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Here is the story of how this paper was written.

(a) Independently, Alan and Joe discovered this easy theorem: if the “right hand
side” consists of integers, and if the matrix is “totally unimodular”, then the vertices
of the polyhedron defined by the linear inequalities will all be integral. This is easy
to prove and useful. As far as we know, this is the only part of our theorem that
anyone has ever used.

(b) But this was so easy, we each wanted to generalize it. Independently we
worked hard to understand the cases where there are no vertices, i.e., the lowest
dimensional faces of the polyhedron are 1-dimensional or higher. This was hard to
write and hard to read.

(c) At this point, Alan benefitted greatly from simplifications suggested by David
Gale and anonymous referees, but it was still not so simple.

(d) Independently, we both wondered: If the vertices were integral for every in-
tegral right hand side, did this mean the matrix was totally unimodular? This is
discussed in our paper, and also in References [1] and [2], especially the latter.

Harold Kuhn and Al Tucker saw drafts from both of us and realized that we were
working on the same problem, so they suggested that we start working together, and
that Alan should send his latest draft to Joe to take the next step. For Joe, this turned
out to be the most exciting collaboration he had ever experienced; and he still feels
that way today.
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We must have met casually before the collaboration, but we never saw each
other during it nor for a long time afterwards. Joe knew nothing about Alan’s work.
However Alan, who was working for the Navy, knew something about Joe’s work
through a Navy report on a real operations research project on which Joe and Bob
Aumann had gotten impressive results. (Many years later, in 2005, Bob won the
Nobel Prize for Economics.)

As it turned out, Joe merged our two papers—but did much more; Alan’s ideas
were very stimulating. When Alan got that version, he was also stimulated and made
substantial improvements. Then Joe made further improvements, and finally Alan
did the same. We could probably have made much more progress, but the deadline
for publication cut off further work.

(e) One of our discoveries when collaborating was a new general class of totally
unimodular matrices ... but several years later we were chagrined to learn from Jack
Edmonds that in the 1800’s Gustav Kirchoff (who was the inventor of Kirchoff’s
Laws) had constructed a class of totally unimodular matrices of which ours was
only a special case.

(f) The term “totally unimodular” is due to Claude Berge, and far superior to our
wishywashy phrase “matrices with the unimodular property”. Claude had a flair for
language.

(g) We had no thought about computational questions, practical or theoretical,
that could be influenced by our work. We also did not imagine the host of interest-
ing concepts, like total dual integrality, lattice polyhedral, etc. that would emerge,
extending our idea. And we never dreamed that totally unimodular matrices could
be completely described, see [3], because we didn’t anticipate that a mathematician
with the great talent of Paul Seymour would get interested in these concepts.

After we wrote the paper, we met once in a while (a theater in London, a meeting
in Washington), but our interests diverged and we never got together again pro-
fessionally. The last time we met was almost 15 years ago, when Vasek Chvital
organized at Rutgers a surprise 70th birthday party cum symposium for Alan. Joe
spoke about this paper and read some of the letters we wrote each other, including
reciprocal requests that each of us made begging the partner to forgive his stupidity.
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INTEGRAL BOUNDARY POINTS OF CONVEX POLYHEDRA
A. J. Hoffman and J. B. Kruskal

INTRODUCTION

Suppose every vertex of a (convex) polyhedron in n-space has (all)

integral coordinates. Then this polyhedron has the integral property (1.p.).
Sections 1, 2, and 3 of this paper are concerned with such polyhedra.

Define two polyhedra‘:
P(b) = (x | Ax > b},

Qb, c) = (x| Ax>b, x >c),

where A, b, and c¢ are integral and A 1is fixed. Theorem 1 states that
P(b) has the 1.p. for every (integral) b 1if and only if the minors of
A satisfy certain conditions. Theorem 2 states that Q(b, c¢) has the
i.p. for every (integral) b and c¢ 1f and only if every minor of A
equals 0, + 1, or - 1. Section 1 contains the exact statement of Theo-
rems 1 and 2, and Sections 2 and 3 contain proofs.

A matrix A is saild to have the unimodular property (u.p.) if it
satisfies the condition of Theorem 2, namely if every minor determinant
equals 0, + 1, or - 1. In Section 4 we give Theorem 3, a simple suffi-
cient condition for a matrix to have the u.p. which is interesting in it-
self and necessary to the proof of Theorem 4. In Section 5 we state and
prove — at length — Theorem 4, a very general sufficient condition for a
matrix to have the u.p. Finally, in Section 6 we discuss how to recognize
the unimodular property, and give two theorems, based on Theorem 4, for
this purpose.

Our results include all situations known to the authors in which
the polyhedron has the integral property independently of the "right-hand
sides" of the inequalities (given that the "right-hand sides" are integral
of course). In particular, the well-known "integrality" of transportation

Unless otherwise stated, we assume throughout this paper that the in-
equalities defining polyhedra are consistent.
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type linear programs and theilr duals follows lmmediately from Theorems 2
and 4 as a special case.

1. DEFINITIONS AND THEOREMS

A point of n-space 1is an integral point if every coordinate is an
integer. A (convex) polyhedron in n-space is said to have the integral
property (i.p.) if every face (of every dimension) contains an integral
point. Of course, this is true if and only if every minimal face contains
an integral point. If the minimal faces happen to be vertices2 (that 1is,
of dimension 0), then the integral property simply means that the vertices
of P are themselves all integral points.

Let A be an m by n matrix of integers; let b and b' be
m-tuples (vectors), and ¢ and c¢' be n-tuples (vectors), whose compon-
ents are Integers or + ». We will let «(- ») also represent a vector
all of whose components are (- «); this should cause no confusion. The
vector inequality b < b' means that strict inequality holds at every
component. Let P(b; b') and Q(b; b'; c; c¢') be the polyhedra in n-space
defined by

P(b; ') = {x | b g Ax < b') ,
Q(b; b'; c; ¢') = (x | bgAxgb' and cgxgc') .

