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Abstract. We prove optimal, up to an arbitrary 0, inapproximability results for MaxJ¥&Sat for

k > 3, maximizing the number of satisfied linear equations in an over-determined system of linear
equations modulo a primp and Set Splitting. As a consequence of these results we get improved
lower bounds for the efficient approximability of many optimization problems studied previously. In
particular, for Max-E2-Sat, Max-Cut, Max-di-Cut, and Vertex cover.
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1. Introduction

Many natural optimization problems are NP-hard, which implies that they are prob-
ably hard to solve exactly in the worst case. In practice, however, it is sufficient
to get reasonably good solutions for all (or even most) instances. In this paper, we
study the existence of polynomial time approximation algorithms for some of the
basic NP-complete problems. For a maximization problem we say that an algorithm
is aC-approximation algorithm if it, for each instance, produces an solution whose
objective value is at leasDPT/C where OPT is the global optimum. A similar
definition applies to minimization problems.

A fundamental question is, for a given NP-complete problem, for what value of
C can we hope for a polynomial timé-approximation algorithm. Posed in this
generality, this is a large research area with many positive and negative results. In
this paper, we concentrate on negative results, that is, results of the form that for
someC > 1 acertain problem cannot be approximated witin polynomial time.
These results are invariably based on plausible complexity theoretic assumptions,
the weakest possible being NFP since if NP= P, all considered problems can be
solved exactly in polynomial time.

The most basic NP-complete problem is satisfiability of CNF-formulas and prob-
ably the most used variant of this is 3-SAT where each clause contains at most 3
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variables. For simplicity, let us assume that each clause contains exactly three vari-
ables. The optimization variant of this problem is to satisfy as many clauses as
possible. It is not hard to see that a random assignment satisfies each clause with
probability 7/8 and hence if there ama clauses it is not hard (even deterministi-
cally) to find an assignment that satisfies/B clauses. Since we can never satisfy
more than all the clauses this gives & &pproximation algorithm. This was one

of the first approximation algorithms considered [Johnson 1974] and one of the
main results of this paper is that this is optimal to within an arbitrary additive
constank > 0.

A problem that in many respects is as basic as satisfiability is that of solv-
ing a system of linear equations over a field. If all equations can be satisfied
simultaneously, then a satisfying assignment can be found in polynomial time
by Gaussian elimination. Gaussian elimination is, however, very sensitive to in-
correct equations. In particular, if we are given an over-determined system of
equations, it is not clear how to efficiently find the “best solution”, where we
interpret “best” as satisfying the maximal number of equations. This problem is
NP-complete over the field of two elements since already the special case of hav-
ing equations only of the form 4 x; = 1 is equivalent to Max-Cut. We believe
that as an optimization problem this problem will play a natural and important
role. As with 3-SAT there is an obvious approximation algorithm that just does
as well as assigning random values to the variables. In this case, a random as-
signment satisfies half the equations and thus this yields a 2-approximation algo-
rithm. One of the main results of this paper is to prove that this is, again upto
an arbitrarye > 0 and based on N P, the best possible for a polynomial time
approximation algorithm. This is true even if each equation only contains exactly
three variables.

Other results included in this paper are similar results for linear equations
over an arbitrary Abelian group and set splitting of sets of size 4. By re-
ductions, we get improved constants for Max-2-Sat, Max-Cut and Max-di-Cut
and Vertex Cover. These reductions are all from the problem of satisfying the
maximal number of equations in a system of linear equations over the field of
two elements.

1.1. SHORT HISTORY AND OUR CONTRIBUTION. The question of proving NP-
hardness of approximation problems was discussed at length already in the book
by Garey and Johnson [1979], but really strong results were not obtained un-
til the connection with multiprover interactive proofs was discovered in the
seminal paper of Feige et al. [1996]. There are a number of variants of mul-
tiprover interactive proofs and the two proof models that we use in this pa-
per are that of two-prover interactive proofs and that of probabilistically check-
able proofs.

The first model was introduced by Ben-Or et al. [1988] and here the ver-
ifier interacts with two provers who cannot communicate with each other.
Probabilistically checkable proofswhich from here on we abbreviateCPs
correspond to oracle proof systems studied by Fortnow et al. [1994], and it
was given its current name in the paper by Arora and Safra [1998]. In a
PCP, the verifier does (few) random spot-checks in a (large) written proof.
Note that a two-prover interactive proof can be turned into a PCP simply by
writing down the answers of both provers to all possible questions. The verifier
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would then simply check the answers to the questions it intended to pose.
For a complete account of the history of the entire area we refer to Bellare
et al. [1998], but let us here give a short account of the path leading to the
current results.

The surprising power of multiprover interactive proofs was first established by
Babai et al. [1991a] by showing that multiprover proofs with a polynomial time
verifier could recognize all of NEXPTIME. This was scaled down to give very
efficient verifiers for simpler predicates by Babai et al. [1991b] and the connection
to approximability was discovered by Feige et al. [1996].

To obtain stronger bounds, to weaken assumptions, and to widen the range of
problems for which the methods applied, more efficient proofs were sought. Arora
and Safra [1998] discovered proof composition and were the first to construct PCPs
for NP-hard problems with a verifier that used logarithmic randomness and sub-
logarithmic query complexity.

The first result proving hardness for the problems we are discussing here was
obtained in the fundamental paper by Arora et al. [1998] that establishes the cel-
ebrated PCP-theorem that states that each language in NP has a PCP where the
verifier reads only a constant number of bits and uses a logarithmic number of
random coins. This result implies that there is some con&antl such that Max-
3-Sat cannot be approximated withthunless NP=P. The first explicit constant
was given by Bellare et al. [1993] and based on a slightly stronger hypothesis they
achieved the constant 94/93. Bellare and Sudan [1994] improved this to 66/65 and
the strongest result prior to our results here is by Bellare et al. [1998] obtaining the
bound 8977 — ¢ for anye > 0.

The last two papers [Bellare and Sudan 1994, Bellare et al. 1998], use a similar
approach to ours and let us describe this approach. The starting point is an efficient
multiprover protocol, which in our case and in Bellare et al. [1998] comes naturally
from a combination of the basic PCP by Arora et al. [1998] mentioned above and
the wonderful parallel repetition theorem of Raz [1998]. Bellare and Sudan [1994]
used a different protocol since the theorem by Raz was not known at that point
in time.

The multiprover protocol is turned into a PCP by writing down the answers of
the provers in coded form. The main source of the improvements of Bellare et al.
[1998] was the invention of a new code, the marvelous long code. The long code
of an inputx € {0, 1}V is a string of length 2. The coordinates correspond to all
possible functiond : {0, 1}" — {0, 1} and the coordinate correspondingftdakes
the valuef (x). It is a very wasteful encoding butifis a constant it is of constant
size and it is hence, at least in theory, affordable.

When a multiprover protocol is transformed to a PCP by writing down coded
versions of the prover's answers the verifier can, if the coding is suitable, per-
form its verification in the multiprover protocol much more efficiently. The free-
dom to code the answers might, however, also help a cheating prover in that it
can write down a string that is not a correct codeword and the verifier has to
make sure that such behavior does not destroy the soundness of the new PCP. This
forced previous verifiers under these circumstances to perform two tasks, to check
to original conditions of the multiprover protocol and to check that the coding
is correct.

We use the same written proof as Bellare etal. [1998] and our improvement comes
from the ability to completely integrate the two tasks of checking acceptance in the
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two-prover protocol with checking that we have a correct coding of the prover's
answers. We do not really check that the coding is correct in that all we need is that
it is possible, given a written proof for the PCP that convinces the verifier to accept
with high probability, to extract a strategy for the provers in the two-prover game.
Previously, such strategies were extracted by looking at the legitimate codewords
thatwere close (i.e., agreed for more than halfthe inputs) to the codewords presented
by the prover. In our case, we extract the strategies by looking at discrete Fourier
transform of these given codewords.

The written proof is the same in most of our tests yielding inapproximability
result for the various problems we study. The acceptance criteria are, however,
specially designed to suit the targeted optimization problem. For example, for the
result for linear equations the verifier decides whether to accept based solely on the
exclusive-or of three bits. This philosophy of designing special purpose PCPs for
each optimization problem was first done on a major scale by Bellare et al. [1998].
It seems like this is required to obtain tight result for the problems discussed in this
paper. This special design might make some of our tests seem awkward but this is
probably inevitable.

For some other problems, most notably cliquegitdd 1994] (and almost for
its relative chromatic number [Feige and Kilian 1998]), the optimal results are
established by looking at natural parameters of the PCP and in particular by studying
the number of free bits read by the verifier. Informally, assuming that a verifier
always accepts a correct proof of a correct statement, this number is defined as
follows. A bit read in a PCP is not free if, at the time of reading, the verifier
will always reject unless it has a prespecified value. If this is not the case, the bit
is free.

The only problem in our paper that relates in a straightforward way to such natural
parameters of a PCP is vertex cover. A PCP that dskese bits has completeness
¢ and soundnessgives an inapproximability factor of

2f —s
2f —¢

for vertex cover. Our proof system giving the result for linear equations ha<,

c = 1— e ands = 1/2+ ¢ yielding an inapproximability factor arbitrarily close to
7/6. As this is our only use of free bits, we do not define it explicitly but rather refer
to Bellare et al. [1998] for its formal definition as well as a thorough discussion
of the free bit concept and its applications to inapproximability results and to the
theory of PCPs in general.

1.2. SIMMARY OF RESULTS For easy reference, we state most of our results
in tabular form. We also compare to the best previous lower bounds as well as the
performance ratio of the best polynomial time approximation algorithms. In most
cases, the previously best result was obtained by Bellare et al. [1998] and for a
detailed account of the earlier history of each problem we refer to this paper. For
formal definitions of the stated problems, we refer to Section 2.2.

The numbes below has the meaning “a positive but unspecified constant” while
€ can be replaced by any positive constant. The assumption used in all the lower
bounds is B4 NP.
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Upper Prev. best lower | Our lower
Constant| Source | Constant| Source
E3-LIN-2 2 folklore | 2—¢ | Note(1)| 2-—¢
E3-LIN-p p folklore p? Note (2) p—e
E3-LIN-T’ IT| folklore - T —€
E2-LIN-2 1.1383 | Note (3) - 2_¢
E3-SAT 8 Note (4)| % —¢ | Note(l)| 2-e¢
E2-SAT 1.0741 | Note (5) | 22 —¢ | Note(1)| 2 -«
E4-Set Splitting 8 folklore | 1468 | Note(6)| -«
Max-Cut 1.1383 | Note(3)| 22 —¢ | Note(l)| 1i—e
Max-di-Cut 1164 | Note(3)| 22 —¢ | Note(l)| % -«
Vertex cover 2 Note (7) | 22— | Note (1) f—e

Notes:

(1) Bellare et al. [1998].

(2) Amaldi and Kann [1995].

(3) Goemans and Williamson [1995].

(4) Johnson [1974].

(5) Feige and Goemans [1995].

(6) Kann et al. [1996].

(7) Garey and Johnson [1979], Bar-Yehuda and Even [1981], and Hochbaum [1983].

Our lower bounds using gadgets (E2-SAT, E2-LIN-2, Max-Cut, Max-di-Cut)
rely on the gadgets produced by Trevisan et al. [2000] and since the prior published
work in some cases depended on worse gadgets the improvements are not only due
to our results.

The 2-approximation algorithm for vertex cover is an unpublished result due to
Gavril that is given in Garey and Johnson [1979]. The case of weighted graphs was
treated by Bar-Yehuda and Even [1981] and Hochbaum [1983].

The inapproximability result for linear systems of equations rpaaf Amaldi
and Kann [1995] needed arbitrary systems of linear equations premad hence
did not, strictly speaking, apply to Max-E3-Lip-

An outline of the paper is as follows: In Section 2, we introduce notation, give
definitions and state some needed results from earlier papers. Most of our PCPs
use the same written proof and in Section 3 we describe this proof. In Section 4,
we describe tests for being a correct long code. These tests are presented for peda-
gogical reasons but are in Section 5 naturally extended to give the results for linear
equations. In Section 6, we give the results on M&aSat and in Section 7 we give
corresponding results for Set Splitting. We obtain some results for other problems
in Section 8. We finally briefly discuss how to make our arbitrary constants be
functions of the input-length in Section 9 and end by some concluding remarks.

This is the complete version of the results announcedastat] [1997].

2. Notation and Some Essential Previous Results

In this section, we give basic notation and collect the needed results from earlier
papers.
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2.1. Basic NoTATION.  All logarithms in this paper are to the base 2. We use
vertical barg - | to denote the size of an object. For a real or complex number, it
is the absolute value; for strings, it is the length; and for sets, the size. We use the
notationa A for two setse andg to denote the symmetric difference, that is, the
elements that appear in exactly one of the aedsdfS. The notationx \ 8 denotes
the elements i but not ing.

Insums and products, we always indicate the variable over which the sum/product
is taken. Sometimes, however, we do not explicitly give the range. This happens
when this range is considered obvious and it is usually the case that we are summing
over all objects of the given kind. An empty sum is taken to be 0 and an empty
product takes the value 1. The expected value of a varidlidedenoted byE ;[ X]
assuming we are taking the expected value over a rantlowle do not give the
distribution of thisf, which is supposed to be clear from the context.

