* to be the set of nodes A\ {s, t}. We give the defini-
tions of push, relabel, and add-edge operations in [6] below. (We leave out
many details involving subroutines and implementation.)

procedure push((i, j): vertexpair,c: real);

Precondition: i € .#™, (i, j) is eligible, and

0 < ¢ < min(e*(i7), rescap(i, j)).
setflow((i, j), f(i,)) + ¢);

procedure relabel(i: vertex);
Precondition: i € #™, e*(¢) > 0 and no eligible edge with tail i.
di) =d(i) + 1;

procedure add-edge((i, j): vertexpair);
Precondition: (i, j) € 4 \ A*.

A* =A% U {(, i)

if d(i) > d(j) then saturate(i, j);

subroutine set-flow((i, j): vertexpair, c: real)
Precondition: (i, j) € A* or (j,i) € A*.
fG,p)=c;
fG,)= —c;

The algorithm of Cheriyan et al. [6] proceeds by applying the operations
above until none apply. They show that this computes a maximum flow.
They implicitly also prove the following fact, which we re-prove here.

Facr 1. The only edges that will be eligible for a node i while it is labeled
k are the edges that were eligible when i’s label was set to k.

Proof. 1f an edge (i, j) € A* is ineligible at the time when /’s label was
set to k then either (i, ;) is saturated or d(j) > d(i) — 1. To make a
saturated edge eligible for i, a push must occur over (j, i) which requires
that d(j) > d(i). Thus, in either case, d(i)’s label needs to be increased

454 KING, RAO, AND TARJAN

before (i, j) can be eligible. Thus, an edge, (i,j) € A*, will never be
eligible while d(i) = k if it was not eligible when i was first labeled k.

Now consider an edge, (i, j), that is added to A* after i is labeled k. If
d(i) > d(j), the edge is saturated as soon as it is added. Thus, by the
argument above, i must be relabeled before (7, j) can become an eligible
edge.

One way that Cheriyan et al. specialize the generic algorithm above is
through the concept of a current edge. That is, the algorithm maintains a
current edge for each node that is eligible and will be the only edge that is
used to push excess flow out of this node. In the algorithm of [6], a current
edge for a node is only changed when the current edge becomes ineligible.
This condition does not hold in our implementation of the algorithm of [6].

The next section relates the selection of current edges in a push/
relabel /add-edge algorithm to the game described in Section 2.

3.2. The Game and Current Edge Changes

We can specialize the current edge selection method of any push/
relabel or push/relabel /add-edge algorithm on a flow network, F =
(.#, A), using our game strategy on the graph, G = (U, V, E), where

U= i, kyied ke{l,....2n - 1}},
V=i k)iet kel0,. . .,2n-2})},

and
E={({ipk),{jo, k= D):(i,j) €A, k€ {1,...,2n - 1}}.

An execution of a push /relabel /add-edge algorithm and a play of the
game on the graph are related as follows.

The current edge in the push/relabel /add-edge algorithm for a vertex
i € A4 with d(i) = k is the edge that corresponds to the designated edge
of {i,, k) in G*. If the degree of node {i,, k) in G falls to 0 and d(i) = k
then the current edge of i is set to nil. A node, i, with d(i) = k may be
relabeled in the push/relabel /add-edge algorithm only when its current
edge has been set to nil.

‘Wwe remark, that the push /relabel /add-edge algorithm is not affected at all by the choice
of designated edges in the game for (i, k') when k' is not the current label of i.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 455

Three types of events in the push /relabel /add-edge algorithm corre-
spond to adversary actions in the game as follows.

1. A saturating push on edge (i, j) when d(i) = k in the push/
relabel /add-edge algorithm causes the adversary to remove the edge
(i, k), {j.,k — 1)) in the game. (Note that this is an adversary edge kill
since the edge, ({i,, k), {j,, kK — 1)), must have been the designated edge
for (i,, k) since (i, j) must be the current edge for i.)

2. A relabeling of a node i from k£ to k+ 1 in the push/
relabel /add-edge algorithm causes the adversary to remove the node
{i,, k) from the game graph, and to remove the edges incident to
(i,,k + 1) from the game graph that correspond to ineligible edges
incident to i in the push /relabel /add-edge algorithm. (Note that this may
cause an adversary edge kill if the designated edge for the node (i, k + 1)
corresponds to an ineligible edge in the flow network.)

3. At termination of the push/relabel /add-edge algorithm every
node in V' is removed. (By the rules of the game all vertices in ¥ must
eventually be removed.)

The following lemma ensures that the procedure above properly imple-
ments a push /relabel /add-edge algorithm.

LEMMA 2. During the execution of the push/relabel /add-edge algo-
rithm, the current edge of any node is always an incident eligible edge if there
Is one.

Proof. For a node i, with d(i) = k, the designated edge for (i, k)
must correspond to an eligible edge since all the incident edges that
correspond to ineligible edges are removed by the adversary as they
become ineligible. That is, they are removed when i is first labeled k or as
the edges become saturated.

Furthermore, since ineligible edges do not become eligible for i while
d(i) = k by fact 1, once the degree of {i,, k) falls to zero there are no
eligible edges adjacent to . &

The relationships among the number of points scored in the game,
#pec, and the running time of a push/relabel /add-edge algorithm are
stated in the theorem below.