Of course Q(b; b'; -, +) = P(b; b'). If S 1is any set of rows of A,
then define

0, 1f each minor determinant in S which
has as many rows as S -equals O,

ged(s) = greatest common divisor (g.c.d.) of all
those minor determinants in S which
have as many rows as S, otherwise.

THEOREM 1. The following conditions are equivalent:

(1.1) P(b; b') has the i.p. for every b, b';
(1.2) P(b; ») has the i.p. for every b;
(1.21) P(- »; b') has the i.p. for every Db';

if r 1is the rank of A, then for every
(1.3) set S of r 1linearly independent rows
of A, gecd(S) = 1;

It is well known (and, incidentally, 1s a by-product of our Lemma 1) that
all minimal faces of a convex polyhedron have the same dimension.
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(1.4) for every set S of rows of A, gecd(S) =1 or O.

The main value of this theorem lies in the fact that condition (1.3) implies
condition (1.1). However the converse implication is of esthetic interest.
If it is believed that (1.3) does not hold, (1.4) often offers the easiest
way to verify this, for it may suffice to examine small sets of rows.

A matrix (of integers) is said to have the unimodular property
(u.p.) if every minor determinant equals O, + 1, or - 1. We see immediate-
ly that the entries in a matrix with the u.p. can only be 0, + 1, or - 1.
THEOREM 2. The following conditions are equivalent:

Q(b; b'; ¢; ¢') has the i.p. for every

(1.5) b, b', c, c';
for some fixed ¢ such that - o < c¢c < + o,
(1.6) Q(b, »; c; =) has the i.p. for every b;
, for some fixed ¢ such that - » < ¢ < «,
(1.6") Q(- w; b'; ¢; ») has the 1.p. for every b!';
for some fixed c¢' such that - o < c! < «,
1B
(1.6'1) Q(b; »; - w; ¢') has the i.p. for every b;
for some fixed c¢' such that - o < ¢! < o,
T
SELEARY Q(- »; b'; - =3 ¢') has the i.p. for
every b';
(1.7) the matrix A has the unimodular property (u.p.).

The main value of this theorem for applications lies in the fact that con-
dition (1.7) implies condition (1.5), a fact which can be proved directly
(with the aid of Cramer's rule) without difficulty. However the converse
implication is also of esthetic interest. The relationship between Theo-
rems 1 and 2 1s that Theorem 2 asserts the equivalence of stronger prop-
erties while Theorem 1 asserts the equivalence of weaker ones. Condition
(1.5) is clearly stronger than condition (1.1), and condition (1.7) is
clearly stronger than condition (1.3).

For A to have the unimodular property is the same thing as for
A transpose to have the unimodular property. Therefore if a linear program
has the matrix A with the u.p., both the "primal" and the dual programs
lead to polyhedra with the i.p. This can be very valuable when applying
the duality theorem to combinatorial problems (for examples, see several
other papers in this volume).
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2. PROOF OF THEOREM 1

We note that (1.1) == (1.2) and (1.2') trivially. Likewise
(1.4) == (1.3) trivially. To see that (1.3) == (1.4), let S and S!'
be sets of rows of A. If SC S', then the relevant determinants of 3!
are integral combinations of the relevant determinants of S. Hence
ged(S) divides ged(S'). From this we easily see that (1.3) == (1.4).

As (1.2) and (1.2') are completely parallel, we shall only treat
the former in our proofs.

Let the rows of A be A1, cee, Am and the components of b and
b' be by, ..., by and b1', «ee, DI+ Suppose that we know that (1.3) for
any matrix A, implies (1.2) for the corresponding polyhedra P,(b; «).
Also, suppose that (1.3) holds for the particular matrix A. Then setting

A
- A
we see immediately that (1.3) holds for A,. Consequently
Py(bys «eey Dy = DI, ey - Dl )

has the i.p. But it is easy to see that this polyhedron is identical with
P(b; b'); hence the latter also has the i.p. Therefore if for every
matrix (1.3) implies (1.2), then (1.3) implies (1.1) for every matrix.

Let P(b) = P(b; ») for convenience.

It only remains to prove that (1.2) is equivalent to (1 .3)3. If
S 1s any set of rows Ai of A, we define

Fg=Fg(P) = (x | Ax 2b and Ajx =Dy if A; in 8J,
Gg = the subspace of n-space spanned by the rows A:L in S.

If Fs(b) is not empty, it is the face of P(b) corresponding to S. (We
do not consider the empty set to be a face of a polyhedron.) We easily see
that Fs(b) , if non-empty, corresponds to the usual notion of a face. Of
course Fy(b) = P(b), where # 1is the empty set. We shall use the letter
A to stand for the set of all rows of the matrix A. In general we will
use the same letter to denote a set of rows and to denote the matrix formed
by these rows. (This double meaning should cause no confusion.)

3 The authors are indebted to Professor David Gale for this proof, which
is much simpler than the original proof.
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LRMA 1. If S CS', and if Fgq(b) and Fg,(b) are
faces (that is, not empty), then FS|(b) is a subface
of Fs(b). Ir Fs(b) is a face, then it is a minimal
face if and only if GS = GA’ that 1is, i1f and only if
S has rank r, wksre r 1s the rank of A.

PROOF. The first sentence of the lemma follows directly from the
definitions. To prove the rest of the lemma, let S' be all rows of A
which are in GS' Then GS = GS" and Aj is a linear combination of the
Ay in S 1if and only if Aj is in S'. Clearly GS = C'A if and only if
S' = A.

If S' # A, there is at least one row Ak in A - S'. Then
there is a vector y such that A.ly = 0 for Ai in S, Aky < 0. Let
x be in Fg. As AX > by, there 1s a number iy > 0 for which
A (x + MJ) = by. For every Aj in A - S' such that Ajy < 0, the
equation Aj (x +y) = bj has a non-negative solution. ILet A. Dbe that
solution. Define A = minimum )‘j , and let j' be a value such that
A= Asye As Me exlists, there is at least one xj, so A exists. By
the definition of a,

A(x + Ay) > b,
Al(x +2y) = by for A; in S,
Aj.(x +Ay) = bj' .