For most of the paper, we work with binary-valued objects, but for a number of
reasons it is more convenient for us to work oyed, 1} rather than the standard
{0, 1}. We let—1 correspond to true and our most important Boolean operation
is exclusive-or, which is in our notation the same as multiplication. We also need
other Boolean operations like, which is defined in the usual way using true and
false, and the fact that1 is short for “true” and 1 is short for “false”. Thus, in
particular,—1Al=1and—1A —-1=—1.

We do not distinguish a set of variables and the set of indices of these variables.
For a seU of variables, we lef—1, 1}V be the set of all possible assignments to
these variables and we ugel, 1)" instead off—1, 1}I"). Supposd&) < W, then,
for x e {—1, 1}V, we denote its restriction to the variables occurringityy x|y .
Forasetr C {—1, 1}V, we definerV («) by lettingx e {—1, 1}V belong torY («)
if x = y|y for somey € «. We also need a mod 2-projection and wedet ng (o)
iff & contains and odd number of elemegtsuch thaty|y, = x. When the identity
of the setU is evident from the context the superscriptofs omitted.

For a setJ, we let 7/, be the set of all functions: {—1, 1}V — {—1,1}. A
central point in this paper is to study functioAs 7y — {—1, 1}. One particular
type of such functions is given by the long codes of assignments.

2.1 [Bellare et al.1998]. Thelong codeof an assignment € {—1, 1}V is the
mappingAx: Fu — {—1, 1} where A (f) = f(x).

We identify a function with its truth-table and thus a long code is a string of
length 2°" where we use an arbitrary but fixed convention to order the elements
of Fu.

A CNF-formula is a formulg of n Boolean variablesq);'_, given bym clauses
(C; )]-“;1. A clause contains a number of literals, that is, variables or their negations,
and it is true if at least one of the literals is true. The number of literals in a clause
is the length of the clause.

Definition 2.2. Lete < [0, 1] be a real number. A CNF-formula with m
clauses ig-satisfiable, iff some assignment satisé@sclauses and no assignment
satisfies more thaemclauses.

Using the natural extension of this, we say thas at moste-satisfiable if it is
d-satisfiable for somd < e.
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2.2. RRoBLEMS CONSIDERED  Let us give formal definitions of the problems
we consider in this paper.

Definition 2.3. Letk be an integer. ACNF-formulais anEk-CNF-formulaiff
each clause is of length exaclty

For a CNF-formulap and an assignmentlet N(¢, X) be the number of clauses
of ¢ satisfied byx.

Definition 2.4. Max-Ek-Satis the optimization problem of, given Bk-CNF
formulag, to find x that maximizeN (¢, x).

We are also interested in the problem of solving systems of linear equations over
the finite field with 2 elements. Let us denote a typical system of linear equétions
and, similarly to above, for an assignmerét N(L, x) be the number of equations
of L satisfied byx.

Definition 2.5. Max-Ek-Lin-2is the problem of, given a systein of linear
eqguations ovef.,, with exactlyk variables in each equation, to firdhat maximizes
N(L, x).

Definition 2.6. Max-Cutis the problem of given an undirected gra@hwith
verticesV to find a partitionVy, V» of V such that the number of edggs v} such
that{u, v} N V; and{u, v} NV, are both nonempty is maximized.

Definition 2.7. Max-di-Cutis the problem of, given a directed graghwith
verticesV, to find a partitionVy, V, of V such that the number of directed edges
(u, v) such thau € V; andv € V, is maximized.

Definition 2.8. Vertex Coveiis the problem of, given an undirected gra@h
with edgeskE and verticesV, to find aVy CV with |V;] minimal such thatv;
intersects each edge.

Definition 2.9. Ek-Set SplittingGiven a ground se¥ and a number of sets
S C V each of size exactly. Find a partitiorvy, V, of V to maximize the number
of i with both§ NV, and§ N V, nonempty.

Note that E2-Set Splitting is exactly Max-Cut and that E3-Set Splitting is very
related to E2-Set Splitting in that the sa&t , 2) is split exactly when two of the
three pairsX, y), (X, 2) and {y, z) are split. Thus, the first really new problem is
E4-Set Splitting.

Several of the above problems are special cases of a general class of problems
calledconstraint satisfaction problen{€SB.

Let k be an integer and I&® be a predicaté—1, 1} — {—1, 1}. An instance
of CSPP is given by a collection@; )™ , of k-tuples of literals. For an assignment
to the variables, a particul&rtuple is satisfied if?, when applied to values of the
literals, returns—1. For an instancé and an assignmemnt, we letN(l, x, P) be
the number of constraints ¢fsatisfied byx under the predicatP.

Definition 2.10. Max-CSP-Hs the problem of, given an instanteto find the
assignmenk that maximizeN(l, x, P).

Itis straightforward to check that MaxkeESat, Max-EK-Lin, Max-Cut, and Max-
di-Cut are all CPSs for particular predicatesWe are also interested in cases when
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negation is not allowed. We call suoionotone CSBnd one particular case is given
by Ek-Set Splitting.

A key parameter for a CSP is the number of assignments that satisfy the defining
predicateP.

Definition 2.11. Theweight w(P, k), of a CSP problem given by a predicate
P onk Boolean variables is defined p&8* wherep is the number of assignments
in {—1, 1} that satisfies.

The weight of K-Max-Lin-2 is 1/2 for anyk, it is 1 — 2~ for Ek-Max-Sat, J2
for Max-Cut, 1/4 for Max-di-Cut and 1- 21K for Ek-Set Splitting. We note that
the concept extends in the obvious way to non-Boolean domains.

For each of the above problems, we could think of both finding the numerical
answer (e.g., the size of a certain cut) or the object that gives this answer (e.g.,
the partition giving the numerical answer). The lower bounds we prove apply to the
simpler variant, that is, the variant where the algorithm is supposed to supply the
numerical answer. Since we are proving inapproximability results, this only makes
our results stronger.

Finally, we define what it means ©-approximate an optimization problem.

Definition 2.12. LetO be a maximization problem and I&>1 be a real
number. For an instaneeof O let OPT(x) be the optimal value. £-approximation
algorithm is an algorithm that on each inpatoutputs a numbeW such that
OPT(x)/C <V < OPT(x).

Definition 2.13. LetO be a minimization problem and I€& > 1 be a real
number. For aninstaneeof O letOPT(x) be the optimal value. £-approximation
algorithm is an algorithm that on each inputoutputs a numbeW such that
OPT(x) <V < C-OPT(x).

Definition 2.14. An efficienC-approximation algorithm is@-approximation
algorithm that runs in worst-case polynomial time.

The formulation “having performance raii’ is sometimes used as an alterna-
tive to saying “being &-approximation algorithm”.

Any Max-CSP-problem has an approximation algorithm with constant perfor-
mance.

THEOREM 2.15. A Max-CSP given by predicate on k variables admits a
polynomial time approximation algorithm with performance raticdP, k).

PrROOF A random assignment satisfies a givkrtuple with probability
w(P, k). Itis notdifficultto find an assignment that satisfies this fraction of the given
k-tuples by the method of conditional expected values. We omit the detalils.

The main point of this paper is to establish that for many CSPs, Theorem 2.15 is
in fact the best possible for a polynomial-time approximation algorithm.

Definition 2.16. A Max-CSP given by predicat® on k variables is
nonapproximable beyond the random assignment threstilghrovided that
NP+ P, for anye > 0, it does not allow a polynomial time approximation algo-
rithm with performance ratiov(P, k)™ — ¢.
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Some CSP become easier if you only consider satisfiable instances but some do
not. We formalize also this notion.

Definition 2.17. A Max-CSP given by predicakeonk variables isionapprox-
imable beyond the random assignment threshold on satisfiable insiépfrsany
¢ > 0 itis NP-hard to distinguish instances where all constraints can be simulta-
neously satisfied from those where only a fractofP, k) + ¢ of the constraints
can be simultaneously satisfied.

2.3. RROOFSYSTEMS.  We define proofs systems by the properties of the verifier.
The verifier needs help to verify a statement and we allow a verifier to have
access to one or more oracles. In different variants of proof systems, the notions of

provers and written proofs are discussed. Written proofs are, in fact, identical with
proofs using oracles where reading thie bit corresponds to asking the oracle the
guestion §?”. Provers, in general, are more powerful than oracles in that they are
allowed to be randomized and history dependent. We discuss these complications
in connection with the definition of two-prover protocols below.

Definition 2.18. Anoracleis a functionX* — {0, 1}.

A typical verifier V™ (x, r) is a probabilistic Turing machines whereis the
oracle,x the input and the (internal) random coins &f. We say that the verifier
acceptdf it outputs 1 (written as/7 (X, r) = 1) and otherwise itejects

Definition 2.19. Letc ands be real numbers such that1 c > s > 0. A
probabilistic polynomial time Turing maching is a verifier in aProbabilistically
Checkable ProofPCP) with soundness and completenessfor a languagé. iff

—Forx € L there exists an oracke such that R{V™(x,r) = 1] > c.
—Forx ¢ L, forallz Pr[V™(x,r)=1] <s.

We are interested in a number of properties of the verifier and one property that
is crucial to us is thaV does not use too much randomness.

Definition 2.20. The verifierV useslogarithmic randomnes# there is an
absolute constamtsuch that on each inputand proofr, the length of the random
stringr used byV7” is bounded by log |x|.

Using logarithmic randomness makes the total number of possible sets of coin
flips for V polynomial in |x| and hence all such sets can be enumerated in
polynomial time.

We also care about the number of Bitseads from the proof.

Definition 2.21. The verifieM readsc bits in a PCP if, for each outcome of its
random coins and each praef V™ asks at most questions to the oracle.

The surprising power of interactive proofs was first established in the case of
one prover by Lund et al. [1992], and Shamir [1992] and then for many provers
by Babai et al. [19914a]. After the fundamental connection with approximation was
discovered by Feige et al. [1996] the parameters of the proofs improved culminating
in the following result [Arora and Safra 1998; Arora et al. 1998].

THEOREM2.22 [ARORA ET AL. 1998]. There is a universal integer ¢ such that
any language in NP has a PCP with soundngs2 and completenesswhere V
uses logarithmic randomness and reads at most c bits of the proof.
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Remark2.23 Although the number of bits read is independent of which lan-
guage in NP we are considering, this is not true for the amount of randomness. The
number of random bits id logn for any languagé., but the constard depends
onlL.

The soundness can be improved by repeating the protocol a constant number of
times. The number of bits can be reduced to 3 but this pushes the soundness towards
1, although it remains a constant below one. Properties described by reading three
bits of the proof can be coded by a 3-CNF formula where the variables correspond
to bits of the proof. The acceptance probability of a proof is then closely related
to the number of clauses satisfied by the corresponding assignment and we obtain
an inapproximability result for Max-3Sat. There is an approximation-preserving
reduction [Papadimitrion and Yannakakis 1991] reducing general 3-CNF formulas
to 3-CNF formulas in which each variable appears a bounded number of times.
It has later been established [Feige 1998] that we can make each variable ap-
pear exactly 5 times even if we require each clause to be of length exactly 3.
These properties ensure that choosing a clause uniformly at random and a vari-
able, uniformly at random, in this clause is the same as choosing a variable uni-
formly at random variable and then, uniformly at random, a clause containing
this variable.

THEOREM2.24 [ARORA ET AL. 1998]. Let L be a language in NP and x be a
string. There is a universal constant< 1 such that we can in time polynomial
in |x| construct a B-CNF formulagy | such that if xe L, thengy  is satisfiable
while if X € L, ¢ is at most c-satisfiable. Furthermqgreach variable appears
exactly5 times.

We next describe a two-prover one-round interactive proof. The verifier in such
a proof has access to two oracles but has the limitation that it can only ask one
guestion to each oracle and that both questions have to be produced before either
of them is answered. We do not limit the answer size of the oracles but since the
verifier runs in polynomial time it will not read more than a polynomial number
of bits. We call the two oracleB; and P, and the two question; andg,. Since
the oracles are only accessed through these questions, we refer to the f&tt that
accepts a¥ (x, r, Pi(q1), P2(qp)) = 1.

Definition 2.25. Letc ands be real numbers such thatd ¢ > s > 0. A
probabilistic polynomial time Turing machiné with two oracles is a verifier in
a two-prover one-round proof systewith soundness and completenessfor a
languagd. if oninputx it produces, without interacting with its oracles, two strings
g: andgp, such that

—For xe L, there are two oracle®; and P, such thatPr.[V (X, r, Pi(Qi),
P2(q2)) =1] = c.
—Forx ¢ L, for any two oracle®; andP,, Pr,[V(x,r, Py(q1), P2(qp)) =1] <s.

The questions}; andg, are in both cases the only questiovisasks the oracles.
P1(0.) depends orx, but may not depend oy and similarly P, is independent

of g;.

It is very convenient to think oP; and P, as two actual dynamic provers rather
than written proofs. They are infinitely powerful and are cooperating. They can
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make any agreement before the interaction withstarts but then they cannot
communicate during the run of the protocol. Thus, it makes sense tie,asid P,
for the same information in different contexts.

Provers are, in general, allowed to be both history dependent and randomized.
Since we are only considering one-round protocols, there is no history and hence
the question whether the provers are history dependent plays no role. As with
randomization, it is easyto see that for any, the proversP; and P, maximizing
PrIV(x,r, Pi(q1), P2(02)) = 1] can be made deterministic without decreasing
the acceptance probability. When proving the existence of good strategies for the
provers we will, however, allow ourselves to design probabilistic strategies, which
then can be converted to deterministic strategies yielding ordinary oracles.