Taeorem 3. In any push /relabel /add-edge algorithm on an n-node
m-edge graph that uses the current edge selection method above where

456 KING, RAO, AND TARJAN

the game is played using strategy o and where N = n(2n — 1), and M =
mQ2n — 1),

(i) the number of saturating pushes is bounded by cN'/*M'/? + 2#pec
for some constant c,

(i) the running time of the algorithm is O(N'/*M'/? logn +
#peclog n) + C_(N, M) and the number of flow operations Iis
O(N'2M'/? + #pec)log n),

(iii)

#pac < P (N,M),
and

(iv) the number of adversary edge kills is less than K(N, M) +
2P (N, M) for some K(N,M) = O(N'°M'/?). (That is, the adversary
only makes as many adversary edge kills as are allowed in the game.)

Proof of Theorem 3. Item (i) can be proved by examining the proof of
lemma 7.4 in [5). Item (ii) is proven as Lemma 7.5 in [6]. We remark that
we use #pec where [6] uses #ptr, since they denote the number of
analogous events for the purposes of the proof in [6].

We define #adversary edge kills, #edge designations, to be respectively
the number of adversary edge kills and the total number of edge designa-
tions in the game. And we define #saturating pushes, #edge selections, and
#relabelings to be respectively the number of saturating pushes, the
number of current edge selections, and the number of node relabelings in
the push /relabel /add-edge algorithm. As shorthand, we define P(-, -) to
be P(-,), and N to be n(2n — 1) and M to be mQ2n — 1).

We prove (iii) by deriving some relationships among various events in
the game and in the algorithm as follows.

We relate #edge selections to #edge designations by noting that there
is at most one edge selection in the push /relabel /add-edge algorithm for
each edge designation in the game except the N initial designations, since
initially no node has a current edge in the push/relabel /add-edge algo-
rithm. That is,

#edge selections < #edge designations — N. (1)

From the correspondence between the push/relabel /add-edge algo-
rithm and the game, every designated edge is eventually either removed by
an adversary edge kill or by a node removal or by a redesignation. Since
the latter two actions cause a point to be scored in the game, the total
number of edge designations is equal to sum of the number of adversary
edge kills and the number of points scored in the game. That is,

#edge designations < #adversary edge kills + P(N, M). (2)

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 457

By definition, the total number of premature edge changes (#pec) is the
number of current edge changes minus the number of saturating edge
pushes. Since for each change there is an edge selection, the following
inequality holds:

#pec < #edge selections — #saturating pushes. 3)

We notice that each adversary edge Kkill is caused either by a saturating
push in the push/relabel /add-edge algorithm or by a node relabeling.
Thus,

#adversary edge kills < #saturating pushes + #relabelings

Since the maximum label of any node is 2n — 1 and each relabel
increases the value of a node’s label, we have

#relabelings < n(2n — 1) = N.
Thus,
#adversary edge kills < #saturating pushes + N. (4
Combining Eq. (3) with the equation above gives
#pec < #edge selections — #adversary edge kills + N.
Finally, using Egs. (1) and (2) with the equation above we get
#pec < P(N, M).

Thus, (iii) holds.
From (i), we have

#saturating pushes < cN'/?M'/2 + 2P(N, M).
To prove (iv), we combine the equation above with Eq. 4 as follows:
#adversary edge kills < #saturating pushes + N (5)
< (cN'*M'Y2 + N) + 2P(N, M). (6)

Thus, if we set K(N, M) = cN'"2M'V2 + N = O(N/>M"/?), (iv) holds.
[]

The following theorem relate the time of a version of the Cheriyan et al.
algorithm to a play on the game that we define in this paper and follows
directly from the theorem above.

THEOREM 4. Given a deterministic strategy, &, for playing our game,
there is a deterministic maximum flow algorithm that runs in time

O(n3/2m1/2 logn + PM(n(zn - 1)’m(2n - 1))10gn)
+ Co(n(2n — 1), m(2n - 1)),

458 KING, RAO, AND TARJAN

and uses at most O(n**m'’? + P_,(n(2n — 1), m(2n — 1))log n) flow op-
erations.

We proceed by describing various strategies for playing the game of
Sect. 2.

4. THE IDEA

To illustrate the main idea, we make two simplifying assumptions: that
there are no adversary edge kills and that each node has degree at least /.
We prove the following:

THEOREM 5. While the degree of every node in U is at least I, the player
has a strategy which keeps the adversary’s score below O(N<M /1) for any
parameter € > 3 /+/log n .

We use the following concept throughout the remainder of the paper.

DeriniTion 1. For each v € V, let r(v) be the ratio of the number of
designated edges incident to v to the initial degree of ©.

The player never redesignates an edge. She uses the following method
to decide which edge to designate:

PLAYER’'S STRATEGY. To designate an edge for u € U, pick
a(u, v) such that »(¢) is minimal over all v incident to u.

We observe that since there are no adversary edge kills and the player
never redesignates an edge, the ratio of a node never decreases.

Let V, = {nodes in V with ratios at least r}. Let U, = {nodes in U whose
designated edges have endpoints in V,}.