Thus FSUA., is not empty, and is therefore a subface of FS' Further-
more as A‘]-, is not a linear combination of the Ai in S, FSUA., is a
proper subface of F‘S. Therefore FS is not minimal. J

On the other hand, if Fg is not minimal it has some proper sub-
face FSUAk' Then there must be X, and X5 in FS such that Akx1 = bk

and Akx2 > Dby Therefore Alg( varies as X ranges over Fg. But for
Ai in S, Aix = bi is constant as x varies over FS‘ Hence Ak can-
not be a linear combination of the A.L in S8, so Ak is in A - S'.
Hence S' # A. This proves the lemma.

If b, as usual, is an m-tuple and S 1s a set of r rows of
A, then bg 1s the "sub-vector" consisting of the r components of b
which correspond to the rows of S. Let b always represent an (integral)
r-tuple. The components of b and bS will be indexed by the indices
used for the rows of S, not by the integers from 1 to r. Let

Lg(b) = (x | 8x = b) .
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LEMMA 2. Suppose S 1s a set of r 1linearly inde-
pendent rows of A. Then for any D there 1s a b
such that
(2.1) by = b ;
(2.2) Fs(b) is a minimal face of P(b).

PROOF . As S 1s a set of linearly independent rows, the equa-
tion Sx = b has at least one solution: call it y. Define b as follows:

by if Ay in S,
by =
[A.ly] if Ai not in S .

Clearly bg = b, so (2.1) is satisfied. Obviously b 1is integral. Further-
more y 1s seen to be in Fgq(b), so Fgq(b) 1s not empty, and hence is a
face of P(b). By Lemma 1, Fq(b) is a minimal face, so (2.2) is satisfied.

LEMMA 3. Suppose S' 1s a set of rows of A of rank
r, and S C S' 1is a set of r 1linearly independent
rows. For any b such that Fg,(b) 1s a face (that
is, not empty),

Fg: (b) = Lg(bg).
PROOF. Iet y be a fixed element in FS,(b), and let x be

any element of Lg(b). As Fg,(b)C Ls(bs) is trivial, we only need show
the reverse inclusion. Thus it suffices to prove that x 1is in Far (b).

As S has rank r, any row Ak in A can be expressed as a
linear combination of the rows Ay in S:

Ag = Ty -
Then
Ax = by = Ay
for Ai in S, so
Agx = Zop g AyX = Zop Ay = Ay e

Then as y 1is in FS,(b), x must be also. This completes the proof of
the lemma.
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LEMMA 4. Any minimal face of P(b) can be expressed
in the form F‘s(b) where S 1s a set of r 1linearly
independent rows of A.

PROOF. Suppose the face is Fg,(b). By Lemma 1, S' must have
rank r. Iet S be a set of r 1linearly independent rows of S'. Then
by applying Lemma 3 to both Fg, (b) and Fs(b), we see that

Fg, (b) = Lg(bg) = Fg(b).
This proves the lemma.

LEMMA 5. If S 1is a set of r 1linearly independent
rows of A, then the following two conditions are
equivalent:

(2.3) LS(S) contains an integral point for every (integral) b ;

(2.4) ged(s) = 1.

PROOF. We use a basic theorem of linear algebra, namely that any
integral matrix S which 1s r by n can be put into the form

S = UDV

where D 1s a (non-negative integral) diagonal matrix, and U and V are
(integral) unimodular matrices. (Of course U 1is r by r, V is

n by n, and D 1is r by n.) As U and V are unimodular, they have
integral inverses. Furthermore gcd(S) = ged(D). (For proofs of these
facts, see for example [3].)

Let the diagonal elements of D be dyy- Clearly gcd(D) =
d;4dp, ¢« dp.e Therefore condition (2.4) 1s equivalent to the condition
that every dii = 1. Now we show that (2.3) is also equivalent to this
same condition.

Suppose that some diagonal element of D 1s greater than 1. For
convenience we may suppose that this element is dH =k >1. Let & be
the r-tuple (1, 0, «+., 0), and let b = US. Then LS(E) contains no
integral point. To see this, let x be in LS(E). Then

so DVx = & . Clearly the first component of y = Vx 1is 1/k, so y is
not integral. Hence x cannot be integral. This shows that (2.3) cannot




60

Alan J. Hoffman and Joseph B. Kruskal

230 HOFFMAN AND KRUSKAL

hold if some dj_1 1s greater than 1.
Suppose every dii = 1. Let x be in LS(E) and set

Vx = (y1: ce0s Jps Tppqr *0e yn)'

Then
UT'B = DVx = (3,5 eees Tp)s

and so y;, «++, ¥, are integral. Let y = (yl, cees Fpr 05 eee, 0).
Then V"y is integral, and since Dy = DVx,

s(v'y) = vov(v''y) - UDy - UDVx = b .
Thus V'1y is in LS(E). This shows that (2.3) does hold if every dygy = 1,

and completes the proof of the lemma.

Now it is easy to prove that (1.2) === (1.3). First we prove
=. Let S be any set of r 1linearly independent rows of A. Let b
be any (integral) r-tuple. Choose a b which satisfies (2.1) and (2.2).
By (1.2), Fs(b) must contain an integral point x. By Lemma 3 and (2.1),

Fg(b) = Lg(bg) = Lg(b) .

Hence Ls(ﬁ) contains x. Therefore (2.3) 1s satisfied, so by Lemma 5,
ged(S) = 1. This proves =—.

To prove <==, let Fg,(b) be some minimel face of P(b). By
Lemma 4 this face can be expressed as Fs(b) where S consists of r
linearly independent rows of A. By Lemma 3, Fs(b) = Ls(bs). By (1.3),
ged(S8) = 1, and by Lemma 5 Lg(bg) must contain an integral point x.
Hence FS' (b) contains the integral point x. Therefore every minimal
face of P(b) contains an integral point, and hence also every face. This
proves <—= , and completes the proof of Theorem 1.

