
Large Ramsey Theorem
An Exposition by Bill Gasarch

The Infinite Ramsey Theorem was proven by Ramsey [2]. The Large
Ramsey Theorem was proven by Paris and Harrington [1]. The Large Ramsey
Theorem is, in and of itself, not hard to prove. (That might be hindsight
talking.) The main contribution of Paris and Harrington was showing that
the Large Ramsey Theorem was ind of PA. Alas, we do not prove that here.

1 Infinite Ramsey Theorem

Notation 1.1 KN is the graph (V, E) where

V = N
E = {{x, y} | x, y ∈ N}

Def 1.2 Let G = (V, E) be a graph with V = N, and let COL be a coloring
of the edges of G. A set of edges of G is monochromatic if they are all the
same color (this is the same as for a finite graph).

G has a monochromatic KN if there is an infinite set V ′ of vertices (in V )
such that

• there is an edge between every pair of vertices in V ′

• all the edges between vertices in V ′ are the same color

Theorem 1.3 Every 2-coloring of the edges of KN has a monochromatic KN.

Proof:
Let COL be a 2-coloring of KN. We define an infinite sequence of vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,
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that are based on COL.
Here is the intuition: Vertex x1 = 1 has an infinite number of edges

coming out of it. Some are RED, and some are BLUE. Hence there are
an infinite number of RED edges coming out of x1, or there are an infinite
number of BLUE edges coming out of x1 (or both). Let c1 be a color such
that x1 has an infinite number of edges coming out of it that are colored c1.
Let V1 be the set of vertices v such that COL({v, x1}) = c1. Then keep
iterating this process.

We now describe it formally.

V0 = N
x1 = 1

c1 =
{

RED if |{v ∈ V0 | COL({v, x1}) = RED}| is infinite
BLUE otherwise

V1 = {v ∈ V0 | COL({v, x1}) = c1} (note that |V1| is infinite)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci =
{

RED if |{v ∈ Vi−1 | COL({v, xi}) = RED}| is infinite
BLUE otherwise

Vi = {v ∈ Vi−1 | COL({v, xi}) = ci} (note that |Vi| is infinite)

How long can this sequence go on for? Well, xi can be defined if Vi−1 is
nonempty. We an show by induction that, for every i, Vi is infinite. Hence
the sequence

x1, x2, . . . ,

is infinite.
Consider the infinite sequence

c1, c2, . . .

Each of the colors in this sequence is either RED or BLUE. Hence there
must be an infinite sequence i1, i2, . . . such that i1 < i2 < · · · and

ci1 = ci2 = · · ·
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Denote this color by c, and consider the vertices

xi1 , xi2 , · · ·

It is easy to see that these vertices form a monochromatic KN.

2 Proof of Large Ramsey Theorem

(This is due to Paris and Harrington.)
Usually the labels on the vertices did not matter. For this result they do

matter.

Def 2.1 A finite set F ⊆ N is called large if the size of F is at least as large
as the smallest element of F .

Example 2.2

1. The set {1, 2, 10} is large: It has 3 elements, the smallest element is 1,
and 3 ≥ 1.

2. The set {5, 10, 12, 17, 20} is large: It has 5 elements, the smallest ele-
ment is 5, and 5 ≥ 5.

3. The set {20, 30, 40, 50, 60, 70, 80, 90, 100} is not large: It has 9 elements,
the smallest element is 20, and 9 < 20.

4. The set {5, 30, 40, 50, 60, 70, 80, 90, 100} is large: It has 9 elements, the
smallest element is 5, and 9 ≥ 5.

5. The set {101, . . . , 190} is not large: It has 90 elements, the smallest
element is 101, and 90 < 101.

We will be considering monochromatic Km’s where the underlying set of
vertices is a large set. We need a definition to identify the underlying set.

Def 2.3 Let COL be a 2-coloring of Kn. A set A of vertices is homogeneous if
there exists a color c such that, for all x, y ∈ A with x 6= y, COL({x, y}) = c.
In other words, all of the edges between elements of A are the same color.
One could also say that there is a monochromatic K|A|.
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Let COL be a 2-coloring of Kn. Recall that the vertex set of Kn is
{1, 2, . . . , n}. Consider the set {1, 2}. It is clearly both homogeneous and
large (using our definition of large). Hence the statement

“for every n ≥ 2, every 2-coloring of Kn has a large homogeneous set”

is true but trivial.
What if we used V = {m, m + 1, . . . ,m + n} as our vertex set? Then a

large homogeneous set would have to have size at least m.