CLaM 6. For any ratior > 5/1:

Y. initial degree of v > I|U,|/3.

vEV, 5

Proof of Claim. Let v be a node in V, and let U(v) denote the set of
u € U whose designated edge is incident to v. Let U’'(v) € U(v) denote
those nodes whose designated edges were designated when the ratio of v
was at least r/2. It is easy to observe that if [> 5, then |U'(v)| >
MUl /21 = [U(w)I/3.

Let u € U'(v). At the time the player designated edge (i, v), all the
neighbors of « had ratios at least as great as the ratio of ¢, that is, at least
r/2. Since each u has degree at least /, this implies there were at least

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 459

HU'(0)l = 1U()l/3 edges incident to nodes which at some time had a
ratio at least r/2. Since ratios never decrease, these nodes are currently in
V. .
We may repeat this argument for all © € V,. Since there is only one
designated edge for each u, the sets U(r) are disjoint. Thus, we have that
the total number of edges incident to nodes with a ratio at leastr/2 is at

least

LUyl T U3 =10]/3. .

rel, rev,
By the definition of ratio and the claim, we have

IU, .l 2 r/2 Y. initial degree of v > (r/2)1|U,|/3. (7)

L€V,

This is the central idea of our strategy. The expansion factor implied by
this equation allows us to limit the maximum ratio of any node as stated in
the claim below. In the next section, we use the same concept to bound
the number of points yielded in the general strategy.

CLAM 7. While the degree of every node in U is at least [, the player’s
strategy keeps all ratios below N* /I for € > 3/ +/log N and sufficiently large
N.

Proof of Claim. Suppose that for some v, r(¢) exceeds N¢/I. Thus
Wy /1l 2 1.

We can apply Eq. 7 j times where the r used in the jth application is
r(v)/2/ = N* /127 as long as N*/I2/ is greater than 5 /I. By doing this, we
obtain the following equations:

NE N¢ NE

> N*i /3027,

For ¢ > 3/ /log N and j <[3/¢], we note that N*/2/ > 5 for suffi-
ciently large N, thus it is valid to apply Eq. 7 as above. Furthermore, when

j=13/¢l,
‘UN’/lzfl > N3/(33/f+12(3/s+1)2)’

which is strictly larger than N for sufficiently large N when ¢ >
3/ ylog N . This is a contradiction. W

460 KING, RAO, AND TARIJAN

The proof of the theorem proceeds as follows. Since the maximum ratio
is N¢/l, the maximum number of points scored by the adversary for
removing a node v is at most (the initial degree of v) N¢/I + 1. If we
recall that the initial degree of any node v is at least / and we sum over
the nodes in V, we obtain an O(MN* /l) bound on the total number of
points that are scored.

4.1. Limits of This Approach

There are two problems with this approach. First, we know of no way
for the player to quickly and exactly determine which node or nodes have
the minimal ratio among the neighbors of a node u € U, since these ratios
are changing throughout the game. Our solution to this, which is pre-
sented in the next sections, is to use estimates of ratios which are only
occasionally updated.

Second, when the degree of a node in U falls below / the expansion
argument fails. We remedy this by applying the player’s strategy only to a
subset U’ of U, which consists of nodes of degree at least /. That is, when a
node’s degree drops below /, its designated edge no longer contributes to
the ratio of a node. This has the effect of causing ratios to drop, which
adversely affects the expansion argument. A second source of ratio drops
which were not considered here is the adversary edge kill. The player
compensates for ratio drops by edge redesignations.

The next section discusses strategies for the general game, with no
simplifying assumptions.

5. Tue EpGE DESIGNATION STRATEGY

In this section, we describe the full details of an edge designation
strategy.

Recall that the game is played on a graph G = 1(U, V, E) with |U| =
[Vl = N and |E| = M. The strategy is specified by three parameters; a
real number r,, and integer /, and a real number x > 2, where ry//x > 176.

We make some definitions for the description of our strategy and its
analysis. We define

V' = {v € V whose initial degree > /}
and

U = {u € U whose degree > [}.

Note that the set V" is fixed throughout the game, while the set U’ may be
diminishing in size as the game proceeds since the degree of a node in U’
may drop.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 461

Now we describe the data structures that the player uses to implement
her strategy. A ratio r(¢) is maintained for each node v € V. The initial
degree of a node v is its degree in G = (U, V, E). Let

number of designated edges in U’ X {v}

r{v) =

initial degree of ¢

The ratios are partitioned into levels. We define r;, = (1 + 1/x)'r,, for
i >0, where x and r, are the parameters defined above. Let ¢ =
3[(log N)/log ryl — log 88 — log x)1 + 4. For each v € V the ratio level of
v, rl(v), is defined to be

0 ifeveV\Vor r(v) <r,
i fveV and r(v)elr,_,,r)and0 <i <t
t ifveVy and re)=r,_,.

We define V), to be the nodes in V' that have ratio level at least & and
U, to be the nodes in U’ whose designated edges are incident to nodes in
V.

For each v € V' an estimated ratio level, erl(v), is maintained, such that
erl(v) € {rl(v), ri(v) + 1}.

For each node u € U’ and each level i =0,1,...,t, a list of u’s
neighbors which have an estimated ratio level of ;i is maintained. We refer
to the set of lists for a node w as u’s neighbor lists.