3. PROOF OF THEOREM 2

The role of (1.6) and its primed analogues are exactly simllar,
so we treat only the former in our proofs. For convenience we let

Q(b; c) = Q(b; @5 c; ).

It 1s not hard to see that (1.7) =>(1.5). For suppose that A
has the u.p. (that is, satisfies (1.7)). Then
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A
- A
A, = I
-1

satisfies (1.3). By Theorem 1, the assoclated polyhedron
Py(Dys ovey bps = DI, eee, =Dl €y eeey Cpy - Cl, aee, - Cr'l)

has the i.p. But it is easy to see that this polyhedron 1s identical with
Q(b; b'; ¢; c'). Therefore the latter has the i.p., so (1.7) == (1.5).
(An alternate proof of this can easily be constructed using Cramer's Rule.)
Clearly (1.5) == (1.6). Hence 1t only remains to prove that
(1.6) == (1.7). We shall prove1+ this by applying Theorem 1 to the matrix

P } .
A
Let d be any (integral) (n+m)-tuple, and let

cUb = (c1, cees Cpy by, e, bm) .

Then P (c Ub) = Q(b, c).

To verify condition (1.2) for A*, we need to show that P*(d)
has the i.p. for every d. Condition (1.6) yields only the fact that P (a)
hi.s the i.p. for every d such that dI = c. To fil11 this gap, note that
A  has rank n as it contains the n by n 1identity matrix, and let
F‘g,(d) be any face of P* (). ‘I’};is face contains some minimal face, which
by Lemma 4 can be exprissed as Fs(d) where S consists of n 1linearly
independent rows of A . By Lemma 3,

* *
Fs(d) = Ls(ds) = (x| 8x = dg) .
As S5 isan n by n matrix of rank n, F;(d) consists only of a single

point. Call this point x. We shall show that x 1s integral.

Let I1 be the rows of I in S, 12 the rows of I not in §,
A, the rows of A in S, and 1-\.2 the rows of A not in S. We wish to
pick an integral vector g such that

b The authors are indebted to Professor David Gale for this proof, which
is much simpler than the original proof.
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(3.1) X+q2¢,
(3.2) (x + q)11 = cI1 .

Let g=c¢ - dI. Then q satisfies these requirements, for

if the i1-th row of
Xy +Qy 4y + (64 - dy) = ¢y I isin I,
otherwise.

1Y,

Define d!' =c U (dA + Aq) Then d' 1s integral, and df = ¢, so by
(1.6) the polyhedron P (d') has the 1.p.

Now Fs(d') is not empty because it contains (x + q), as we
may easily verify:

Ax + ) I(x +q) UA(x + @) 2c U (dy + Aq) = a',

- _ _ ot
S(x + q) = I1(x+q) UAl(x +q) = cIl u (dA + Alq) = dg-

Therefore F‘S(d') must contain an integral point. However Fs(d') can con-
tain only a single point for the same reasons that applied to Fs(d) Hence
X + @ must be that single point, so x + q must itself be integral. As

a is integral, x must be integral also. Thus Fs(d), and a fortiori
F'S,(d) , contains the integral point x. This verifies condition (1.2)

for A".

By Theorem 1, (1.3) holds for A*. As the rank of A* is n,
ged(S) = |S| = 1 for every set S of n linearly independent rows of A,
From this we wish to show that A has the u.p. Suppose E 1s any non-
singular square submatrix of A. ILet the order of E be 8. By choosing
S to consist of the rows of A* which contain E together with the proper
set of (n - s) rows of I, and by rearranging columns, we can easily
insure that

F E

where I 18 the identity matrix of order (n - s), F 1s some s by
(n - s) matrix, and 0 is the (n - s) by s matrix of zeros. Then
IS| = |E| # 0, so S 1is non-singular. Therefore S consists of n
linearly independent rows, so

IEl = [8] = ged(S) =
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This completes the proof of Theorem 2.
4. A THEOREM BY HELLER AND TOMPKINS

In this and the remaining sections we give various sufficient con-
ditions for a matrix to have the unimodular property.

THEOREM 3. (Heller and Tompkins). Let A be an m
by n matrix whose rows can be partitioned into two
disjoint sets, T1 and Te’ such that A, T1, and

’I‘2 have the following properties:
(%.1) every entry in A 1is 0, + 1, or - 1;
(k.2) every column contains at most two non-zero entries;

if a column of A contains two non-zero entries,
(%.3) and both have the same sign, then one is in T,
and one is in T2 H

if a column of A contains two non-zero entries,
(4.4) and they are of opposite sign, then both are in
T, or both in Ty

Then A has the unimodular property.

Thils theorem 1is closely related to the central result of the paper
by Heller and Tompkins in this Study. The theorem, as stated above, is
glven an independent proof in an appendix to thelr paper.

COROLLARY.” If A dis the incidence matrix of the
vertices versus the edges of an ordinary linear graph
G, then in order that A have the unimodular prop-
erty 1t 1s necessary and sufficient that G have no
loops with an odd number of vertices.

PROOF. To prove the sufficiency, recall the following. The con-
dition that G have no odd loops is well-known to be equivalent to the
property that the vertices of G can be partitioned into two classes so
that each edge of G has one vertex in each class. If we partition the
rows of A correspondingly, it i1s easy to verify the conditions (4.1)-(k.4).
Therefore A has the u.p.

If A has an odd loop, let A' be the submatrix contained in the
rows and columns corresponding to the vertices and edges of the loop. Then

5 The authors are indebted to the referee for this result.
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it is not hard to see that |A'| = + 2. This proves the necessity.

5. A SUFFICIENT CONDITION FOR THE UNIMODULAR PROPERTY

We shall consider oriented graphs. For our purposes an oriented
graph G 1is a graph (a) which has no circular edges, (b) which has at
most one edge between any two given vertices, and (c¢) in which each edge
has an orientation. Let V denote the set of vertices of G, and E
the set of edges. If (r, s) is in E (that is, if (r, s) 1s an edge
of G), then we shall call (s; r) an inverse edge. (Note that by (b),
and inverse edge cannot be in E;
thus an inverse edge cannot be an Diagram 1
edge. This slight ambiguity in ter-
minology should cause no confusion.)