In the case of two-prover protocols, we only consider the case of perfect com-
pleteness, that ig, = 1 in the above definition. Given such a one-round protocol
with soundness, we can repeat it twice in sequence improving the soundness to
s?. Similarly repeating the protocal times in sequence gives soundngssThis
creates many round protocols and we need our protocols to remain one-round. This
can be done by what has become known as parallel repetltlon Mee@eats
his random choices to choosemdependent pairs of questlorqsl( qé) ', and
sendsqj1 )u ,toPrand qz )u , 1o P, all at onceV then receives answers from
each prover and accepts i it would have accepted im gfotocols given each
individual answer. The soundness of such a protocol can be greates“thiaut
when the answer size is small, Raz [1998] proved that soundness is exponentially
decreasing withu.

THEOREM2.26 [Raz 1998]. For all integers d and s< 1, there exists gs < 1
such that given a two-prover one-round proof system with soundness s and answer
sizes bounded by,dhen for all integers uthe soundness of u protocols run in
parallel is bounded by £.

Since we do not limit the answer size of the provers, they can, of course, misbe-
have by sending long answers that always cause reject. Thus, by answer size,
we mean the maximal answer size in any interaction whieaecepts.

2.4. FOURIERTRANSFORMS  Our proofs depend heavily on Fourier analysis of
functions A: 7y — R whereR is the set of real numbers. We recall some basic
facts. For notational convenience letlenotelU |. The set of basis functions used
to define the Fourier transforms ayg(f) = [[,., f(X) wherea C {-1, 1}Y. The
inner product of two functiong andB is given by

(A, B)=2"7 > A(f)B().

f eFy

Under this inner product, the basis functions form a complete orthonormal system
and the Fourier coefficients & are defined as the inner products with the basis

LFix an optimal strategy, which might be randomized,Ref Now, for eachq,, P, can consider

all possibler of V producingg,, computeq; and then, since the strategy Bf is fixed, exactly
calculate the probability tha¥ would accept for each possible answis.then answers with the
lexicographically first string achieving the maximum. This gives an optimal deterministic strategy for
P,. We can then proceed to make deterministic by the symmetric approach.
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functionsy,. In other words, for eack < {—1, 1},

A= (A ) =27 L ANTT 100

Xeo

We also have the Fourier inversion formula

A= Z Aaxam— Z AT f0. (1)

-1V -1,V Xea

The Fourier coefﬁuents are real numbers and we have Parseval’s identity
DR =273 A1)
o f

This sum is, in this paper, usually 1 since we mostly stddyith range{—1, 1}.
The reader might be more familiar with the Fourier transform of ordinary func-
tions and hence with the formulas

=2 ZF(X)HX.

iea

and

FOO =Y Fo[]x-

aCln]  iea

Pattern matching tells us that the difference is that, 1}V takes the place of
[n]. The inputs to “ordinary” functions ane bit strings, which can be thought of
as mappings fromn] to {—1, 1}. The inputs to our functions are mappings from
{(—1, 1}V to {—1, 1} and this explains the change fromj fo {—1, 1}V.

SupposeAis the long code of an inpu. By definition, the basis functiogyx,
is exactly this long code. Thus, the Fourier transform satigfigs = 1 while all
the other Fourier coefficients are 0.

A significant part of this paper consists of manipulations of Fourier expansions
and let us state a couple of basic facts for future reference. The proofs of the first
two are straightforward and are left to the reader.

LEMMA 2.27. For any fgeFy, and e €{—1,1}Y, we have x,(fg)=
Xo(F)Xa(9).

LEMMA 2.28. For any feFy ande, B C{—1, 1}V, we havey,(f)xs(f)=
XaAﬂ(f)'

LEMMA 2.29. Letk be aninteger and suppose that for edehi <k we have a
random variable ifwhose range is7y, and that we are givea; € {—1, 1}Yi. Sup-
pose that there is a and % € {—1, 1}V such that ¥ € «;, and that f,(xo) is ran-
dom with the uniform distribution and independent @i for all (i, X) # (io, Xo)
with X € aj. Then

k
: [nxmui)} o
i=1

where the expectation is taken over a random selectio(rfi()l!f:l. In particular,
E[x.(f)] = Owhen f is chosen randomly with the uniform probability ang: @.
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PrRoOoOF. By the independence condition, we have, wifh=c; for i #ip and
ozi’o = o, A{Xo},

{l_[xa.(f)} = E[ fiy(x0)|E {Hxa(f)} _0

since the first factor is 0.

In many cases, we hak¢ € W and we havef € F that we want to interpret
as a function ori—1, 1}'Y. We do this by ignoring the coordinates not belonging to
U. We use the same symbé| but we write f (y|y) to make the restriction of the
domain explicit. We have the following basic fact.

LEMMA 2.30. Assume U-W and fe Fy. Then for anyg < {—1, 1}V, we
havexs(f) = xxy)(f).
PROOF  We use the definition
xp(F) =TT fylv).
yep
The number of times a value appears in this product is exactly the number of

y € B such thatrV(y) = x. Since we only care whether the sum is even or odd,
the product equals
Hfm

xen2 B)

and this is exactlyv ) (). O

2.5. FOLDING AND CONDITIONING OF LONG CODES It is many times conve-
nient to make sure thab(f) = —A(—f) is true for all f. The mechanism to
achieve this was introduced by Bellare et al. [1998] and was called “folding over
1” since 1 was used to denote true. Here, we are folding edeput to emphasize
that we are using the same notion we call it “folding over true.”

Definition 2.31. Given a functionA: 7y — {—1, 1}. The function Atue,
folding A over trueis defined by for each pairf(— f) selecting one of the two
functions. If f is selected thed\yye(f) = A(T) and Ague(— ) = —A(F). If —f
is selected thedyyue(f) = —A(—f) and Ague(— f) = A(— ).

Note that the definition implies tha#,e( f) = — Arue(— f) is always true. The
function Aqye depends on the selection function but since this dependence is of no
importance we leave it implicit.

LEMMA 2.32. If B = Ayue, then for alle with B, 0, we have thatx| is odd
and in particulara is not empty.

PROOF. By definition:

VJ@ZmUHHm

Xeo

SinceB(f) = —B(—f) while [],_, f(X) = [[xco(— (X)) when|«| is even the
two terms corresponding tband— f cancel each other and hence the sumiq0.
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We sometimes know that the inpxfor which a given tabléA is supposed to be
the long code should satisfyx) = —1 (i.e.,h is true) for some functioh. This
was also needed in the paper by Bellare et al. [1998] where they defined “folding
overh” analogously to folding over 1. We need a stronger property which we call
“conditioning uponrh.”

Definition 2.33. For functionsA: 7y — {—1, 1} andh € Fy, we define the
function A,: Fu — {—1, 1}, that we callA conditioned upon by setting, for each
f, An(f) = A(f Ah).

We have the following lemma:

LEMMA 2.34. LetB= A,where A Fy — {—1,1}andhe Fy are arbitrary.
Then for any« such that there exists & o with h(x) = 1 we haveB, = 0.

PrROOF.  Letus first note that the conclusion is natural siB§é ), by definition,
only depends on the value dfat points such thdt(x) = —1 and hence these are
the only inputs that should appear in the Fourier expansion. Formally, we use the

definition
By = 2-2”2 B(H] fx.

Xeo

Now supposethereig € « suchthah(xg) = 1. Then, foranyf, considerf’, where

f’ (xo)— — f(xo) while f/(x) = f(x) for X # xo. The set of all functions is divided

into 2" pairs (f, f’) and sinceB(f)= B(f") while [], ., f(x)=—[c, f'(X)

the elements of a pair cancel each other in the above sum and thus the sum evaluates
to0. O

We can apply folding over true and conditioning uplersimultaneously by
defining a pairing of all functions of the typg A h). Note that unlesk is identically
true not bothf and— f can be of this form and we paig (\ h) with ((—g) A h) and
define An true( ) asA(f A h) if f A his chosen in its pair and asA((—f) A h)
if (—f) A his chosen. Itis easy to verify thé, yue( f) = — Anrue(— ) and that
An true( T) only depends orf A h.

2.6. EXTENSIONS TOARBITRARY ABELIAN GROUPS We extend some results
to arbitrary Abelian groups and hence we extend the definitions in the previous
section, which applied to the group with 2 elements, to general Abelian groups.

LetI" be an Abelian group. By the structure theorem [Judson 1994] of Abelian
groupsI” can be represented as a direct product of cyclic graops,Ci, x Ci, x
Ci,---Ci,. The number of element$l’|, of I is H| 1 1. We represent a cyclic
groupC; as thd th roots of unity and an elemefytof I is thus &-tuple of complex
numbers and the group operation is coordinate-wise multiplication.

We also need the dual grodp of I which is the group of homomorphisms
of T' into the complex numbers. We need very few properties of the dual group
and we refer to Judson [1974] for a general discussion. For Abelian grbtips,
isomorphic td" but we choose to represent it as elements;pk Z;, - - - Zi, where
the group operation is component-wise addition. Wjite= (v1, v2,...,vk) € T
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andvy* = (v%, 75, ..., 7)) € ' we lety”" be the complex number

K
[
i=1

We are here using slightly nonstandard terminology. As defined above the dual
group should really be functions mappifidgo the complex numbefs. An element
of the dual group is given by* and the associated function, in our notation,
is v ~7". We do not here make the distinction betweghand the function
it represents.
We let 7l be the set of function$: {—1, 1}V — I" and we have a generalization
of the long code.

Definition 2.35. ThdongI'-codeofanassignmente {—1, 1}V is the mapping
A Fl > T where A (f) = f(x).

We next define the Fourier transform. We study func#totr; — C whereC are
the complex numbers. The basis functions are given by functions-1, 1}V
I'* and are defined by

X(f)= [] 0™,

xe{—1,1}V

We have the inner product defined by

(A, B) =172 ) A(f)B(T),
f

where B( f) denotes complex conjugation. The basis functions form a complete
orthonormal system and we define the Fourier coefficients by

Aoz = (Av on)’

which is inverted by

A =" Agxal ). v

The numbersA, are complex numbers and Parseval's identity gives,
SIAL =Y AP =1,
o f

if we are working with a function satisfyingA(f)| = 1 for all f.
We have three lemmas extending Lemmas 2.27, 2.28, and Lemma 2.29. The first
two follow in a straightforward way from the definitions.

LEMMA 2.36. Forany f g € FJ anda:{—1, 1}V > T'*, we havey,(fg) =
Xa( ) xa(9)-

LEMMA 2.37. For any fe A and o, B:{—1,1}Y > I'*, we have y,(f)
xp(F) = Xa+5(F).
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LEmMMA 2.38. Let k be an integer and suppose that for< i < k we have
a random variable ;fwhose range iSFSi and we are given;: {—1, 1}V - T'*.
Suppose that there is ag and % e {—1, 1}V such thatx;,(Xo) # 0 and that
fi,(Xo) is random with the uniform distribution and independent gi)f for all
(i, X) # (i0, Xo) With 5 (x) # OK. Then

k
E[]‘[xai(fi)} =0.
i=1

In particular for anye that is not identicallyo¥, we have Ex,(f)] = Owhen f is
chosen uniformly at random.

PROOF. By definition

k k
[Txa(f)=]] fi () 09,
i=1

i=1 xe{—1,1}Yi

Now f;,(xo)¥0*) appears in this product and is by assumption independent of all
other factors. We need just observe tEg{~“] = 0 for v chosen uniformly in"
anda # 0%, This follows sincey® ranges over a full set of roots of unity]

We have a natural extension o’ .

Definition 2.39. LetU € W andg: {—1, 1}V - I'*. Thenn (8) = o where
O[(X) = Zy:y|U:x IB(y)

We next have the analogue of Lemma 2.30. Also the proof is analogous to and
we omit it.

LEMMA 2.40. Assume UCW and fe F. Then, for anyg: {—1, 1}V > I'*
we haveys(f) = x.v/(f).

When working with londg"-codes, we need to fold ovér.

Definition 2.41. Given a functiorA: fﬂ — I'. The functionAr, folding A

overI" is defined by for each set of functions {)r selecting one function. If
vof is selected, thedr(y f) = vy, A(yo f) forall v e T

Along I'-codeA has rangd™ and since we want to study functions with a range
in C, typically we studyA™" for somey* e I'*. Multiplying such a function by the
group elementy should multiply the result byy”" and thus the below definition
is natural.

Definition 2.42.  Given a functiol\: 7 — C and~v* € T'*. The functionAis
~*-homogeneoui for each f € £ andy € I we haveA(y f) = 47" A(f).

We have the following consequence of the definitions.

LEMMA 2.43. Given a function A7) > T, and~* € I'*. Then if B = Ar,
we have that B is v*-homogeneous.

PrOOF.  From the definition of folding, it follows thaB(+ f) = vB(f). The
lemma is now immediate.]
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We need the consequence for the Fourier transform.

LEMMA 2.44. Given AF)] — C, and~* € I'* and assume that A ig*-
homogeneous Thefor all & with A, # 0, we have) , a(x) = ~*. In particular
if v* is nonzergthere is some x with(x) # OK.