The player maintains r(¢') and erl(v) for each node in V, the neighbor
list for each node u in U', a single neighbor lists for each node u € U\ U’
consisting of all its neighbors regardless of their ratios, and a designated
edge for each node in U and that is all. The player updates the data
structures when the ratio level of a node in v rises or drops.

The ratio of a node v € V can only increase when the player designates
an edge (u, v). When this happens, she adjusts the ratio level of ¢. The
estimated ratio level of v and the neighbor lists of each neighbor of ¢ in
U’ are adjusted only when 7l(v) > erl(v).

Three events may cause the ratio of a node v to drop: (i) an adversary
edge kill (removal of a designated edge) incident to v, or (ii) the removal
of node u from U’ when (u, v) is a designated edge (which we define as a
u-node shift), or (iii) redesignation by the player from an edge adjacent to
v to some other edge. In these situations, the ratio level is adjusted, and
the estimated ratio level and the neighbor lists of each neighbor of v in U’
are adjusted only when rl(v) < erl(v) — 1.

The player’s strategy may be described as follows:
EDGE-DESIGNATION STRATEGY. When an edge must be desig-
nated for a node u € U', an edge incident to a node with lowest erl is chosen.

462 KING, RAO, AND TARJAN

When an edge must be designated for a node u € U \ U', any edge may be
chosen.

Each time the player designates a new edge to a node v, except for the
initial designations, the player checks to see if she has raised the ratio
level of v to ratio level t. If so, she calls the RESET procedure repeatedly
until no node has ratio level .

Informally, the RESET procedure finds a level k' such that |U,._;| >
ro_3llU. | /88x. It undesignates enough edges so that the ratio level of
every node is no greater than k' — 2. The necighbor lists are updated to
reflect these changes. Each node in U’ which no longer has a designated
edge is then reassigned a designated edge, using the player’s EDGE-
DESIGNATION STRATEGY.

We describe the strategy more precisely in the following pseudocode.

Subroutines

UPDATE _RL(v)
Update rl(¢') to its correct value.

UPDATE _ERL(v)
erl(v) == ri(v),
For all u € U’ incident to v, update u’s neighbor lists.

REMOVE _EDGE((u, v))
Remove v from u’s neighbor lists
If u € U' and u’s degree falls below /
U = U\ (u
If (u, v) is a designated edge do
UPDATE _RL(v);
If ri(v) <erl(v) — 1 then UPDATE _ERL(y)

DESIGNATE _EDGE(w)
If u € U\ U’ then designate any edge incident to u
Else do
designate an edge {u, v} such that er(v)
is minimal over all ¢ incident to u;
UPDATE _RIL(v);
If ri(v) > erl(¢) then UPDATE _ERL(v).
Return ().

Player’s Initialization

For all v € V', erl(v), r(v) =0
For all u € U, DESIGNATE _EDGE(w)

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 463
Responses to Adversary Actions

1. When the adversary removes edge (u,v) and does not remove v:
REMOVE _EDGE({(u, v))
If (u, v) was a designated edge then

v' = DESIGNATE _EDGE(u)

If ri(e’) =1t,

Then repeat RESET until every node’s ratio level is less than ¢,

2. When the adversary removes a node v € V":
Respond as if the adversary removed
each edge (u,) in (any) sequence.

Reset Procedure

1. k=1t.

2. While |U,_;| = (r,_3DIU,| /88x do
k =k — 3.

3 @W,_,=U_;

(b) Foreach v € V,_,, do
while Hl(¢) > k — 1 do
undesignate any designated edge incident to v
and some u € U’
UPDATE _RL(v);
If ri(e) > erl(v) or ri(v) < erl(v) — 1 then do UPDATE _ERL(v);
(d) For each u € W,_, which does not have a designated edge,
DESIGNATE _ EDGE(u).
4. Return (k).

6. ANALYSIS OF THE STRATEGY

The level of a RESET procedure call is defined to be the value returned
by the RESET procedure (i.c., the value of k& after step 2 of RESET is
executed.)

Lemma 8. 1. When the RESET procedure is called repeatedly, each
successive call is at a level at least three lower than the level of the previous
call.

2. The level of a RESET call is at least 4.

3. The total number of redesignations is no greater than 2 /5 of the sum
of the number of u-node shifts and the number of adversary edge kills.

464 KING, RAO, AND TARJAN

The proof of Lemma 8 appears in the next subsections. Lemma 8
implies the following theorem:

THEOREM 9. The total number of points scored by the adversary when
the edge designation strategy of section 2 is used is

O(Mr,_, +IN + K(N, M)).

Proof. Statements (1) and (2) imply that the repeat RESET instruction
terminates. We note that no node in V' with rl = ¢ is every removed by
the adversary since its ratio is reduced by RESETs before the adversary’s
next move.

Since every node in V' which the adversary removes has ratio less than
r,_, the adversary scores less than r,_, points per edge removed, or less
than Mr,_, points total, from edges in U’ X V. Additionally, the adver-
sary may score 2N/ points from edges outside of " X V'. Thus the total
number of points scored from node removals is less than Mr,_, + 2 NI

The adversary also scores a point for each redesignation. Since the total
number of adversary edge kills is bounded above by 2P(N, M) + K(N, M)
by the rules of the game and the total number of u-node shifts is bounded
by N we can conclude from statement (3) of Lemma 8 that the number of
redesignations is no greater than 22P(N, M) + N + K(N, M))/5. There-
fore,

P(N,M) <Mr,_| + 2Nl +2(2P(N,M) + N+ K(N,M)) /5.
Solving for P(N, M) gives
P(N,M) <5(Mr,_, +2NI) + 2(K(N,M) +N). =

6.1. Expansion or Ratio Drops

We first prove the following lemma and then show in the next subsec-
tion that Lemma 8 follows from it.