We shall often use the phrase direct T r
edge to denote an ordinary edge.

A path 1s a sequence of dis-
tinct vertices r,, ..., Ty, such 2
that for each i, from 1 to k -1,
(ry> v3,,) 1is elther a direct or an > r, ry s
inverse edge. A path is directed if A divect A+ =)
every edge is oriented forward, that path v alternating path
is, 1if every edge (ri, ri+1) in the
path is a direct edge. A path is
alternating if successive edges are
oppositely oriented. More precisely,
a path is alternating if its edges are
alternately direct and inverse. An
alternating path may be described as 177 3 Ts5
being (++), (+-), (-+), or (-=).
The first sign indicates the orienta-
tion of the first edge of the path,
the second sign the orientation of the
last edge of the path. A + 1indicates
a direct edge; a -~ 1indicates an in-
verse edge. A loop is a path which
closes back on itself. More precise-
1y, a loop 1s a sequence of vertices
Piy eees T in which r, = Ty but

T I.l% 1”6

An alternating loop

1
which are otherwise distinct, and such (,.n.5yg mﬁtgét?rgigigﬁo%i‘ipge upward)

that for each i (ri, ri+1) is either
a direct or an inverse edge. A loop
is alternating if successive edges are
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oppositely oriented and if the first and last edges are oppositely oriented.
An alternating loop must obviously contain an even number of edges.

A graph is alternating if every loop in it 1s alternating. Let
V= (v, «es; v} be the vertices of G, and let P = (p;, ..., p) De
some set of directed paths in G. Then the incidence matrix A = [!aj_j I
of G versus P is defined by
1 1if vy is in pj,
aij =
o if vy is not in pj'
We let Av represent the row of A corresponding to the vertex V and
AP represent the column of A corresponding to the path p. We often

p
write ayp instead of aij for the entry common to ‘AV and A*.

THEOREM 4. Suppose G 1s an oriented graph, P is
some set of directed paths in G, and A is the in-
cidence matrix of G versus P. Then for A to have
the unimodular property it is sufficient that G be
alternating. If P consists of the set of all
directed paths of G, then for A to have the uni-
modular property it 1s necessary and sufficient that
G be alternating.

This theorem does not state that every matrix of zeros and ones
with the u.p. can be obtained as the incidence matrix of an alternating
graph versus a set of directed paths. Nor does it give necessary and
sufficient conditions for a matrix of zeros and ones to have the unimodular
property. (Such conditions would be very interesting.) However it does
provide a very general sufficient condition. For example, the coefficient
matrix of the 1 by j transportation problem (or its transpose, depend-
ing on which way you write the matrix) is the incidence matrix of the
alternating graph versus the set of all directed paths. Hence this matrix
has the u.p., from which by Theorem 2
follows the well-known i.p. of
transportation problems and their duals.
The extent to which alternating graphs
can be more general than the graph
shown to the left is a measure of how
general Theorem 4 is.

So that the reader may follow
our arguments more easily, we describe
here what alternating graphs look like.

Diagram 2
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(As loglcally we do not need these facts and as the proofs are tedious, we
omit them.) An integral height function h(v) may be defined in such a
way that (r, s) 1s a direct edge only when (but not necessarily when)
h(r) + 1 = h(s). If we define r < s to mean that there is a directed path
from r to s, then < 1s a partial order. Then (r, s) 1s a direct
edge if and only if both r < s and there is no element t such that
r<tc<s.

PROOF OF NECESSITY. We consider here the case in which P 1is
the set of all directed paths in G, and we prove that for A to have the
u.p. 1t 1s necessary that G be alternating. It 1s easy to verify that
the matrix (shown below) of odd order which has ones down the main diagonal
and sub-diagonal and in the upper right-hand corner, and zeros elsewhere,
has determinant + 2.

We shall show that if G 1s not alternating then it contains this matrix,
perhaps with rows and columns permuted, as a submatrix.

Let ¢ Dbe a non-alternating loop in G. If £ has an odd number
of distinct vertices, consider the rows in A which correspond to these
vertices, and consider the columns in A which correspond to the one-edge
directed paths which correspond to the edges in ¢. The submatrix contain-
ed in these rows and columns 1is clearly the matrix shown above, up to row
and column permutations. Hence in this case A does not have the u.p. If
£ has an even number of distinct vertices, then find in it three successive
vertices r, s, t such that (r, s) and (s, t) are both direct (or both
inverse) edges. (To find r, s, t 1t may be necessary to let s be the
initial-terminal vertex of £, 1in which case r, s, t are successive only
in a cyclic sense.) Consider the rows of A which correspond to all the
vertices of £ except s. Consider the columns of A which correspond to
the following directed paths: the two-edge path r, s, t (or t, s, r) and
the one-edge paths using the other edges in 4. The submatrix contained in
these rows and columns is the square matrix of odd order shown above, up to
row and column permutations. Hence in this case also A does not have the
u.p. This completes the proof of necessity.
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The proof of the sufficiency condition, when P may be any set
of directed paths in G, occupies the rest of this section. As this
proof is long and complicated, it has been broken up into lemmas.

If Tys eees T is a loop, then Ty =ees Tpy Tpy eee, Ty is
called a cyclic permutation of the loop. Clearly a loop is alternating if
and only if any cyclic permutation i1s alternating.

LEMMA 6. Suppose A 1s the incidence matrix of an
alternating graph G versus some set of directed
paths P in G. For any submatrix A' of A, there
is an alternating graph G' and a set of directed
paths P' 1in G' such that A' is the incidence
matrix of G' versus P'.

PROOF. Any submatrix can be obtained by a sequence of row and
column deletions. Hence it suffices to consider the two cases in which A!
is formed from A by deleting a single column or a single row. If A!
is formed from A by deleting the column AP, let G' = G, and
P' = P - {p}). Then A' 1s clearly the incidence matrix of G' versus P!',
and G' 1is indeed an alternating graph.