PROOF. Assumetha} ", a(x) # v* and take someg € G with v ~2x@®) £ 1,
We have

Ac =Y Afx(P =) AG )xa(r D). (3)
f f

Now using
Xa(Y ) = xa(F) [ 7% = 42 W o (F)
X

and the assumption of beirg-homogeneous we see that the right-hand side of
(3) equals

Z Y A(F )y 2O (F) = 47 2x @A,
f

We conclude tha\, = 0. [J
The notion of conditioning extends without virtually any changes.

Definition 2.45. From a functiorA: 7| — R for any rangeR andh € Fy,
we construct a functiory,, called A conditioned upon Iy for eachf, Ay(f) =
A(f A h). Here f A h is defined byf A h(x) = f(x) whenh(x) = —1 and
f A h(x) = 1¥ otherwise.

We state the corresponding lemma without a proof.

LEMMA 2.46. Let A F)) — Candhe Fy be arbitrary and set B= A,. Then
for any« such that there eX|sts X With(x) # 0K and h(x) = 1 we haveB, = 0.

The computational problem we study is given by systems of linear equations in
the groupl'. If L is such a system, we I (L, x) be the number of equations
satisfied byx.

Definition 2.47. Max-Ek-LinT is the problem of given a systein of linear
eguations over an Abelian grolip with exactlyk variables in each equation, find
x that maximizeN(L, x).

3. The Basic Two-Prover Protocol and the Corresponding PCP

To get our inapproximability results, we construct a range of different PCPs. Most
of these PCPs have the same written proof, and only the method to check this proof
is customized to fit the combinatorial problem in mind. In this section, we show
how to construct this written proof by going through a two-prover protocol.

We start with a 3-CNF formul@ given by Theorem 2.24. Thus, eitheris
satisfiable or itis at mostsatisfiable for some < 1 and itis NP-hard to distinguish
the two cases. We also have the property that each clause is exactly 3 in length and
each variable appears in exactly 5 clauses.
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Basic two-prover protocol

{Input. A3-CNF formula ¢ = C; AC,A--- A Cpp, WhereCj contains the variable%j s Xo; andxCj .
Verifier

1. Choosgj € [m] andk € {a;, bj, ¢;} both uniformly at random and serjdo P; andk to P,.

2. Receive values fax,. , Xo, andxcj from P; and forx, from P,. Accept iff the two values fory
agree anc; is satisfied.

We have:

LEMMA 3.1. If ¢isc-satisfiablethen for any Pand B, V accepts in the basic
two-prover protocol with probability at mo$2 + c)/3.

PrROOF The answers by, define an assignmea to all variables. Whenever
V chooses a clause not satisfied day either P, answers with an unsatisfying
assignment, causing to reject outright or has at least probability 1/3 of being
caught for not being consistent with. Sinceag satisfies at most a fractionof
the clauses the probability &f rejecting is at least (+ ¢)/3. [

The basic two-prover protocol is good in thatonly asks for the value of four
bits, but it is bad in that the acceptance probability is rather close to 1. We improve
this second parameter by running the protocol in parallel.

u parallel two-prover protocol

Input. A 3-CNF formula o = C; A C, A --- A Cy, whereC; contains the variablegj s Xo; andxCJ .
Verifier

1. Fori =1,2,...,u,chooseji € [m]andk; € {a;, b, c;} all uniformly at random and indepen-
dently and sendj(){_, to P, and ;)i_, to P..
2. Receive values fcxah » Xo; andxCji from P, and forx, from P, fori =1,2,..., u. Accept iff

the two values fok,, agree ancC;; is satisfied for all 1<i < u.

By applying Theorem 2.26 and Lemma 3.1 and using the honest strategy when
@ is satisfiable, we get:

LEmmA 3.2. If ¢ is c-satisfiablewhere c< 1, then there is a constant < 1
such that for any integer,the optimal strategy for fand B causes V to accept
in the u-parallel two-prover protocol with probability at mogt df ¢ is satisfiable
then V can be made to always accept.

To simplify notation, we denote a set of variabl&g{_, sent toP, by U and a
set Ka; , Xp;, » X; )i—1 SENttOPy by W. Thus, typically, a sét) is of sizeu and a set
W is of size 3.

Now we want to convert thig-parallel two-prover protocol into a PCP. We write
down for each possible question the long code of the answer. We call this proof,
the Standard Written Proof (SWP).

Definition 3.3. AStandard Written Proafith parameteu (SWPQ)), contains
for each se¥ C [n] of size at most 8 a string of length 2", which we interpret
as the table of a functioAy: & — {—1, 1}.

Definition 3.4.  An SWPQ) is acorrect prooffor a formulag of n variables if
there is an assignmenrtthat satisfieg such thatAy is the long code ok|y for
anyV of size at most 3.
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The size of a SWRY) is aboutn®22" and thus, as long asis a constant, it is of
polynomial size.

When accessing along code on a set of inputs for which we have some information
(like a set of clauses on these inputs being true), we use conditioning. We use the
notationAy n rather than Ay ), for the tableAy conditioned upoi. We often fold
the tables over true, yielding a function callégh true

The general strategy for proving inapproximability for an optimization problem
is to design a test of SWR) that closely mimics the optimization problem.

The standard proof strategy for establishing that such a PCP has small soundness
is to prove that if a specific SWR) passes a particular test with high probability
then we can use this proof to create strategie®fand P, to convince the verifier
in u-parallel two-prover protocol to accept with high probability.

Finally, we generalize the notation to deal with lofigeodes.

Definition 3.5. A Standard Written"-Proof with parameteru (SWI" P(u))
contains for each s&f c [n] of size at most 8 a string of lengthT"|2"" that
we interpret as the table of a functigh, : 7|, — I'. The symbols of the proof
represent elements of.

Definition 3.6. An SW P(u) is acorrect prooffor a formulag of n variables
if there is an assignmertwhich satisfieg such thatAy is the longl'-code ofx|y
for anyV of size at most G.

4. Testing a Long Code

Having collected all the important tools, we are now ready to describe the first
interesting test; namely, to test whether a given funcédotr, — {—1, 1} is a

long code of some input. This test has no consequences for the optimization
problems we want to study, and we present it for pedagogical reasons. It is easy to
analyze, given the correct tools, but still gives a nontrivial conclusion.

In most previous code-testing situations [Arora et al. 1998; Arora and Safra 1998;
Bellare et al. 1998] the key parameter that has been analyzed is the distance from
a given word to different code words. This is a natural parameter, but considering
only distances turns out to be too restrictive. We follow the pathasthid [1999]
and use a strategy not only based on distances but on the complete Fourier transform
that, for anyA that passes the test with high probability, associates a small set of
inputs. These inputs can later be used as strategies in the underlying two-prover
interactive proof.

Long code test, first attempt

Written proof. A string of length 2, to be thought of as a functioA : Fy — {—1, 1}.

Desired property. The functionA should be a long code, that is, there existxan{—1, 1}V such
that for all f, A(f) = f(x).
Verifier

1. Choosefy and f; from Fy with the uniform probability.
2. Setf, = fofy, thatis, definef, by for eachx € {—1, 1}V, fo(x) = fo(x) f1(X).
3. Accept iff A(fo) A(f1) A(f,) = 1.
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First note thatv always accepts a correct proof sinceAifis the correct long
code forxgp, then

A(fo) A(f1)A(f2) = fo(Xo) f1(Xo) fa(Xo) = f§(Xo) f1(X0)* = 1,

and we need to analyze the acceptance probability wienot a correct long code.
A randomA is accepted with probability/2 and thus this acceptance probability
does not have any implications on the structuréofMe will establish, however,
that anyA that is accepted with probability (& §)/2 for § > 0 must have some
special structure.

By definition, A(fp) A(f1) A(f,) is one when the test accepts and negative one
when it fails, and thus under the above assumption

Eto. . [A(fo) A(f1) A(f2)] = 6. (4)
We replaceA( fi) by its Fourier expansion, that is, using (1), and see that (4) equals

Eto.t |: Z Ao A Ay Yo fO)Xal(fl)Xotz(fZ):| . 5)

0,011,002

Using the linearity of expectation, (5) equals

Z Aag Aoq Aozz E fo, f1 [Xolo( fO)Xﬁtl( fl)Xocz( fZ)] . (6)

QQ,01,02

By the definition off,, Lemma 2.27, and Lemma 2.28, we have

Xao( f0) X (F2) Xein (F2) = Xao(f0) X (F2) Xep (o f2)
= Xao( fO)Xou( fl)Xaz( fO)Xocz( fl)
= XotoAaz( fO) X()llelz( fl)
Since fg and f1 are independent, (6) equals

Z Aao Aal Aaz E fo [XaoAaz( fO)] E i [X(xlAaz( fl)] . (7)

oQ,01,02

By Lemma 2.29, we to see that, unlegs= a2, we haveE [ xuoaa,(fo)] = O.
Similarly, unlessy; = a2, E,[ xa,00,(f1)] = 0. Using these two facts, we see that

(7) simplifies to
SR

Now, since}", AZ = 1, we have that
- A . .
Za: A < maxA, 2&: A, = maxA,.

We conclude that this maximum is at ledsThus, we have proved that there is at
least onax such thatA, > § and by Parseval’s equality there can be at ndost
sucha. Thus, with anyA that causes the test to accept with high probability, we
can associate a small number of sets but, since each set might be large, we have
failed to find a small set of inputs.
Since the test accepts with probability oneAit y,, we cannot do much better
with the current test. In fact, what we have presented is the linearity test of Blum
et al. [1993] and one part of the analysis given in the paper by Bellare et al. [1996].
To make the test closer to a test of the long code, we give up perfect completeness
and allow for a small probability of rejecting a correct long code.
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Long code test, second attempt, parameterized by

Written proof. A string of length 2°, to be thought of as a functiof: 7, — {—1, 1}.

Desired property. The function A should be a long code, that ig(f) = f(x) for somex ¢
(-1, 13V.

Verifier

1. Choosefy and f; from Fy with the uniform probability.

2. Choose a functiop € Fy by settingu(x) = 1 with probability 1— € andu(x) = —1 otherwise,
independently for eack € {—1, 1}V.

3. Setf, = fofiu, thatis, definef, by for eachx € {—1, 1}V, fo(x) = fo(x) f2(X)ue(X).

4. Accept iff A(fo) A(f1) A(f,) = 1.

This timeV accepts a correct long code for an inggiexactly iff 1 (xg) = 1 which,

by definition, happens with probability-1¢. Now, let us analyze the general case.
We again want to calculatés, 1, ,[ A( fo) A( f1) A( f2)] and the expansion up to (6)
is still valid and we need to consider

E, fiu [Xolo( fO)Xal( fl)onz( f2)]
= Ex, fip [thoAOlz( fO)XmAO{z( fl)Xaz(M)] > (8)

where we used the definition d§, Lemma 2.27, and Lemma 2.28.

Since fy, f1, andu are independent, we can use Lemma 2.29 to see that, unless
oo = a1 = o, the above expected value is 0. Sirlgg]1.(x)] = 1 — 2¢ for each
X, andu(x) are independent for different we have

Eu [Xaz(:u)] = (1 - ZE)IHZ‘
and thus

Eo. tuu [ACf) AT A(T)] = ) AS(1— 26)! < maxAy (1~ 2¢),

where the inequality follows from Parseval’s identity.

This time, we can conclude that for someve haveA,(1 — €)'l > §. Since
this inequality implies thate| < ¢ tlogé~, we have identified large Fourier
coefficients that correspond to sets of limited size. This implies that we get the
small set of inputs we were aiming for. These inputs can then be used as strategies
in the two-prover protocol.

5. Linear Equations

We first study the optimization problem Max-E3-Lin-2 and for natural reasons we
want to design a test for SWiP)(that accepts depending only on the exclusive-or

of three bits of the proof. It turns out that we can take the second long code test on
W and simply move one of the three questions to the smalldd s@tis allows

us to test consistency at the same time as we are testing that the tables are correct
long codes. The existence of the clauses are handled by using conditioning when
accessing the long code on the ¥ét

Test L5(u)

Written proof.  An SWP{Q).
Desired property. To checkthatitis a correct SWil(for a given formulag = C; AC, A+ - - ACh,.
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Verifier

1. Chooseu random clausesJ; )i, with uniform probability and for each choose, uniformly at
random, a variablg, occurring inCj,. SetU = {Xy,, X,, . . ., X, }» W to be the set of all variables
occurring in the chosen clauses, dne: A{L,C;j;.

2. Choosef e Fy with the uniform probability.

3. Choosay; € Fyw with the uniform probability.

4. Choose a functiop € Fy by settingu(y) = 1 with probability 1— € andu(y) = —1 otherwise,
independently for each € {—1, 1}V,

5. Setg, = fauu, thatis, defineg, by for eachy € {—1, 1}, ga(y) = f(ylu)@u(Y)(y).

6. Accept iff Ay true( f) Awh true(91) Aw h true(92) = 1.

We need to analyze this test, and it is not difficult to establish a good bound for
the completeness.

LEMMA 5.1. The completeness of Tes}(l) is at leastl — e.

PROOF Fix a correct SWR() obtained from an assignment satisfying
¢ We claim thatV accepts unlesgi(X|w)=—1. This follows since for a
correct SWR({) encoding x, folding over true and conditioning upoh is
of no consequence and henée,rue( f)= f(X|u), Awntue(d) = g1(X|w) and
Aw.h.true(92) = G2(XIw) = f(X|u)gr(X|w)u(x|w) and the claim follows. The prob-
ability thatu(x|w) = —1 is, by definitionge and the lemma follows. [

The main problem is therefore to establish the soundness and to this end we have.