As before, we let V; denote the nodes in ' that lie at or above ratio
level i at the current timestep and let U; denote the nodes in U' whose
designated edges are incident to nodes in V; at the current timestep. We
say a node u € U is designated for a node v € V if its designated edge is
incident to v.

Lemma 10. Fix any point of time as the “current timestep” in the
execution and any level k € {4,7,...,t}. Let RESET_TIME refer to the
timestep of the most recent previous RESET call at a level no greater than k
or to the timestep at the start of the player’s initialization if there was no
such RESET call.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 465

Then either

|Uk 3! Ty — 3l|Uk|/88x or

2. the number of adversary edge kills plus the number of u-node shifts
affecting nodes at level k — 3 which occurred between RESET _TIME and
the current timestep is at least r,_,200|U,| /44x°.

Proof. We first prove the following claim:

Cramm 11. Let V denote the set of nodes v such that v was in a ratio level
at least k — 2 at some point since RESET _TIME. Then

Y. initial degreee of v > 1|U,| /2 x. (8)
rel

Proof of Claim. let v eV, Let U(v) be the nodes in U’ with
designated edges incident to v. Let U(v) be the nodes in U'(¢) that were
designated to v at a time since RESET _TIME when the ratio level of v
was at least k — 1 immediately preceding the designation. We note that
the ratio level of v must have been below k — 1 since RESET _TIME
since the ratio level of every node is at most & — 1 at some point during a
RESET call at level no greater than k or during the player’s initialization.

The number of edges designated to v must increase by a factor of

+ 1/x) from the time since RESET _TIME that r/(v) became £ — 1 to
the time that r/(zv) became k. Thus, at least [(1/)IU' ()] /(1 + 1/x)] =
LIU(0)] /(x + 1} nodes are in U'(v).

That is,

|0 ()] = [IU'(0) | /(x + D] 2|U(v)]2x

Let u € U'(¢v). At the time the player designated edge (u,v), all the
neighbors ¢’ of u had erl(v') = erl(v) = ri(v) = k — 1. Since (") is
always at least erl(v") — 1, rl(v") = k — 2 at this time. That is, v’ € V.

We may repeat this argument for all v € V,. As there is only one
designated edge for each u, the sets U'(v) are disjoint. Since U, o, U'(v)
= U,, there are at least |Uk|/2x nodes in ULEVU(U) For each such
node all of its neighbors are in V. Since each node in Uy has at least /
neighbors, there are at least [|U,| /2x edges incident to nodes in V and
the claim is proved. B

5This holds even when considering rounding since if k' =k + |k/x} then |k/x] >
\k'/(x + V)] and if k" =k + [k/x]then [k/x] 2 |k'/(x + 1)] for any k.

®The second inequality is derived from the fact that x > 2 and by observing that the initial
degree of each node in V' is at least [and thus {U'(e)l/x = ry_(I/x 2 176, and thus
LU /x) = U] /2.

466 KING, RAO, AND TARJAN

Let ¥ n V._; be the set of nodes in ¥V which have ratio level at least
k — 3 at the current time. Then there are at least r,_,X, oy, . (initial
degree of v») designated edges incident to V' N V,_;, each of which
corresponds to a node in U, _.

If [U,_5] < r,._5l1U1 /88 x, then

re_il\U.|
re_s . initial degree of v < Aok
N 88x
velVnb, ,
Thus
initial d fovs< 1+1/x) < . 9
Y. initial degree of ¢ x (/x) iax (9)

veEVPNV,_,

(The second inequality follows since x > 1.) Equations (8) and (9) imply
that

L 1l 201G,
2x 44x 4dx

(10)

Y initial degree of v >
ve(P\V,_3)

Each node in ¥\ V,_3 has dropped from level k — 2 to below k — 3.
Thus the number of designated edges that were removed from these nodes
since RESET _TIME and while they were in level k& — 3 is at least

[(ri_s = re-4)I21|Ul44x],
since each node in V has degree at least /. This quantity is greater than

(x)rk_420”Uk|
44 x

since {/x > ryl /x > 176.

Since the only RESETs after the call that defined RESET_TIME
occurred at a level greater than k, and these caused designated edge
removals only on nodes with ratio levels greater than & — 1, we can
conclude that all r,_,/20|U,|/44x* designated edge removals correspond
to wu-node shifts and adversary edge kills that occurred since
RESET_TIME. m

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 467

6.2. Proof of Lemma 8

The proof of Lemma 8 follows fairly easily from the previous lemma.

1. When the RESET procedure is called repeatedly, each successive call
is at a level at least three lower than the level of the previous call.