Suppose now that A' 1is formed from A by deleting row At
Define

vt =V - {t],

E'= {(v, w) [ v, v in V' and either
(v, w) in E or (v, t)
and (t, w) in E) ,

G' = the graph with vertices V' and edges E',
P'=(p-{t) |]p in P} .

Clearly A' 1s the incidence matrix of G' versus P'. We shall prove

(a) that P' 1s a collection of di- Diagram 3
rected paths and (b) that G' is X ¥ Y
alternating.

The proof of (a) is quite
simple. Suppose vV, w are succes-
sive vertices of p' = p - (t} 1in
P'. It may or may not happen that p 5
contains t. In either case, how- Solid edges - G and G'
ever, 1f v, w are successive ver- Dashed edges - G only

tices in p, then (v, w) 1is a Dotted edges - G' only
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direct edge 1In G, so (v, w) 1s a direct edge in G'. If v, w are
not successive vertices in p, then necessarily v, t, w are successive
vertices in p. In this case (v, t) and (t, w) are direct edges in G,
so (v, w) 1s a direct edge in G'.

The proof of (b) 1s more extended. Define

(s | (s, t) in E)
U={u] (t, u) in E) .

Then each "new" edge in E', that is, each edge of E' - E, 1s of the
form (s, u) with 8 in S and u in U. Let £ be any loop in G'.
If ¢ contalns no new edge, then ¢ 1s also a loop in G and hence
alternating. If 4 contains a new edge, 1t contains at least two ver-
tices of S U U. Hence the vertices of S UU break ¢ up into pleces
which are paths of the form

D=V, Pys evey Ty v!

where v and v' are in S UU and the r's are not.

CASE (U, U): both v and v!' belong to U. In thils case
t, v, Tis ey Ty v', t

1s a loop In G, hence alternating. Therefore p 1s an alternating path.
As (t, v) 1s a direct edge and (v', t) 1is an inverse edge in G, p
must be a (- +) alternating path in G!'.

CASE (8, S8): both v and v' belong to S. In this case dual
argument to the above proves that p must be a (+ -) alternating path
in G'.

CASE (U, 8): v belongs to U and v' belongs to S. In this
case p must be exactly the one-edge path v, v'. For if not, p con-
sists solely of edges in E, so the loop which we may represent symbolically
v', t, p 1is a loop in G. But as (v', t) and (t, v) are both direct
edges In G this loop is not alternating, which 1s impossible. As (v, v')
1s an inverse edge in G', p 1s a (- -) alternating path in G'.

CASE (S, U): v belongs to S and v' belongs to U. In this
case dual argument to the above proves that p must be exactly the one-
edge path v, v' and hence a (+ +) alternating path in G'.

Using these four cases, we easlly see that the pileces of £ are
alternating and fit together in such a way that ¢ 1itself 1s alternating -
except for one technical difficulty, namely the requirement that the
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initial and terminal edges of £ must have opposite orientations. How-
ever, if we form a cyclic permutation of ¢ and apply the reasoning above
to this new loop, we obtain the necessary information to complete our proof
that ¢ 1is alternating. This completes the proof of (b) and Lemma 6.

In view of Lemma 6, the sufficiency condition of Theorem 4 will
be proved 1if we prove that every square incidence matrix of an alternating
graph versus a set of directed paths has determlnant, 0, + 1, or - 1.

We prove this by a kind of induction on two new variables, c(G) and
d(G), which we shall now define:

c(G) = the number of unordered pairs (st} of distinct
vertices of G which satisfy

there is a vertex u such that (s, u)
(5.1) and (t, u) are direct edges of G;

d(G) = the number of unordered pairs {st)} of distinct
vertices of G which satisfy

there 1s no directed path from s to t
nor any directed path from t to s.

(5.2)

Though not logically necessary the following information may help
orient the reader to the significance of these two variables. Assume G
is alternating. Then using the partial-order < introduced informally
earlier, d(G) 1s the number of pairs of vertices which are incomparable
under <. Any pair (st) which satisfies (5.1) also satisfies (5.2), so
c(G) £ d(G). If c(G) = 0, then each vertex of G has at most one
"predecessor", and G consists of a set of trees, each springing from a
single vertex and oriented outward from that vertex. If d(G) = 0, then
G 1s even more special: it consists of a single directed path.

IEMMA 7. If G 1is alternating, and {st) satisfies
(5.1), then it also satisfies (5.2). Hence
c(G) £ a@).

PROOF. Let u be a vertex such that (s, u) and (t, u) are
direct edges of G. Suppose there is a directed path

Sy Tyy eees Tps t .

If none of the r's i1is u, then

S, Tyy eeey Ty, t, u, 8
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1s a loop, hence alternating. As (t, u) 1s a direct edge, (rk, t) 1is
an inverse edge, so the path 1s not directed, a contradiction. If one of
the r's 1s u, take the plece from u to t. By renaming, we may call
this directed path

u, I‘1, ceey rk, t .

Then

t, u, Ty seey Ty t

i1s a loop, hence alternating. As (t, u) 1s a direct edge, (u, r1) must
be an inverse edge, so the path is not directed, a contradiction. There-
fore, there can be no directed path from s to t. By symmetrical argu-
ment, there can be no directed path from t to s. Therefore (st}
satisfies (5.2). It follows trivially that c¢(G) < d(G). This completes
the proof of Lemma 7.

The induction proceeds in a slightly unusual manner. The "in-
itial case" consists of all graphs G for which c(G) = 0. The inductive
step consists of showing that the truth of the assertion for a graph G
such that c¢(G) > 0 follows from the truth of the assertion for a graph
G' for which d(G') < d(G). It is easy to see that by using the induc-
tive step repeatedly, we may reduce to a graph G* for which either
e(@*) or 4a@") 1s 0. But as d(G*) = 0 implles c(G*) = o by the
inequality between ¢ and d, we are down to the initial case elther way.

We now treat the initial case.

