An amusing formula from The $T_{E} X b o o k$

Richard Matthew McCutchen

October 22, 2008

The following formula appears in The $T_{E} X b o o k$ as a typesetting exercise (I have slightly modified it):

$$
p_{1}(n)=\lim _{m \rightarrow \infty, m \in \mathbb{Z}} \sum_{k=0}^{\infty}\left(1-\cos ^{2 m}\left(\frac{k!^{n} \pi}{n}\right)\right)
$$

The expression has a clever mathematical meaning that is not discussed in the book.

In fact, the expression computes the largest prime that divides n, denoted $p_{1}(n)$. Here's how it works. First look at $k!^{n} / n$. If $k<p_{1}(n)$, then a factor of $p_{1}(n)$ appears in the denominator but not in the numerator, so $k!^{n} / n$ is not an integer. On the other hand, if $k \geq p_{1}(n)$, raising k ! to the nth power ensures that we have more than enough copies of each prime in the numerator to cancel the denominator, so $k!^{n} / n$ is an integer.

Working outward, when $k \geq p_{1}(n)$, the argument to the cosine is an integral multiple of π, so the cosine is 1 or -1 . Raising it to the even power $2 m$ yields 1 , and subtraction from 1 leaves 0 , so terms with $k \geq p_{1}(n)$ do not contribute to the summation. When $k<p_{1}(n)$, the angle is not an integral multiple of π, so its cosine is strictly between 1 and -1 . Thus, the $2 m$-th power approaches zero as m increases, so in the limit, these values of k contribute 1 each to the summation. The result is $\sum_{k=0}^{p_{1}(n)-1} 1=p_{1}(n)$, as claimed.