LEMMA 5.2. Foranye > 0, § > 0O, suppose that the probability that the
verifier of Test 5(u) accepts i1+ §)/2. Then there is a strategy for,And B in
the u-parallel two-prover protocol that makes the verifier of that protocol accept
with probability at leastdes?.

Proor. Letusfirst fixU, W, andh and, for notational convenience, we denote
the functionAy yrue by A and the functionAw n e Dy B. As in the tests for the
long code, we want to consider

Etg..[A(T)B(91)B(g2)] 9)
since, by the assumption of the lemma,
Eu,wn, £, Au.true( T) Awh true(91) Aw b true(92)] = 6. (10)

We replace each function by its Fourier expansion transforming (9) to

Ef,gl,u[ > AozéﬂléﬂzXa(f)Xﬁl(gl)Xﬂz(QZ)}
o, B1. B2

= Z AuBp, B, Et g,y [Xe( ) x5 (00) x5, (FO1)]
asﬂl’ﬂZ

= > AuBpBpEr g [tal )Xo (F)xp (90) 18, (00) x5, (10)]
asﬂlsﬁZ

= Z AyBg Bp, Et [Xanmap(F)] Eq [X8:(90)] Ex [x5(0)] . (11)
a,pB1.B2
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where we used Lemmas 2.27, 2.28, 2.30, and the factfthgt andu are chosen
independently. By Lemma 2.29, unlg&s= B, anda = 75 (8) the corresponding
termin (11) equals 0. Finally, since

Eulxp(w)] = (1 2¢)"

we have reduced (9) to

Y A Bi(L—2¢)7. (12)
B

We want to design strategies fBr and P, in the two-prover game. Before doing
this, let’s just summarize the work up to this point by the equality

Eu.w.h { > AnpB3(1- ze)'ﬂ} =34, (13)
B

where we for, readability reasons, have dropped the superscript of
We define randomized strategies frand P,. These can, as discussed earlier,
be converted to optimal deterministic strategies that do at least as well.

—P,, upon receiving the sé&f, selects a random with probability Ag and then
returns a random € « chosen with the uniform probability.

—Py, upon receivingh andW, selects a randor with probability ég and then
returns a randory € 8.

Note that, by Lemma 2.32, any set selected by either prover is nonempty. Further-
more, by Lemma 2.34, every sent byP; satisfies the selected clauses. Thus, to
analyze the probability that the verifier in the two-prover protocol accepts, we need
only estimate the probability that the answers are consistent, that iy, that x.

We claim that this probability is at leagt|~* times the probability that for the
selectedv andg we havex = m,(B). This follows since in this case for eaghe o
there is at least ong € g such thay|y = X. The probability of selecting a specific
paira andg is A2 Bfg and thus the success-rate for a fixed choicd oV andh is
at least

Y AL BRIBIT (14)
B

and the overall success-probability is the expected value of this expression with
respect to randord, W andh. To compare this sum to (13), the following lemma
is useful.

LEMMA 5.3. Forx,s > 0,x™° > exg—sX).

PROOF  Since the inequality for a generals thesth power of the inequality
for s=1 we only need to establish the lemma ®re 1. Sincex exp(—x) =
exp(Inx — x), we need to prove that bh— x < 0 for eachx > 0. This is certainly
true forx < 1 since neither term is positive and, as can be seen from differentiation,
Inx — x is decreasing fox > 1.
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Returning to the main path we see, using Cauchy—Schwartz’ inequality, that
1/2 1/2
> A BRIV < (Z A ngl) (Z Bé)
B B B
1/2
< (Z ) B§|/3|‘1) -

B
This implies

2
Eu.w.n {Z A?,Z(,g)ééwﬁ} > Euwn (Z Am(mé,%lml”)
B B

2
> <EU,W,h [Z&g(ﬂ)é,%lﬂl‘”zb , (15)
B

where we have used thE{ X?] > E[X]?.
Now, by Lemma 5.3, witls = 1/2,

(4e|B) % > exp(=2¢|Bl) = (1 — 2¢)", (16)

where we used exp(x) > 1 — x which is true for allx > 0. We conclude that
|B]7Y2 > (4¢)Y?(1 — 2¢)'Pl and combining this with (15) and (13) we see that

2
EU’W’h[Zﬂ: A]zrg(ﬁ) E§§|ﬁ|_1:| > 4¢ <EU,W,h |:zﬁ: Aﬂgu(ﬂ) B;(l — 26)/3|j|> > 4682'

As established above this is a lower bound for the probability that the verifier
accepts in thei-parallel two-prover protocol and hence the proof of Lemma 5.2 is
complete.

Armed with the PCP given by Tekf(u), we can now establish the main theorem
of this section.

THEOREM 5.4. For any € >0, it is NP-hard to approximate Max&Lin-2
within a factor2 — €. Said equivalentlyMax-E3-Lin-2 is nonapproximable be-
yond the random assignment threshold.

PROOF.  Sets to a negative power of two such that
1-6
5 2
1+9)/2

Remember also that since we are workind-efl, 1} a linear equation mod 2 has
a left-hand side that is a product of variables and right-hand side that is either
lor-—-1.

Let L be an arbitrary language in NP and suppose we are given anxrgnd
we are trying to decide whetheare L. By Theorem 2.24, we can, in polynomial
time, create a E3-CNF formula with each variable occurring exactly five times
such that ifx € L, theng is satisfiable and ik ¢ L, theng is at mostc-satisfiable

2—e.
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wherec is some definite constant less than 1. Now chooseach that 4° > c!
wherec; is the constant from Lemma 3.2 and consider applyinglté&t) to ¢.

For each bib in a SWP() introduce a variabley,. To accept in the test,5(u)
is equivalent to the condition

bU, f b\N,h,glbW,h,gz = b/s

whereby 1, bw,h g, andbw n g, are the bits in the proof correspondingAQ true( f),
Aw h.true(91), and Aw n true(92), respectively, anty’ is a constant. One might think
that the right-hand side would always be 1, but because of folding over true
the bit corresponding té\y wue( ) in the proof might actually give the value of
Ay true(— ). Thus, the value db’ depends on our mechanism for folding and, of
course, the identities off, g;, andgs.

Let us now write down a set of linear equations with weights. Write down the
equation

/
Xbu,fxbw,h,glxbw,h_gz =D,

whereb’ is defined as above. The weight of this equation is the probability that
the verifier in testL5(u) chooses the tupldJ, W, h, f, g1, g2). Now each proof
corresponds to an assignment to the variaklemnd the total weight of all satisfied
equations is exactly the probability that this proof is accepted. This implies that if
x € L the maximal weight of simultaneously satisfiable equations is at least 1
while if x ¢ L, itis in view of Lemma 5.2 and the choice of at most (1+ §)/2.
The number of different equations is limited by the number of different choices of
the verifierV. There are at mosh choices folW and oncéWV is chosen, at most
3" choices forlJ. GivenU andW the number of choices fof is at most 2" and
for g, andg, 22" each. Thus, the total number of choices is at most

mY 22u+2“—&-23“Jrl ’
which is polynomial sincau is a constant. For each choice it is not difficult to
compute the corresponding weight (given as a rational number). Thus, we can
produce this set of equations in polynomial time.

It follows that any algorithm that can determine the maximal total weight of

simultaneously satisfiable equation within a factor smaller than

1-38
(1+9)/2

can be used to determine whetker L and hence this task must be NP-hard. This
proves the theorem if we allow weighted equations.

As is standard, the weights can be eliminated by duplicating each equation a
suitable number of times. We leave the details to the interested reé@der.

Note that there is a meta reason that we have to introduce the error fupction
and make our test have nonperfect completeness. If we had perfect completeness,
then the equations produced in the proof of Theorem 5.4 could all be satisfied
simultaneously. However, to decide whether a set of linear equations have acommon
solution can be done in polynomial time by Gaussian elimination and thus perfect
completeness would have implied=RNP.

It is not hard to extend the result to more variables in each equation.
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THEOREM 5.5. For anye > 0,k > 3,itis NP-hard to approximate Max-Ek-
Lin-2 within a factor2 — e. Said equivalentlyMax-Ek-Lin2 is nonapproximable
beyond the random assignment threshold.

PrROOF We have a straightforward reduction from the clase 3 to arbitrary
k. Given a system of equations with 3 varlables in each equation in the variables
(Xi){,. Add the sam&— 3 new variablesy; )I f in every equation to make them all
havek variables. Consider any assignment of the variables of thls larger system and
consider the same assignmentxgi(_, in the smaller system. [TL 1Y =1,then
it satisfies exactly the same equations Whl|ﬂ|lf 1Y = —1 it satisfies exactly
the equations not satisfied in the larger system. Changing &yémyits negation,
however, now satisfies the equations satisfied in the larger system.

From the above argument, we see that the maximal number of equations satisfied
by the system is preserved and that it is easy to translate a solution of the larger
system to an equally good solution of the smaller system. Thus, we have a correct
reduction from the cade= 3 to the case witlk > 3. [

Sometimesitis useful to have systems of equations of a special type. Our systems
are very uniform and the only part of the equations we do not control explicitly is the
right-hand side since it is determined by the folding convention. We next establish
that if we have four variables in each equation, then we can have the right-hand
side—1 in all equations. Note that we cannot have right-hand side 1 in all equations
since in this case we can satisfy all equations by giving the value 1 to all variables.
Similarly, we cannot hope to have an odd number of variables in all equations since
in this case giving-1 to all variables satisfies all equations.

THEOREM 5.6. For any € >0, it is NP-hard to approximate Max<4Lin-2
within a factor2 — ¢ even in the case when all right-hand sides are equal to
—1. Said equivalentlyMax-E4-Lin-2 with right-hand side-1 is nonapproximable
beyond the random assignment threshold.

PROOF We construct a special purpose PCP. Since we want to control the
right-hand side of the obtained equations,we do not use folding over true.

TestL5 _4(u)

Written proof.  An SWPQ).
Desired property. To check thatitis a correct SWil(for a given formulap = C; ACo A - - - ACh,.
Verifier

1. Chooseu random clausesJ;; )i, with uniform probability and for each choose, uniformly at
random, a variablg, occurringinC;,. SetU = {Xy,, X, - - ., Xi, }, W to be the set of all variables
occurring in the chosen clauses, dne: A{L,Cj;.

2. Choosef; € Fy and f, € Fy independently with the uniform probability.

. Choosey; € Fy with the uniform probability.

4. Choose a functiop € Fy by settingu(y) = 1 with probability 1— € andu(y) = —1 otherwise,
independently for each € {—1, 1}V

5. Setg, = —f1f20:1, that is, defineg, by for eachy € {1, 1}, ga(y) = — fi(ylu) f2(ylu)or
(V)u(y)-

6. Accept iff Ay (f1) Au(f2) Awn(d) Awn(g2) = —

We have

w

LEMMA 5.7. The completeness of Test L (u) is at leastl — e.
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PrOOF. It is not difficult to see that the verifier accepts a correct SWP unless
w(ylw) = —1 wherey is the satisfying assignment defining the prodf]

We turn to establishing the soundnesd.¢f ;.

LEMMA 5.8. Foranye > 0,8 > 0, suppose thatthe probabilitythatthe verifier
of Test L _,(u) accepts i1 + §)/2. Then there is a strategy for,Rnd B in the
u-parallel two-prover protocol that makes the verifier of that protocol accept with
probability at leastes.

PrROOF Fix U, W andh and letA= Ay and B = Aw.n. Since—A(f1)A(f))
B(91)B(gy) is one if the test accepts and negative one if it rejects, we want to
analyze

Ef.. tr.0.u[—A(T1) A(f2) B(91) B(02)]. (17)

We replace each term by its Fourier expansion and using the linearity of expectation
and the definition of, we arrive at

- Z A()ll Aﬂ(z éﬂl Bﬂz E fl, fz,gl,ﬂ [X(Xl( fl)XOlz( fZ)Xﬁl(gl)X,Bz(_ fl fZgl/L)] M (18)

a1,02,1,p2

By Lemmas 2.27, 2.28, and 2.30, we see that

Xo (F1) Xao (F2) X5, (91) X, (— F1 F20114)
= quAﬂz(ﬂz)( fl)XazAﬂz(ﬁz)( fZ)XﬂlAﬂz (gl)Xﬂz(_M)-
Since f1, f2, g1, andu are chosen independently, we can calculate the expected

value of each factor separately. By Lemma 2.29, we see that ysilesss, = 8
ando; = ap = nZU (B) the expected value is 0. Finally, since

Eulxp(10)] = (1—2¢)",
we have reduced (17) to

Y A5 BA(=1)P(1 - 2¢) 71, (19)
7

The expected value of (19) over randamW, andh is, by the assumption of the
lemma,. Since we are not folding over true, it might be that the term corresponding
to 8 = @ is nonzero. It is, however, nonpositive and hence dropping this term only
increases the sum and hence by the assumption of the lemma we conclude that

> Evwn [A2,B3(1—26)F1] > 6. (20)
B#9D

Now we define a strategy fd?, andP,. GivenU, P, chooses with probability
A2 and returns a randome o« while P; when askedN andh chooses 8 with
probablllty B2 and returns a randome 8. If either o or 8 is empty, the corre-
sponding prover gives up. Note that, by Lemma 2.34 yarsturned byP; satisfies
the chosen clauses and reasoning as in the proof of Lemma 5.2 we see that the
success probability of the strategy of the provers is at least

Eu.wh [Z A2 4 ééwrl} : (21)

B#Y
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By Lemma 5.3 withs = 1,
(2¢1B) ™ > exp (~2¢|8]) = (1 — 2¢)7!.