LEMMA 8. Let A Dbe the incidence matrix of an alter-
nating graph G versus some set of directed paths P.
Suppose that P contains as many directed paths as G
contains vertices', so A 1s square. Suppose that
c(G) = 0. Then |A] =0, +1, or - 1.

PROOF. If (r, s) 1s a direct edge of G, we call r a
predecessor of s and s a successor of r. The fact that c(G) = 0
means that each vertex of G has at most one predecessor. If V' is a
subset of V, and r 1is in V' but has no predecessor in V', then r
1s called an initial vertex of V'.

Every non-empty subset V' of V has at least one initial ver-
tex. For if V' has none, then we can form in V' a sequence Ty Ty
of vertices such that for every 1, Ty is a predecessor of Ty Let

rj be the first term in the sequence which 1s the same as a vertex picked
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earlier, and let Ty be the earlier name for this vertex. Then Ty,
Typqr ce0s Ty 1s a loop all of whose edges are inverse. As G 1s alter-
nating, this 1s impossible.

Let U(r) = {s | s 1s a successor of r}. Let r, be an in-
itial vertex in V. Recursively, let Ty be an initial vertex of
V- (ry,ry ..., y ;). Then define matrices B(1) recursively:

B(0) A,
B(1) = B(1 - 1)

with the row B, (1 - 1) replaced by
1

B, (1-1)- >  B-1).
1 s in U(ry)

Let B be the final B(1). We see immediately that |A] = |[B(1)] = ... =
|B]. Thus we only need show that |B| = 0, + 1, or - 1.

We claim that each column BP of B consists of zeros with
either one or two exceptions: 1f w 1s the final vertex of the directed

path p, then b =1, and 1f v 1s the unique predecessor to the in-
itial vertex of p, then b = - 1. As the initial vertex of p may
have no predecessor at all, the - 1 may not occur.

We shall not prove in detaill the assertions of the preceding
paragraph. We content ourselves with consldering the column corresponding
to a fixed path p during the transition from B(i - 1) to B(i). Only
one entry is altered, namely brip(i - 1). There are four possible cases.

CASE (1): neither Ty nor any of 1ts successors is in p.

CASE (i1): Ty 1s not in p but one of its successors is in p.
CASE (iii): both ry and one of its successors is in p.

CASE (iv): r; 1is in p but none of its successors is in p.

At most one successor of a vertex can be in a directed path be-
cause G 1s alternating, so these cases cover every possibllity. In case
(1), the entry we are considering starts as O and ends as 0. In case
(11), it starts as O and ends as - 1. In case (i1ii), it starts as 1
and ends as 0. In case (iv), it starts as 1 and ends as 1. From these
facts, 1t is not hard to see that B satisfies our assertions.

From our assertions about B 1t 1s trivial to check that B
satisfies the hypotheses of Theorem 3. It 1s only necessary to partition
the rows of B into two classes, one class being empty and the other class
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containing every row. Then by Theorem 3, B has the u.p. Therefore,
|IBl =0, +1, or - 1. As |A] = |B|, this completes the proof of Lemma 8.

We now prove the inductive step.

LEMMA 9. Suppose that A 1s the square incidence matrix
of an alternating graph G versus a set of directed paths
P. Suppose that c(G) > 0. Then there is a square matrix
A' such that |A'| = |A| and such that A' 1s the
square incidence matrix of an alternating graph G'

versus a set of directed paths P', where d(G') < d(G).

PROOF. As c¢(G@G) > 0, G contains a vertex u which has at
least two distinct predecessors, s and t. Define

A' = A with row A, replaced by As + At
Clearly |A'| = |A|. Define

vt =7,

]
l

=((s, w) | (s, w) in E} ,
E, = ({t, w) | (s, w) in E),

E1=EUEtU((s, t)} - Eg >

G' = the graph with vertices V' and edges E' ,
p 1if p does not contain s,

p' =Y p with t 1inserted after s 1if p does

contain s,

P'=(p'|p in P} .

We shall prove (a) that G' 1is alternating, (b) that P' 1s a set of
directed paths of G', (¢) that d(G') < d(G), and (d) that A' 1is the
incidence matrix of G' versus P'.

Diagram 4

Graph G Graph G'!
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The proof of (b) i1s simple. If p does not contain s, then
every edge In p' = p 1s in E', so p' 1is a directed path in G'. If
p does contain s, write p thus:

Tis sees Pyy 85 Pygs sees rj .
Then p' 1is
Ty eeey Tyy Sy t, Tygqr cee rj .

Each edge of p except (s, r1+1) is also in E'. Hence to show that p!'
is a directed path in G', we only need show that (s, t) and (t, ri”)
are in E'. The former is in E' by definition, and the latter is in Et
because (s, ri+1) must be in E. This proves (b).

To prove (c), let r, and r, be any pair of vertices such that
there 1s a directed path p from one to the other in G. Then p' 1is a
directed path from one to the other in G'. Hence every palr of vertices
which satisfies (5.2) in G' also satisfies (5.2) in G. Furthermore,
(st} does not satisfy (5.2) in G' Dbecause (s, t) is in E', while
(st} does satisfy (5.2) in G by Lemma 7. This proves that d(G') < d(G).

To prove (d), we first show that A' consists entirely of zeros
and ones. The only way in which this could fail to happen is if As and
A.t both contained ones in the same column. But if this were the case,
then the directed path corresponding to this column would contain both s
and t, which cannot happen by Lemma 7. To see that A' 1s the desired
incidence matrix, consider how P' differs from P. Each directed path
which did not contain s remains unchanged; each directed path which did
contain s has t inserted in it. Thus the change from A to A' should
be the following. Each column which has a zero in row As should remain
unchanged; each column which has a one in row As should have the zero in
row A, changed to a one. But adding row Ay to At accomplishes ex-
actly this. Therefore (d) is true.