Proof. Suppose there is an uninterrupted sequence of RESET calls in
which a call of level p is followed any time later in the sequence by a call
at level p', p' = p. Let the timestep in which the second call is made be
the “current timestep” of Lemma 10. Fix & in Lemma 10 to be p’. Then
either the call at level p was the call that defined RESET_TIME of
Lemma 10, or there was another RESET call after RESET_TIME. In
either case, consequence (2) of Lemma 10 is false since there were no
adversary actions intervening between RESET _TIME and the timestep of
the second call. Then consequence (1) is true at the time of the second
RESET call. Therefore, the second RESET call cannot be at level p’,
giving a contradiction.

Also, RESET calls can only be made on levels p', where (t — p')
mod 3 = 0; thus p’ cannot be one or two levels below p. B

2. The level of a RESET call is at least 4.

Proof. Suppose not. Step 2 in the RESET call must have been exe-
cuted until k =1, or (r — 1)/3 times. By the condition in step 2, for
k=4,7,10,...,t, |U,_5| = r,_;11U,| /88x. We also have that |U,| > 1,
since ¢’ € V, when the RESET call is made. Then

’UI' > (1 + l/x)(z~3)+(r—6)+(r-9)+ H(r01/88x)("”/3.
> (r[]l/88x)(r~l)/3.

For ¢t = 3[log N/(log ry! — log 88 — log x)] + 4, |U,| > N, which is a con-
tradiction. |

3. The total number of redesignations is no greater than 2 /5 of the sum
of the number of u-node shifts and the number of adversary edge kills.

Proof. Let rdes(i, k) be the number of redesignations done in the ith
RESET call of level k. Let rdrop(i, k) be the number of ratio drops
(downward adjustments to r(v) over all v € V) caused by u-node shifts
and adversary edge kills that affected nodes while they were in ratio level
k — 3, and that occurred between the (i — 1)th and ith k-level RESET
call. (The Oth RESET call will denote the start of the game.)

468 KING, RAO, AND TARIJAN

Cramm 12. rdes(i, k) < 2rdrop(i, k) /5

Proof of Claim. The number of redesignations in a RESET call at level
k is the number of undesignations needed to ensure that no nodes remain
at level & — 1 or higher.

For any node whose ratio is no greater than (1 + 1/x)'r,, we only need
to undesignate a (1/x)/(1 + 1/x) fraction of the node’s incident desig-
nated edges to ensure that its ratio drops to below (1 + 1/x)*~'r,. Thus,
bringing all the nodes’ ratios down to (1 + 1/x)'~'r, when all the nodes
currently have ratio at most (1 + 1/x)'r, requires that at most
2,‘@/,[(1/()‘ + 1))des(v)] edges be undesignated, where des(v) denotes
the number of edges designated to v. This can be upper bounded by
U] /(x + D) + [Ul /(r,_ 1), since the degree of each node in V; is at least
/. Furthermore, since ry//x > 176 and x = 2, we can bound this by
Ul /(x + 1)+ Ul /(176x) < (8/DIU,| /x. That is, at most (8/7)|U,| /x
undesignations are needed to bring the ratios of all the nodes to at most
(1 + 1/x) " 'r, if the ratios of all the nodes are no higher than (1 +
1/x)r,.

We can lower the ratio levels to below k — 1 as follows: lower each
node with ratio of at most (I + 1/x)r, to have ratio at most (1 +
1/xY " 'r,, starting with i = i,, where i, is the minimal integer where all
nodes have ratio less than (1 + 1/x)"r,, and decrementing i until i = k —
1.7 Since the cost of bringing the ratios of all the nodes down from
(1 + 1/x)r, to at most (1 + 1/x) " 'r, is less than (8/7IU,]/x, the
number of undesignations needed to ensure that no node remains in level
k — 1 is at most

x)y Y. (8/DIUL

k—1<i<i,

Since step 2 of the RESET did not terminate at a level higher than k& and
there are no adversary edge Kkills or #-node shifts on nodes with ratio
larger than (1 + 1/x)'~'ry, we have for each j > 0

|Usi— 1y < |Us 1y |
(rol/88x) — 2

IU3j+k | =

(The second inequality above follows since ry//x > 176.) We can use this
equation to derive that

YU <3 31Uyl < 61U

izk j=z0

"We remark that i, may actually be larger than ¢ since edges may have been designated by
an immediately preceding call to the RESET procedure.

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 469
and that

Y. Ul <7MU_\1.

k-1

Thus, only (8/7xX7|U, _,) = 8|U,_,| undesignations are needed to bring
the ratio levels of all the nodes down to k& — 1. Since |U,_,| < |U,_5| <
r._3l1U.} /88x, by the fact that step 2 of the RESET terminated at level
k, we can conclude that

rdes(i, k) < 8r, 311U, /88x2. (11)

Let the timestep in which the ith k-level RESET call is made be the
current timestep of Lemma 10. Fix the level of the lemma to be k. Since
consequence (1) of Lemma 10 fails in the k-level RESET call, conse-
quence (2) holds. Now, rdrop(i, k) is at least as great as the number of
adversary edge kills or u-node shifts affecting nodes at level £ — 3 which
occurred between RESET_TIME and the current timestep since it in-
cludes these events in its count. Thus,

rdrop(i, k) = 20r,_,I|U,|/44x?

T3
= ZO-ITl—/x-1|Ukl44x2 > 20rk_3l|Uk|/88x2.