Comparing with (20) we conclude that the success probability is at Iéasirid
the proof is complete. ]

Now, Theorem 5.6 follows from Lemma 5.7 and Lemma 5.8 very much as
Theorem 5.4 followed from Lemma 5.1 and Lemma 5.2. Essentially, the only
difference is that since we are not folding over true-all right-hand sides aréVe
leave the details to the reader.

Theorem 5.6 extends to the case of having exadtlya?iables in each equation
for anyk > 2. If we allow the same variable twice in the same equation, there is
an obvious reduction. If this is not allowed, one can prove the result by modifying
TestL5 _,;(u) by choosing X — 1) random functionsf; € JFy and then making
the obvious changes[]

We next turn to the question of linear equations in a general Abelian group. Note
that a particularly interesting case is that of linear equations mdmlt since the
proof in this special case is essentially identical to the case for general Abelian
groups we only give the general case. It might be constructive to thifikasZ ,
at the first reading of the proof below.

THEOREM 5.9. For anye > 0 and any Abelian group, it is NP-hard to ap-
proximate Max-B-Lin-I" within a factor|I"| — €. Said equivalentlyMax-E3-Lin-I"
is nonapproximable beyond the random assignment threshold.

PrROOF We use the notation given in Section 2.6. Rememberlthatwritten
multiplicatively and each element ikauple of complex numbers. The identity is
denoted by 1.

TestL{(u)

Written proof.  An SWIP(u).
Desired property. To checkthatitis a correct SWP(u) for a given formulay = C;ACo, A - - -ACh,.
Verifier

1. Chooseu random clausesJ; )i, with uniform probability and for each choose, uniformly at
random, a variablg, occurring inCj;.SetU = {Xi,, X, - - - » Xi, }» W to be the set of all variables
occurring in the chosen clauses, dne: A{L,C;;.

2. Choosef € F with the uniform probability.

. Choosey; € F, with the uniform probability.

4. Choose a functiop € F, by settingu(y) = 1% with probability 1— € and otherwisei(y) = ~
wherey is chosen randomly and uniformlyih This is done independently for eagke {—1, 1}V,

5. Setg, = (fgiu) ™, thatiis, definag, by for eachy € {—1, 1}V, ga(y) = (f(ylu)gu(y)(y) ™.

6. Accept iff Ay () Awn.r(91) Awnr(gz) = 1%

We leave to the reader to verify that the verifier accepts a correct SWP pvhen
takes the valuekon the satisfying assignment. From this, we conclude:

w

LEMMA 5.10. The completeness of Test(L) is at leastl — e.

Lemma 5.11 below analyzes the soundness of Tgét). Theorem 5.9 follows
from Lemma 5.10 and Lemma 5.11 in the same way as Theorem 5.4 followed from
Lemma 5.1 and Lemma 5.2. We omit the detailS]
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LEMMA 5.11. Foranye > 0, § > 0, suppose that the probability that the
verifier of Test I&.(u) accepts i1 + §)/|I"|. Then there is a strategy for,Rnd B
in the u-parallel two-prover protocol that makes the verifier of that protocol accept
with probability at leas@s?%¢|TI"| 2.

ProOOF  The test succeeds Ay r(f)Aw.nr(91) Aw.n.r(92) is 1k and fails oth-
erwise. To evaluate the general performance, we want to convert this to a rational
number and we consider

Y (Aur(H)Awnr(@) Awnr(@2).

yryrelrs yr# ok

wherel' is the dual group of" written additively.
The reason to study this number is given by the following lemma.

LEMMA 5.12. Supposey € G, and consider

> o

"}’*:’Y*GF*,"}’* 7éok
This is sum igI"| — 1if v = 1¢ and otherwise it is-1.

PROOF The statement of the lemma is equivalent to the statement that if we
sum over ally* in T'*, then the sum i$["| and 0 in the two cases, respectively.

The first part of the lemma follows from the fact that each termis 1 and there are
I'| terms. For the other part, take apyl < j <k such thaty; # 1. Then, as we

vary~* over all its possible valuesﬂ‘ varies over a complete set of roots of unity.
It follows thatzv* ~7" = 0, which, as observed above, implies the lemnia.

By Lemma 5.12 and the assumption of Lemma 5.11, we have

Eu,w.h, f,g0.1 Z(Au,r(f)Aw,h,r(gl)AW,h,r(gz))'y* = 4. (22)
v+ # 0

Now, fixU, W, h, andy* and setA = A} . andB = A}, |, .. Letus analyze the
corresponding term in (22) by replacing each function by the Fourier expansion.

Et.gu [Au.r(F)Awnr(90) Awnr(g2)) ]

= Etguu |: > ABy, éﬁgXa(f)Xﬂl(gl)Xﬂz(QZ):|
U‘yﬂlsﬂz

= Z AyBg, B, Et g [ Xa( F)xp. (90 x5 ((fO1) )]
a,pB1,B2

= Z ABg, B, Et [ Xammr(8(F)] Equ[ Xp1—8 (00 | B[ x5, (1) )]
o,B1,B2

The first equality is obtained from the Fourier expansion while the second equality
follows from the definition ofg, and the linearity of expectation. The third in-
equality follows by Lemmas 2.36, 2.37, and 2.40 and the fact tha;, and

are independent.
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By Lemma 2.38, one the first two expected values is 0 urdess;rr(EZ) and
B1 = Bo. Finally, if we lets(8) denote the number of such thaig(y) # 0%, then

E |:1_[ M(y)—ﬁ(y)j| =1- E)S(ﬁ).
y

Summing up, the term correspondingitdin (22) equals

Eu.w.n |:Z Anr(ﬂ) élzg(l — 6)5(/3):| . (23)
B

We conclude that the there isyg such that the absolute value of (23) is at least
8|T'|~1. Fix the value of thisy;. We are now ready to define the strategies of
the provers. X

On receivingW andh, Py considers the tabl® = Ay, ., selects 8 with
probability| B|? and returns a randomsubject to(y) # 0 .

_OnreceivingJ, P, considersthetabla = A° and selects anwith probability
|A, |2 and returns a randomsubject tou(x) # OK.

Note that by Lemma 2.44 the set of candidates<fandy are always nonempty
and by Lemma 2.46 anyreturned byP; always satisfies the selected clauses. Thus,
we need only analyze the probability thdt = x. This happens with probability
at least

o [Z i, é§|s<ﬂ>-1} -
B

Using (15), we see that this is bounded from below by

2
<EU,W,h |:Z | A () B3] S(ﬂ)_l/2:|) :
B

and by Lemma 5.3 witk = 1/2,
(2¢s(B)) % > exp(es(B)) = (1 — €)*). (24)

These facts combine with the fact that (23) is at leas{~! to show that the
probability of the verifier accepting the given prover strategy is at lea${R| 2
and Lemma 5.11 follows.[]

Theorem 5.9 can be extended to more variables in each equation yielding similar
results as Theorem 5.5. We omit the details.

It remains to study the case of two variables in each equation. In the mod 2
case, this problem is a generalization of Max-Cut in that if we only allowed equa-
tions of the formx; x; = —1, then it is exactly Max-Cut. Adding equations of the
form x;x; = 1 makes the problem more general, but it does not prevent the use
of semidefinite programming (as in Goemans and Williamson [1995]) to get an
approximation algorithm that performs as well as for Max-Cut. To get an improved
lower bound, we give a reduction from Max-E3-Lin-2, by a construction usually
referred to as a gadget and we proceed as follows:
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Given an equationyz = c we construct a constant number of equations in two
variables involving the variables, y, z and some new auxiliary variables. These
constraints come with weights. It is arrgadget, iff for anyx, y, z that satisfies
Xyz= cone can adjust the auxiliary variables to satisfy constraints of total weight
a while if xyz#c then the maximum obtainable is exactlty— 1. For a more
thorough discussion of gadgets we refer to the paper by Trevisan et al. [2000].

We have the following:

LEMMA 5.13. Suppose there is an-gadget reducing Max-ELin-2 to an op-
timization problem O. Themnless NP= P, for anye, O cannot be approximated
within 2 /(2 — 1) — € in polynomial time.

PROOF This is Lemma 2.8 of Trevisan et al. [2000] and we only sketch the
proof.

We use the gadget to construct an instand@.df the total weight of the Max-E3-
Lin-2 instance is 1, then for any solution that satisfies equations of total w&ight
the corresponding solution of the transformed problem satisfies constraints of total
weightwa + (1 — W}(a —1). Since it is NP-hard to distinguish the two cases when
w=1-4§andw =3+, if we could determine the optimum of the transformed
problem to a better accuracy than

(1-08)a+d6(x—1)
(1/2+ 8)a + (/2 = 8)(a — 1)’
we would solve an NP-hard problem. Sirfoeas arbitrary, the lemma follows []

Using this, we have

THEOREM 5.14. For anye > O, it is NP-hard to approximate Max-ELin-2
within a factor12/11 — ¢.

PrROOF This follows from a reduction from Max-E3-Lin-2. We use a gad-
get constructed by G. Sorkin (personal communication) using the techniques of
Trevisan [2000]. We start with an equation of the foraxoxs = 1. The set of
equations we construct have variables that are best imagined as sitting at the cor-
ners of a three-dimensional cube. For each {0, 1}3, we have a variablg,. For
each edged, o) of the cube, we have the equation

Yo Yo = -1
and for each main diagonat(«”) we have the equation
Yo Vor = 1.

Since a cube has twelve edges and four main diagonals we get a total of sixteen
equations each of which we give weigh2l We letx; take the place ofo11, X2 the
place ofy;g; andxs the place ofy1109. The variableyggg is replaced by which is
the same variable for all local reductions, while all the other variables are distinct
in the different gadgets. Since negating all variables does not change a solution to
Max-E2-Lin-2, we can assume thatakes the value 1.

Let us consider an assignment that satisfiggxs = 1. Either the variables all
take the value 1 or exactly two take the valdg. In the former case, we assign
the value (1)xteztes while in the second case, assuming= 1 the other cases
being symmetric, we assigp the value 1)*21%, In the first case, we satisfy all
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the “edge equations” while, in the second case, we satisfy eight “edge equations”
and all “diagonal equations,” and thus, in either case, we satisfy twelve equations.
WhenxixoX3 = —1 an enumeration establishes that it is only possibly to satisfy 10
equations. Thus, we have constructed a 6-gadget and Theorem 5.14 follows from
Lemma 5.13. [

5.1. EXTENSIONS TOOTHERCSPs. Inthis section, we prove thatany CSP where
the predicaté® is implied by the predicate of linearity inherits non-approximability.
Note that negating one of the inputsRodoes not change the corresponding CSP
and hence exchanging/z= 1 toxyz= —1 below gives an equivalent theorem.

THEOREM 5.15. Let P be a predicate 08 bits such that x, y, z) = —1for
any x, y, z satisfying xyz 1, then the CSP given by P is nonapproximable beyond
the random assignment threshold.

PrROOF  We establish this by using a slight modification lof(u), in that
we change the acceptance criteria to requiring tha§ ue( ), Aw.h.true(91),
Awh.true(92)) satisfiesP. This condition is strictly more generous than that of
L5(u) and thus completeness does not decrease and remains at-least 1

Let us look at the soundness. Consider the special case Riliethe predicate
“not one”, that is, it accepts unless exactly one input is true. We later show how to
extend the result to other predicates. The multilinear expression

5—-X—y—z4+Xy+Xxz+yz+ 3xyz
8

is one if P(x, vy, z) is true and O otherwise. Thus, we analyze the expected value
of (25) with x = AU,true(f)a y = AW,h,true(gl) andz = AW,h,true(QZ)- FOIding over

true implies tha&[ Ay wrue( f)] = 0 for arandom functiorf and similarly the other
terms of degree one in (25) have expected value 0. The pligs)(and (f, g,) are
pairs of independent functions and thus

E[Au.true( f)Awntrue(di)] =0

for i = 1, 2. Finally, since the tripletsf( g1, g2) and ( f, g1, —0.) are equally
likely to be selected by the test

E[Aw,h.true(91) Aw.h.true(d2)] = 0.
This implies that if the test accepts with probability{55)/8 then

)
E[Au true( f) Aw h true(91) Aw,h true(d2)] = 3

(25)

and we have obtained the basic relation (10) that we, in the proof of Lemma 5.2,
proved implied the existence of successful strategiesPioand P,. Since any
predicateP can be written as a multilinear function the same analysis applies to all
the predicates mentioned in the lemmal

In our definition of CSP negating an input B or permuting the inputs does
not change the problem. Thus, in fact, Theorem 5.15 only applies to three essen-
tially different predicates accepting 5, 6, and 7 inputs, respectively. For these three
predicates, Zwick [1998] established Theorem 5.15 by giving reductions from the
inapproximability result for linear equations given in Theorem 5.4. It is curious to
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note that Zwick proved that these are the only predicates on three variables that
give CSPs that are nonapproximable beyond the random assignment threshold.
Theorem 5.15 extends to predicates on an arbitrary number of bits.

THEOREM 5.16. Let P be a predicate on k bits where k¥ 3 such that
P(Xq1, Xo, ..., Xk) = —1for any(x )i":1 satisfying]_[:‘:l X =, 1, then the CSP given
by P is nonapproximable beyond the random assignment threshold.