The proof of (a) is more complicated.6 Define S' to be the
set of successors of s 1in G which are not also successors of t. Note
that every edge in G' which is not in G terminates either in t, or
in a vertex of S'. Let ¢ be any loop of G'. If £ 1is already a loop
of G, then it is alternating. If not, 1t must contain either the edge
(s, t) or an edge (t, s') with s' in S'. (Of course, £ might con-
tain the inverse of one of these edges instead. If so, reversing the order
of ¢ brings us to the situation above.) Ignoring trivial loops, that is,

6 We are indebted to the referee for this proof, which replaces a con-
siderably more complicated one.
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loops of the form aba (which are alternating trivially), £ must have
the form

str1 cee TS

or
ts‘r1 rkt, with s' in S'.

The first form is impossible. To prove this, first suppose that no Ty

is in S8' U {u). Then sutr-1 cee TS 1s a loop of G, hence alternating.
Thus (rk, s) 1s an inverse edge and belongs to both G and G', which
is impossible. Now suppose that some ry isin S' U {(u}, and let r.
be the last such ry. Then srs; ... r)s is a loop of G, hence alter-
nating. Hence (rk, s) 1s inverse, which is impossible as before.

We may now assume that ¢ 1s ts'r1 rkt. No ry can be s.
Clearly r, cannot be s, and if rj =8, j>1, then ss'r1 rj_1s
is a loop of G, hence alternating, so (r._1, s) 1s inverse and belongs
to both G and G', which is impossible. Thus Ty, eee, Iy are distinct
from s. Suppose that T is in S'. Then ss'r1 cee TS is a loop of
G, hence alternating. Consequently, so i1s £. Suppose that T is not
in S' and that no Ty is u. Then ss'r] rktus is a loop of G,
hence alternating. Thus s'r, ... rt is a (- -) alternating path in G
and also in G'. Hence £ 1is alternating. Finally, suppose that T is
not in 38' and that r: 1is u. Then ss'r,; ... rj_1us and tu:c'j+1 cee Tt
are loops of G, hence alternating. Thus s;'r1 cee Ts_qu is a (- +)
alternating path, and UPg g oo rnt 1is a (- -) alternating path. Fitting
these poths together and adjoining t at the beginning, we see that £
i1s alternating. This completes the proof of (a), of Lemma 9, and of the

sufficiency condition of Theorem 4.
6. HOW TO RECOGNIZE THE UNIMODULAR PROPERTY

To apply Theorem 3 is easy, although even there one point is
important. To say that A has the unimodular property is the same thing
as to say that AT, the transpose of A, has the unimodular property.
However the hypotheses of Theorem 3 or 4% may quite easily be satisfied for
AT but not for A. Consequently it is desirable to examine both A and
AT when using these theorems.

To apply Theorem 4% 1s not so easy: how shall we recognize whether
matrix A (or matrix AT) 1s the incidence matrix of an alternating graph
versus some set of directed paths? We point out that in actual applications
the graph G generally lies close at hand. For example, it was pointed
out in Section 5 that the coefficient matrix A of the 1 by Jj trans-
portation problem is the incidence matrix of the alternating graph shown
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in Diagram 2 (at the beginning of Section 5) versus all its directed paths.
This graph 1s no strange object - it portrays the 1 "producing points",
the j "consuming points", and the transportation routes between them.

In a given linear programming problem there will often be one
(or several) graphs which are naturally associated with the coefficient
matrix. Whenever the problem can be stated in terms of producers, con-
sumers, and intermediate handlers, this is the case. It may well be possible
in this situation to identify the matrix as a suitable incidence matrix.

However it is still useful to have criteria available which can
be applied directly to the matrix A and which guarantee that A can be
obtained as a suitable incidence matrix. The two following theorems give
such conditions. Each corresponds to a very special case of Theorem 4.
Theorem 5, historically, derives from the integrality of transportation-
type problems, and finds application in [2]; Theorem 6 from the integrality
of certain caterer-type problems (see [1]).

We shall write Ay > A; to Indicate that row Ay 1s component-

J
wise > row Aj‘

THEOREM 5. Suppose A 1s a matrix of O's and 1's,
and suppose that the rows of A can be partitioned
into two disjoint classes V1 and V2 with this
property: 1if A:L and Aj are b;th in V1 or both in
V2 > and i1f there is a columm A" 1in which both Ai
and Aj have a 1, then either Ai §Aj or Ai gAj.

Then A has the unimodular property.

This theorem corresponds to a generalized transportation situa-
tion, in which each upper vertex of the transportation graph has attached
an outward flowing tree and each lower vertex has attached an inward flow-
ing tree. Only directed paths which have at least one vertex in the or-
iginal transportation graph can be represented as columns of the matrix A.

PROOF. Briefly the proof is this: Let vertices vy In V
correspond to the rows A; of A. Define a partial-order g on the

vertices:
Vi S V5 if Ay in V, and Aj in V,
or A:L’ Aj in V1 and Ai < Aj
or Ay, Aj in V, and Ay > Aj'

Let G be the graph naturally associated with this partially-ordered set.
We leave to the reader verification of the fact that G is alternating,
and that the columns of A represent directed paths in P.
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Say that two column vectors of the same size consisting of 0's
and 1's are in accord if the portions of them between (in the inclusive
sense) thelr lowest common 1 and the lower of their highest separate 1's

are identical.

THEOREM 6. Suppose A 1is a matrix of oO's and 1's,
and suppose that.the rows of A can be rearranged in
such a way that every pair of columns 1s in accord.
Then A has the unimodular property.

This theorem corresponds to a situation in which ¢(G) = 0, that
is, every vertex has at most one predecessor (or to the dual situation in
which every vertex has at most one successor). The columns of A may
represent any directed paths in the graph.

PROOF. Let vertices vy in V correspond to the rows Ay in
A. Assume that the rows are already arranged as described above. Define
E as follows:

(vys Vj) is in E kif 1 > j and if there is a
column A" of A such that ayy and
ajk are both 1 while all intervening
entries are O's.

Let G be the graph with vertices V and edges E. We leave to the read-
er verification of the fact that G 1s an alternating graph in which every
vertex has at most one successor, and that the columns of A represent
directed paths in G.
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