(The final inequality follows from x > 1.) Combining Eq. (11) with the
equation above yields

rdrop(i, k) = 20rdes(i, k) /8 = Srdes(i, k)/2. ®

We prove item (3) by noting that each node shift or adversary edge kill
is counted in only one rdrop(i, k) and using the claim above as follows.
Total number of redesignations

Y Y. rdes(i, k)

i=4, .. k=7,10,...

Y. Y. 2rdrop(i,k)/5 < 2 (total number of ratio drops) /5.
i=4,... k=T7,10,...

A

This completes the proof of Lemma 8.

470 KING, RAO, AND TARJAN

In the next subsection, we calculate the cost of implementing the
player’s strategy.

6.3. Cost of Implementing the Strategy

THeorReM 13. The implementation cost, C(N, M), of the strategy of
Section 5 is Ot + x/roXN + P(N, M) + K(N,M)) + M), where t =
3f(log N)/(log r,! — log 88 — log x)] + 4.

Proof. The total implementation cost of the player is the cost of
selecting designated edges plus the cost of maintaining the data structures
that she uses.

The total number of times edges are designated is no greater than
N + 3P(N, M) + K(N, M), since by the rules of the game

* the number of initial designations is at most N,

e the number of edge designations caused by node removal plus the
number of redesignations done by the player is at most P(N, M),

 the number of adversary edge kills is at most 2P{N, M) + K(N, M),
and

» there are no other edge designations.

Selecting an edge of minimal estimated ratio level for any node can be
performed in O(¢) time by scanning its ¢ neighbor lists from low to high
estimated ratio level. Thus, the total implementation cost for selecting
designated edges is O(t(N + P(N, M) + K(N, M))).

We enumerate the data structures that the player may change as
follows. The player maintains:

{(a) for each node in V, ri(v),

(b) for each node in V, erl(v),

(¢) for each node u € U', a neighbor-list which, for each level i =
0,...,t, has a pointer to a linked list of all nodes with erf = i which are
incident to u,

(d) and, for each node in U, the designated edge.

The implementation costs of the data structures in (a), (b), and (d) can be
bounded as follows:

e Changes in r/ require only constant time and occur only when an
edge is designated (using O(N + P(N, M) + K(N, M)) time) or by an
adversary edge kill (using O(N + P(N, M) + K(N, M)) time) or by a
u-node shift (using O(N) time).

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 471

» Changes in erl(v) require only constant time. Whenever a change
occurs the neighbor lists of all of v’s neighbors are changed. Thus the cost
is dominated by the cost of maintaining the neighbor lists.

* Changes in the designated edge of a node require constant time and
only occur when there is an edge designation for that node (using O(N +
P(N, M) + K(N, M)) time.)

Thus, we proceed by bounding the cost of maintaining the neighbor
lists.

The neighbor lists are changed only at initialization and when
UPDATE_ERL is called. The initialization cost is bounded by
O(UN + M), since for each node u € U’, ¢ lists are made, and all of u’s
neighbors are put in the Oth list.

An UPDATE_ERL may occur when the ratio level of a node v
changes either by rising to a level above the current erl(v), or falling two
levels below the current erl(v). Between any two consecutive upward
revisions of erl(v) either a downward revision of er/(v) occurred or v’s
ratio rose a complete ratio level. Furthermore, a downward revision of
erl(v) can only occur if v’s ratio has dropped a complete level since the
last revision of erl(v). That is, each call of UPDATE _ERL for a node v
can be assigned at most two to one to a complete ratio level change of the
node.

For the ratio to have changed a complete level, at least (ry/x Xinitial
degree of) ratio changes must have occurred. The cost per
UPDATE_ERL for a node v is proportional to the degree of v which is
bounded above by the initial degree of v. So the total cost of these
revisions per node is no greater than

(number of changes to r(v))(initial degree of v)

(ry/x)(initial degree of v)

x(number of changes to r(v))

Ty

When summed over all nodes v, this is

2x(number of ratio changes) o x(N+ P(N,M) + K(N,M))

o ro

Thus, C(N, M) is O((N + P(N, M) + K(N, M)) + M + x(N +
P(N, M) + K(N, M) /r,). ®

472 KING, RAO, AND TARJAN

7. SpeciFiIc EDGE DESIGNATION STRATEGIES AND MAXIMUM
FLow ALGORITHMS

In this section, we specify the parameters in the strategy of Section 5 to
yield a strategy for playing the game. The strategy combined with Theo-
rem 3 yields the main result of this paper.

THEOREM 14. There is a strategy, &7, where
P,(N,M) = O(VNM VD ylog N/log D)

and C (N, M) = O(M log N/log D) for any parameter D, where 176 <
D <(M/N)/log N.

Proof. We note that, due to the constraints on D, the theorem only
applies when M > 176N log N.

We define a strategy & to be the edge designation strategy of Section 5,
where we set r, = (N/M)"/*/D log N/log D, x = log N/log D, and
! =[Dlog N/log D)/r,]. With this setting of parameters, the quantities ¢
and r, in the strategy can be computed as follows:

. log N
log ryl — log88 — log x
= O(log N/log D)
r_,=(1+ 1/x) " 'r,
= 0(ry).
We can now bound P_ (N, M) as follows
P,N,M)=0(Mr,_, +IN+ K(N, M))
= O(VNM VD log N/log D) + O(K(N, M))
= O(VNM VD ylog N/log D).