ProOOF.  The proof is very similar to the proof given above but since we proved
the inapproximability of linear equations withvariables in each equation by a
reduction we have to design a new PCP. In view of Theorem 5.15, we can clearly
assume thdt > 4. The PCP is as follows.

Test L5 (u)

Written proof.  An SWPQ).
Desired property. To check thatitis a correct SWilP(for a given formulap = C; AC, A - - - ACh,.
Verifier

1. Chooseu random clausesJ;; )i, with uniform probability and for eachchoose, uniformly at
random, a variablg, occurring inC;,. SetU = {Xy,, X,, - - -, X, }, W to be the set of all variables
occurring in the chosen clauses, dane: Af_,Cj;.

2. Choose (i)ik;f € 7y independently each with the uniform probability.

3. Choosey; € 7w with the uniform probability.

4. Choose a functiop € rw by settingu(y) = 1 with probability 1— € andu(y) = —1 otherwise,

independently for each € {—1, 1},

5. Setg = quu [112F fi.

6. Accept iff the vector Ay true( fi))i=? concatenated withAw h rue(91), Awhtrue(Q2)) satisfies
P.

Since P is true whenever the product of the input bits is 1, we conclude that
the verifier always accepts the proof whe(y|,,) = 1 wherey is the assignment
coding a correct SWRYJ. Thus the completeness bf""e(u) is at least 1- ¢.

To analyze the soundness we wiit@s a multilinear function. Using an argument
similar to that used in the proof of Theorem 5.15, we see that the only term of a
multilinear expansion that does not have expected value 0 is

k—2
E[B(gl)B(gz) [TAC )]
i=1

This is analyzed as in the proof of Lemma 5.2 by the Fourier expansion and the
result is

EU,W,h |:Z ArrZﬂZ) éz(l — 26)ﬁ|j| .
B
The same strategy ¢, and P, as in the proof of Lemma 5.2 can now be seen to

make the verifier in the two-prover protocol accept with probability at leést 2
We omit the detalils. [J

6. Satisfiability Problems
We start with a direct consequence of Theorem 5.4.
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THEOREM 6.1. Foranye > 0,itis NP-hard to approximate Max-ESat within
a factor8/7 — €. Said equivalentlyMax-E3-Sat is nonapproximable beyond the
random assignment threshold.

PrOOF. Thisis a special case of Theorem 5.15, but let us also give the immedi-
ate reduction from Max-E3-Lin-2. An equatiotyz= 1 for three literalx, y, and
zisreplaced by the clausesY y Vv z),(x vyVvz),(xvyvz),and kVvyVz).An
assignment that satisfies the linear equation satisfies all the clauses while an assign-
ment that does not satisfy the linear equation satisfies three of the four equations.
Thus, we have constructed a 4-gadget and the result follows by Lemma 513.

We want to extend Theorem 6.1 to prove that Max-E3-Sat is nonapproximable
beyond the random assignment threshold on satisfiable instances. The proof of this
is rather complicated. To establish that Max-E4-Sat has the same property is more
straightforward and since it presents most of the ideas involved, we present this
theorem first.

THEOREM 6.2. For anye > 0, it is NP-hard to distinguish satisfiable4Sat
formulas from(15/16 + ¢)-satisfiable E-Sat formulas. Said equivalentlivlax-
4-Sat is nonapproximable beyond the random assignment threshold on satisfiable
instances.

ProoF. We first define the test.
Test 43u)

Written proof.  An SWPQ).
Desired property. To checkthatitis a correct SWi(for a given formulap = C; ACy A -+ - AC,.
Verifier

1. Chooseu random clausedqj, )i, with uniform probability and for eachchoose, uniformly at
random, a variablg, occurringinC;,. SetU = {X,, Xi,, - - -, Xk, }, W to be the set of all variables
occurring in the chosen clauses, dne: A{L,Cj;.

2. Choosef e Fy with the uniform probability.

. Chooseyy, g, € Fw independently with the uniform probability.

4. Choose functiorgs € Fw by for eachy € {—1, 1}V independently doing the following. If
g:(y) = —1, then setj;(y) randomly, while ifg, (y) = 1, setgs(y) = — f (ylu)ga(y)-

5. Accept unles?y true( f) = Awh true(91) = Awh true(%2) = Awhtrue(ds) = 1.

w

Before analyzing the test, let’s intuitively discuss its design. Since we want to
obtain aresult for E4-Sat, we want to read four bits. The first choice is how to divide
these betweer, and Ay. How to do this is far from obvious and is difficult to
motivate at this point. It turns out that the complications in the proof come from
the correlation that appears among the chosen functiafgiand to make this as
small as possible we choose to read three bit&in To get a reduction to Max-
E4-Sat, we need that the acceptance criteria shouljage(f) vV Aw h.true(01) V
Awn.true(92) vV Awh.true(93). Since we want perfect completeness, we need to make
sure thatf (y|y) v 01(Y) Vv g2(Y) V gs(y) is true for anyy. Furthermore, to make a
successful analysis by Fourier transforms, itisimportant that each functionis chosen
with the uniform distribution. The reason for this is that the Fourier coefficients are
averages and thus are most informative when inputs are chosen with the uniform
probability. Giving these considerations, the goal of the design was to make the
functions as independent as possible.
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It is not hard to see that we get perfect completeness and we omit the proof of
the lemma below.

LEMMA 6.3. The completeness of tetf(u) is 1.

The lemma analyzing the soundness is given below. Theorem 6.2 follows from
Lemma 6.3 and Lemma 6.4 in the same way as Theorem 5.4 followed from
Lemma 5.1 and Lemma 5.2. We omit the details]

LEMMA 6.4. If Test4S(u) accepts with probability15+ €)/16, then there is a
strategy for R and B in the u-parallel two-prover protocol that makes the verifier
of that protocol accept with probability at least/4.

PrOOE We have that

1
1- 1_6(1 + AU,true( f ))(1 + AW, h,true(gl))

X (14 Awhtrue(92))(1 + Aw;h.true(93)) (26)

is 1 if the test accepts and O otherwise. This follows since eachuqfue(f),

Aw h.true(91), Aw n.true(92) and Awh true(ds) is either 1 or—1 and unless they are all

1, one factor in the product is 0 and the expression evaluates to 1. If all numbers
are 1, the expression evaluates to 0.

We need to estimate the expected value of (26) which gives the probability of
success. FiXd, W, andh and letA = Ay ue and B = Awntrue- We expand the
product in (26) and estimate the expected value of each term separately. The only
terms that can have a nonzero expected value are terms containing(ge}tand
B(gs). Thisfollows since the collection$(g:, g2) and (f, g1, g3) formindependent
random variables and, because of folding over true, the expected value of each single
factor is 0. Thus, the expected value of (26) equals

15 1
16~ 16 E[B(8)B(g:)] + E[A(T)B(g2)B(gs)]
+ E[B(91) B(92) B(gs)] + E[A(f)B(91)B(92) B(g3)]). (27)

Test 4S() is equally likely to produce the sef,(g:, 02, g3) and - f, g1, 9o, —03)
and since bottA and B are folded over true this implies th&f B(g,)B(g3)] = 0
and E[B(g1)B(g2)B(gs)] = 0. Of the two remaining terms, let us first consider
E[A(f)B(91)B(g2)B(gs)], which is the most difficult to estimate. We substitute
the Fourier expansion and use linearity of expectation to obtain

Z AuBp,Bs,BaEt g g as [Xe(F)xp:(00) X5, (92) x55(03)] - (28)
a,B1,B8283

Any term with 8, # B3 has expected value 0. This follows, by Lemma 2.29, since
if y € B2ABs, thengo(y) (or gs(y) if y € B3) fulfills the conditions of that lemma.
Thus, we can assume thét = g3 = B when studying the remaining terms.

If y € B1\8, thengi(y) is independent of all other factors and thus we can
again apply Lemma 2.29. Since elements with different projections dnéve
independent, we need to estimate

Ef.10.0 [1‘[ aW ][] 92()093()’):| (29)

yep1 yep
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and

E 0005 [f(x) I1 gl(y)l'[gz(y)gg(y)}, (30)

yep1 yep

wheres; € B and all elements o project onto a fixed elemenx, of U. We
consider different cases depending@n If g;(y) = —1 for somey e B, the
expected value over the rest is 0 and thus we can concentrate on the case when
g1(y) = 1 for all y € 8. This happens with probability 2! and then (29) is equal

to (— f (x))'# while (30) equalsf (x)(— f (x))'!. This means that (29) equals'?
when|g]| is even and 0 otherwise while (30) equal2~!#! when|g| is odd and 0
otherwise. Repeating this argument fonaih U, we see that the terms are nonzero
only whensm,(8) = «, and hence (28) equals

Y AupBi(-1)1277 Y By, (31)
B B1CB
The inner sum is, using Cauchy—Schwartz inequality, bounded by

1/2 1/2
ma(2) (z#) -+

1B pLEp B1EB
and substituting this into (31), we get the upper bound
D [ A BF2 P2

B

for the absolute value of (28).

Before continuing, let us consid&{ A( f)B(g,) B(gs)]. We can repeat the cal-
culations performed above with the only difference that there is no sy dfe
get the equality

Euwn[A(H)BG)B(G)] = Y Ans B3 (—1)#12741
B

Summing up, for fixedJ, W, andh the probability of acceptance is at most

15 1 .
&t 5; | Aryip)| B2V,

By the assumption of Lemma 6.4, we conclude that

Eu.w.h |:Z | Arsp)| é§2|ﬂ|/2:| >€/2. (32)
B

We are ready to define the strategy of the provers.
_On receivingW andh, Py selects a randorfi with probability proportional to
BZ and then a random € g. Similarly P, selects a random with probability A7
and then a random € «.
By Lemma 2.32, botlw and 8 are always nonempty, and by Lemma 2.84,
always satisfies the selected clauses and thus we need only estimate the probability
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thaty|, = X. This is true with probability at least

Eu.wn [Z A o) Bélﬂrl} :
B

By (15), this is at least

2
(Eu,w,h [Z |Anr(ﬂ)|B§|ﬁ|l/2]> ;
B

and sincex—Y/2 > 27%/2 is true for all integerx we conclude, by (32), that the
verifier in two-prover game accepts with probability at leag2}* and Lemma 6.4
follows. [J

We turn to the more difficult problem of establishing that Max-E3-Sat is nonap-
proximable beyond the random assignment threshold on satisfiable instances.

THEOREM 6.5. Foranye > O, itis NP-hard to distinguish satisfiableECNF
formulas from(7/8 + ¢)-satisfiable B-CNF formulas. Said equivalentiyMax-
E3-Satis nonapproximable beyond the random assignment threshold on satisfiable
instances.

PrRoOOF  While the overall structure of the proof is similar to the previous cases
a number of complications arise. We first describe a test with a parametdy/ 2.

Test 3S(u)

Written proof.  An SWPQ).
Desired property. To check thatitis a correct SWi)(for a given formulap = C; AC, A -+ - ACh,.
Verifier.

1. Chooseu random clausesJ; )i, with uniform probability and for eachchoose, uniformly at
random, a variablg, occurring inC;,. SetU = {Xy,, X,, . .., Xk, }» W to be the set of all variables
occurring in the chosen clauses, dne: A{L,Cj;.

2. Choosef € Fy with the uniform probability.
. Choosey; € Fy with the uniform probability.
4. Choose functiorg, € Fw by for eachy e {—1, 1} independently doing the following. If

f(ylu) = 1, then seti(y) = —ai(y) while if f(yly) = —1 setga(y) = gu(y) with probability
1 — e and otherwisa(y) = —ga(y).

5. Accept unles®\y true( f) = Awhtrue(91) = Awhtrue(d2) = 1.
The intuition of the construction is similar to the intuition for Te§ 4

It is easy to see that we get perfect completeness and we omit the proof of the
below lemma.

w

LEMMA 6.6. The completeness of T&S (u) is 1.
To estimate the soundness, we first write the acceptance criteria as

1- %(1 + Au true( F))(1 4+ Awhtrue(92)) (1 + Awh true(92))- (33)

Fix U, W, andh and defineA = Ay yryue andB = Aw h.true- We expand the product
and estimate the expected value of each term separately. Since bothfpgids (
and (f, go) are pairs of random independent functions and the tables are folded over
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true, the only expected values that might be nonzero are the ones containing both
B(g1) andB(gy). Thus, the expected value of (33) equals

g _ %(E[B(gl)B(gz)] + E[A(f)B(01) B(@2)])- (34)

We consider each term separately. Expandiié(g:)B(g.)] by the Fourier ex-
pansion yields

> BuBsE {H Xﬂl(gl)Xﬂz(QZ)i| . (35)

B1.B2 yep1

By Lemma 2.29, any term witl8; # B8, has expected value 0. Furthermore, the
parts of the product with different projections ortfoare independent. Thus, we
need to study

[ [o:(0)g(y).
y

where ally project onto the same elemeaqtitis not hard to calculate this expected
value to be

S+ (- 299,

wheres is the number of elements the product. For esighis is a number between

1/2 and 1 and decreasing as a functios.dfors small, it is roughly 1— se while

if sis Q(e1), itis a constant tending to 1/2. For odgdit is always between-1/2

and 0 and also here decreasing vgithnd taking a value aroundse for smalls.
For x € m(8), let s, denote the number of elements @pfthat project onto.