Notation 2.4 Km
n is the graph with vertex set {m, m + 1, . . . ,m + n} and

edge set consisting of all unordered pairs of vertices. The superscript (m)
indicates that we are labeling our vertices starting with m, and the sub-
script (n) is one less than the number of vertices.

Note 2.5 The vertex set of Km
n (namely, {m, m + 1, . . . ,m + n}) has n +

1 elements. Hence if Km
n has a large homogeneous set, then n + 1 ≥ m

(equivalently, n ≥ m − 1). We could have chosen to use Km
n to denote the

graph with vertex set {m+1, . . . ,m+n}, so that the smallest vertex is m+1
and the number of vertices is n, but the set we have designated as Km

n will
better serve our purposes.

Notation 2.6 LR(m) is the least n, if it exists, such that every 2-coloring
of Km

n has a large homogeneous set.

THIS IS THE LARGE RAMSEY THEOREM:

Theorem 2.7 If COL is any 2-coloring of KN, then, for every m ≥ 2, there
is a large homogeneous set whose smallest element is at least as large as m.

Proof: Let COL be any 2-coloring of KN. By Theorem 1.3, there exist
an infinite set of vertices,

v1 < v2 < v3 < · · · ,

and a color c such that, for all i, j, COL({vi, vj}) = c. (This could be called
an infinite homogeneous set.) Let i be such that vi ≥ m. The set

{vi, . . . , vi+vi−1}

is a homogeneous set that contains vi elements and whose smallest element
is vi. Since vi ≥ vi, it is a large set; hence it is a large homogeneous set.
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Theorem 2.8 For every m ≥ 2, LR(m) exists.

Proof:
Suppose, by way of contradiction, that there is some m ≥ 2 such that

LR(m) does not exist. Then, for every n ≥ m − 1, there is some way to
color Km

n so that there is no large homogeneous set. Hence there exist the
following:

1. COL1, a 2-coloring of Km
m−1 that has no large homogeneous set

2. COL2, a 2-coloring of Km
m that has no large homogeneous set

3. COL3, a 2-coloring of Km
m+1 that has no large homogeneous set

...

j. COLj, a 2-coloring of Km
m+j−2 that has no large homogeneous set

...

We will use these 2-colorings to form a 2-coloring COL of KN that has
no large homogeneous set whose smallest element is at least as large as m.

Let e1, e2, e3, . . . be a list of all unordered pairs of elements of N such that
every unordered pair appears exactly once. We will color e1, then e2, etc.

How should we color e1? We will color it the way an infinite number of
the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:

J0 = N

COL(e1) =
{

RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite
BLUE otherwise

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}

Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,
furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,
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COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =
{

RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite
BLUE otherwise

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}

One can show by induction that, for every i, Ji is infinite. Hence this
process never stops.

Claim: If KN is 2-colored with COL, then there is no large homogeneous set
whose smallest element is at least as large as m.

Proof of Claim:
Suppose, by way of contradiction, that there is a large homogeneous set

whose smallest element is at least as large as m. Without loss of generality, we
can assume that the size of the large homogeneous set is equal to its smallest
element. Let the vertices of that large homogeneous set be v1, v2, . . . vv1 ,
where m ≤ v1 < v2 < · · · < vv1 , and let the edges between those vertices be

ei1 , . . . , eiM ,

where i1 < i2 < · · · < iM and M =
(

v1

2

)
. For every j ∈ JiM , COLj and COL

agree on the colors of those edges. Choose j ∈ JiM so that all the vertices of
the large homogeneous set are elements of the vertex set of Km

m+j−2. Then
COLj is a 2-coloring of the edges of Km

m+j−2 that has a large homogeneous
set, in contradiction to the definition of COLj.
End of Proof of Claim

Hence we have produced a 2-coloring of KN that has no large homogeneous
set whose smallest element is at least as large as m. This contradicts Theo-
rem 2.7. Therefore, our initial supposition—that LR(m) does not exist—is
false.
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