The first equation above follows from Theorem 9, the second follows by
substituting the appropriated values for r,_, and /, and the third follows
from the fact that K(N, M) = O(YNM) by the rules of the game.

We proceed by bounding C_ (N, M) as follows:

Co(N.M)=0((t +x/rg)(N + P(N,M) + K(N,M)) + M)
=0((x/rg)(N+P(N,M) + K(N,M)) + M)
=O0((x/ry)(N+ Nl +r,_ M+ 2K(N,M)) + M)
=0((x/r0)(r,_1M) +M)
= O(xM)
= O(M log N/log D).

A DETERMINISTIC MAXIMUM FLOW ALGORITHM 473

The first equation follows from Theorem 13. The second follows from
the fact that ¢ = O(x) and r, is less than 1. The third equation follows
from Theorem 9. The fourth follows from the facts that N/ = O(ryM) and
that N = O(NI) and that K(N, M) = O(r, M) for the settings of r, and /
that we are using. The fifth equation follows from the fact that r,_, =
O(r,), and the final equation follows by substituting log N/log D for x. R

CoroLLARY 15. There is a deterministic maximum flow algorithm that
runs on an n-node, m-edge graph in time O(nm 10g,, . \og ,11)-

Proof. If m < (176log176)n log n, we use the algorithm of Goldberg
and Tarjan {8]. Otherwise, we use Theorem 4 to conclude that there is a
maximum flow algorithm whose running time is a asymptotically bounded
by P (n(2n — 1), m(2n — 1)) times log n plus C_(n(2n — 1), m2n — 1))
plus n?/?m'/? log n for any games strategy 2.

Then we use a strategy described in Theorem 14, where we set D such
that Dlog D = M/N log N = m/nlog n. The number of points for this
strategy is bounded by O(nm/log D) and C(n(2n — 1),m(2n — 1)) is
bounded by O(nm log n/log D) by Theorem 14. B

CoRrROLLARY 16. There is a deterministic maximum flow algorithm that
given a positive constant & and an n-node, m-edge graph with (m/n)*® >
(176 log 176)log n runs in time

O(nmlog,, ,,n),
and uses at most
O(n*2=9m1/2+4 [og n)
flow operations.

Proof. Again, we use Theorem 4 to conclude that there is a maximum
flow algorithm whose running time is asymptotically bounded by
P (n(2n — 1), m(2n — 1)) times logn plus C(n(2n — 1), m2n — 1))
plus n*/2m'/? log n for any game strategy .o7.

Then we use a strategy described in Theorem 14, where we set D
such that Dlog D = (M/N)* /log N = O((m/n)*® /log n). The number
of points for this strategy can be bounded by OQ(n*?=°m!/2*%) and
C_(n(2n — 1), m(2n — 1)) can be bounded by O(nm log n/log(m /n))
using Theorem 14 as long as (m /n)?® > (176 log 176)log n. &

REFERENCES

1. R, K. Anuia anp J. B. Oruin, A fast and simple algorithm for the maximum flow
problem, Oper. Res. 37 (1989), 748-759.

2. R. K. Anuia, J. B. OrLIN, AND R. E. TariaN, Improved time bounds for the maximum
flow problem, SIAM J. Comput. 18 (1989), 939-954.

474 KING, RAO, AND TARJAN

3

4.

. N. ALoN, Generating pseudo-random permutations and maximum flow algorithms,

Inform. Process. Lett. 35 (1990), 201-204.

J. CuerivaN anp T. HaGerup, A randomized maximum-flow algorithm, in “Proceedings

of the 30th Annual Symposium on Foundations of Computer Science, 1989,” pp.

118-123.

. J. Cuerivan, T. Hacerup, anD K. MEHLHORN, Can a maximum flow be computed in
o(nm) time? in “Proceedings of the 17th International Colloquium on Automata,
Languages and Programming, 1990,” pp. 235-248.

. J. Cuerivan, T. Hacerup, anp K. MEHLHORN, “An o(n>)-Time Maximum-Flow Algo-

rithm,” Technical Report, Max-Planck-Institutfiir Informatik, Saarbriicken, Germany,
1990.

. A. V. GOLDBERG, E. Tarpos, anp R. E. TarsaN, Network flow algorithms, in “Paths,
Flows, and VLSI-Layout,” (B. Korte, L. Lovasz, H. J. Promel, and A. Schrijver, Eds.), pp.
101-164, Springer-Verlag, Berlin, 1990.

. A. V. GoLpBERG AND R. E. TARJAN, A new approach to the maximum-flow problem, J.
Assoc. Comput. Mach. 35 (1988), 921-940.

. V. KinG, S. Rao, aAND R. TAraN, A faster deterministic maximum flow algorithm, in
“Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
1992,” pp. 157-164.

. S. PHiLLes AND J. WESTBROOK, Online load balancing and network flow, in “Proceed-
ings of the 25th Annual ACM Symposium on Theory of Computing, 1993,” pp. 402-411.

. D. D. SLeator anD R. E. Tarsan, A data structure for dynamic trees, J. Comput.
System Sci. 26 (1983), 362-391.

. R. E. Tarsan, “Data Structures and Network Algorithms,” SIAM, Philadelphia, 1983.