Then, by the above reasoning, (35) equals

A 1
> B3 [] (5((—1)& +(1- 26)&)). (36)
B xem(B)

One could have hoped to estimate this sum as a functierteriding to 0 with
€, but unfortunately this is not true in general. To help the reader’s intuition at this
point, let’'s sketch an example illustrating the problems.

Given anye > 0, we defineW and g such that there is a constant> 0,
independent of such that

Ey [ T (5o +a- 26)5*))}

xemn (B)

where the expectation is over a randomc W selected with the induced proba-
bility, i.e., each element in each clause is selected with probabjiy 1

Let W be defined by the tripletsi(3-2, 3i — 1, 3i) fori =1, 2, ..., k+ 1 where
k = [e~1] and let

> C, (37)

p=1%BU N ers, &3,

whereg ; is the assignment giving the valu€l tox; andx; while giving the value
1 to all other variables. Let us analyze (37).
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If U contains 1 or 2, then there will be many (abkyB) x such thas, = 1 and
thus the contribution to (37) is very small from thés$e

Onthe other hand, I chooses 3 from the first triplet, the elements pair up since
nmu(ers) = mu(eys) for all i. We expect that arounck?23 of these pairs project
onto the all 1 assignment while the other, rougk3, pairs project onto distinct
elements due toideing placed intdJ . Thus, in this case

1
I1 (5((—1)& +(1- 26)5«))
xemn(B)

is about

1
é(_l + (1 — 2€)1/3) (1 — 2¢ + 262)/3,

which is a negative value with absolute value bounded from below by an absolute
constant, and this completes our example.

The setg in the above example is of size arowTtd and it turns out that much
larger and much smaller segsare easy to control. This is useful since we can later
varye.

LEMMA 6.7. Thereis a constant & 0 such that whengand g are chosen as
in Test3S (u) we have

|Eu. f.91.0. [(B(91) B(Q2)] | < 36 + Z éﬁ.
B | bet<IBI=(@5-Dee1

The constant c is the constant from Lemén@&below.

PROOF We split the sum (36) into three pieces depending on in which of the
intervals [1 8¢ Y], [8e L, (2672)Y% 1], and [(Z~2)Y 1, o0], | 8] belongs. The
sum over the middle interval need not be estimated since it appears on the right
hand of the estimate in the lemma. For the small sets, we have

LEMMA 6.8.
A 1
> ) BgE[ I1 (E((—l)& +(1—2€)S‘)>:| <.
B | 1Bl<set xen (B)

ProOF. AsBisfolded over true, we can assume thitis odd and hence some
x € 7 (B8) must have an odd value ef. For thisx

1 1
02 S((D> +(1—26)%) = S(=1+ (1 - 25€)) = =S¢ = .
The absolute value of the other factors is bounded from above by one and since
%4 B3 < 1, the lemma follows. [J
The part

> BZE ( I1 (%((—1)& +(1- 26)5'«))> (38)

B | 1B1=(28-)Vee? xexn (B)



Some Optimal Inapproximability Results 837

requires some more work to estimate. In order to study this quantity let us define
s (B) by

§(B) =€) min(s. ).

One may views’ (B) as a generalization dfr (8)| and the key connection to the
product above is given by (40) below. It is important to us to prove $1¢pB) is
likely to be large wherg is large. The key lemma is given below. We postpone the
proof of this lemma to an appendix.

LEMMA 6.9. Supposép| > 1. There is a constant & 0 such that, if the
clauses defining W are disjoint,

1 —c
EU[SE(,S)} < (elB) ™.

where the expected value is taken over a random set U constructed by selecting
one variable from each of the clauses of W. One acceptable value fdy8%s

Since the clauses defining are disjoint with probability 1- O(%), we will
when applying Lemma 6.9, for notational simplicity, ignore this condition. The
way we use Lemma 6.9 is to apply Markov’s inequality to it. Let’s state this variant
for easy reference.

COROLLARY 6.10. Let c be the constant of LemrBed. For a, b > 1 suppose
|B] = (ab)¥e~1. Ifthe clauses defining W are disjoint, then except with probability
a~litis true that §(8) > b. The probility is taken over a random U.

Next we claim that

1 S S
S(C1F + (-2

< exp(%) . (39)

To establish this, we can assume<0s < ¢! and thats is even since other
cases follow from this. We have (& 2¢)° < exp(—2¢s) and settingf (x) =
2expx/2) — (1 + exp(=2x)) we need to prove that(x) > 0 for x € [0, 1].
We havef”(x) = %exp(—x/Z) — 4 exp(=2x) and hencef ”(x) < 0 in the interval
in question and we only have to check the inequality at the end points. We have
f(0O)=0andf(1l)=2exp1/2) — (1 + exp(=2)) > 0.

From (39), it follows that

I1 (%((—1)& +(1- 26)&)> < exp(ﬁ) . (40)

xem(B) 2
Thus, (38) is bounded from above by

> geles(-12)]
B | 1B1=(25-2)VVee1 2
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From Corollary 6.10, it follows that except with probability at mésit is true that
SU(ﬂ) > 28~1. This implies that the expected value of the term corresponding to
Bin (38) is at most{ + exp(3§~ 1))B2 <28 B% where we used Lemma 5.3 with
s=1 andx =4§"1. Summing ovep f|n|shes the proof of Lemma 6.7.

Let’'s now consider

Eu.w.h. t.g.0.l A( ) B(91) B(Q2)] (41)
in more detail.

LEMMA 6.11. If
|Eu.w.h, .0,.0[ A(T)B(91) B(92)]| > 6,

then there is a strategy for;Rand B in the u-parallel two-prover protocol that
makes the verifier of that protocol accept with probability at leg8€/64)+1/c,
Here c is the constant from Lemma 6.9.

PrROOF Fix U, W, andh. We use the Fourier expansion to obtain
Ef,gl,gz[A( f ) B(gl) B(QZ)] = Z Aa éﬁl éﬁz Ef,gl,gz [Xa( f )Xﬁl(gl)Xﬂz(QZ)] .
a,B1,B82

If B1 # B2, then we can apply Lemma 2.29 wighe 81 ApB; to see that the expected
value is 0 and thus we can assupe= S, = 8. Lemma 2.29 also applies to the
casex Z m(B) and thus we assumeC x(8). A calculation shows that

Ef.g.g [Xe(F)x5(0192)]

= 11 (%((—1>3‘—(1—26)S‘)) [1 (%((‘1)5‘“1‘26)&))’

xeaNm(B) xem(B)\«

wheres, = |7 ~1(x) N B]. Let us denote this value by(«, B). The assumption of
the lemma implies

Evwn Y AsBSp(a. B)| = 6. (42)

B.aCm(B)

Before we continue, let us just point out that the strategies of the two provers are
the standard strategies, that B, chooses am with probability A2 and returns a
randomx € «. Similarly, P, chooses a randoi with probability Bf3 and returns
a randomy € B. By Lemma 2.32, botlx and g8 are always nonempty and by
Lemma 2.34y always satisfies the selected clauses and thus we need only estimate
the probability thaty|, = x. This happens with probability at least

EU,W,h[ > Ai%wﬁ] (43)
B.aCm(B)

We need to prove that this is large based on (42) and we proceed to establish the
connection.
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The quantity that muItipIieéf9 in (42) is

12 1/2
S Aple mf( 5 Az) ( 5 p2<ﬁ,a>)

aCr(B) aCn(B) aCn(B)
1/2
~SY(B)
< 2(B, < ex <7€ ) 44
(a;n(:ﬂ)p(ﬁ a)) p(—5 (44)

To see the last inequality in (44), note that the sum equals

1 (G -a2om) + (e sa-a) ). o

xem (B)

The factor corresponding toin (45) is of the forma? + b? where|a| + |b] = 1
and, by (39), maxé|, |b|) < exp( min(1, sc¢)/2), and hence it is bounded by
exp(— min(1, sx¢)/2). Multiplying overx gives the last inequality in (44).

Define Sto be (642)/°¢~* and consider any term witfg| > S. By Corol-
lary 6.10, except with probability/4 we haveS’ (8) > 165-1. We conclude that
such terms in (42) are bounded from above by

e e ool 2]

e B2s
< Enw |:B,23 (Z + eXp(—45l))] < Enw [Tﬁ} :

Thisimplies thatif we discard all termsin (42) with| > S, the remaining expected
value is at leasi/2. Returning to the analysis of (43), we see that it is at least

S Eywn [ > égAﬁ} .
B.aCr(p),1B1<S

Now by the above reasoning we have

52 p
(5) < (Eu,w,h[ Z Bf,Aap(a, ﬁ)})
B.acn(B),181<S

2
B 2
< Buwnh ( > Bf;AxP(“ﬁ))
B.aCm(B).1B1<S

5EU,W,h( 5 égAg)( 5 ézp%a,m)}
L \B.a<n(B).181<S B.aCn(B),|B1<S

< Euwn| Y B,%Aﬁ]
LB.aCn(B).181<S
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where the last inequality follows from
S S B2 pe p) <Y B <1,
B acp B

where we again used the last inequality of (44). We conclude that the verifier in the
two-prover protocol accepts with the given strategies with probability at least

s 2 82 1+1/c
St =) z€¢l =
(2> ”(64) ’
and the proof is complete.[]

We are now in position to prove Theorem 6.5. We describe the appropriate test.
Given a positives < 1/2, we proceed as follows, whereis the constant of
Lemma 6.9.

Test F33(u)

1. Sett = [671], ¢, = § andeg = 8172021 _  fori =2, 3,...,t.
2. Choose arandom 1 < j <t with uniform distribution. Run test 3§u).

From Lemma 6.6, we conclude that we have perfect completeness.
LEMMA 6.12. The completeness of Tes3® (u) is 1.

On the soundness side, we have the crucial lemma below. Using Lemma 6.12 and
Lemma 6.13, we complete the proof of Theorem 6.5 the same way that Theorem 5.4
followed from Lemma 5.1 and Lemma 5.2. We omit the details.

LEMMA 6.13. Ifthe test F3¥u) accepts with probability7+58)/8, then there
is a strategy for Pand B in the u-parallel two-prover protocol that makes the

verifier of that protocol accept with probabiligC¢ "1035™
PROOF  As given by (34), the probability that the verifier accepts is
7 1
8 8 Eu.w.h, f.01.9.l Aw.h.true(d1) Aw, b true(92)]
1

~ 3 Euw.h, f.01.9.l AU true( ) Aw h true(91) Aw,h,true(92)],

wheref, g; andg, are chosen as described in the test. By Lemma 6.7, we have for
fixed W andh,

|Eu. t.91.0.[ Aw.h.true(d1) Aw.h.true(92)) |
1< .
5?;<35+ B ) _15/3)
- B | 8 "<IBI=(28-2)Yce;
1

since the intervals of summations are disjoint. Thus, from the assumption of the
lemma, there must be sonjesuch that

Euw.h, f.01.9.l A true( ) Aw h true(91) Aw, b true(92)] = 6,
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whenf, g;, andg, are chosen as in test 381). For th|SJ we get, by Lemma6.11,
a strategy forP; and P, with success probabllltyo(l 500, Now ¢; = §°0) and
sincej <t = [§71], the lemma follows. (]

Itis not hard to extend Theorem 6.5 to longer clauses.

THEOREM 6.14. For anye > 0 and any k> 4, it is NP-hard to distinguish
satisfiable EK-CNF formulas from at mdst 2 + ¢ satisfiable Ek-CNF formulas.
Said equivalentlyMax-Ek-Sat is nonapproximable beyond the random assignment
threshold on satisfiable instances.

ProoF.  Follows by induction ovek. Change a claus€; to the two clauses
Ci v zandC; v zfor a new variable. If the number of clauses N and the optimal
number of clauses that can be satisfie®i$or the original formula, this creates
an instance with R clauses and optimal valu¢ + O. A small calculation yields
the desired result.[]

Infact, we can do a little bit better. By transforming clauses of length 3 to clauses
of different sizes, we get a slight extension stated below. We omit the straight-
forward proof.

THEOREM 6.15. Consider the CSP where each constraint is a disjunction of
literals of size at leasB. This problem is nonapproximable beyond the random
assignment threshold on satisfiable instances.

We also get a result for Max-E2-Sat, but we only know how to do this through
a reduction.

THEOREM 6.16. For anye > O, it is NP-hard to approximate Max-ESat
within a factor22/21 — .

ProOFR  This follows by a reduction from Max-E3-Lin-2. Justuse the 11-gadget
of Bellare et al. [1998] and Trevisan et al. [2000] and Lemma 5.13.

6.1. IMPLIED RESULTS FOROTHER CSPs.  As in the case of Theorem 5.4, the
constructed PCPs can be used, with only minor modifications, to obtain results
for other CSPs. This time we look at constraints that are more restrictive than
the originally intended constraints. First, we derive a consequence of the proof of
Theorem 6.2.

THEOREM 6.17. Let P be a predicate o# variables such that
P11)c{(1,1,1,1),(1 1 -1, -1),(-1,1,1,-1), (-1, 1, -1, 1)}.

Then, the CSP given by P drvariables is nhonapproximable beyond the random
assignment threshold on satisfiable instances.

PROOF. Thetestis given by 48] exceptthat the final testis replaced by requir-
ing that (AU,true( f ), AW,h,true(gl)’ AW,h,true(QZ)a AW,h,true(g3)) satisfies the prEdicate
P. From the definition ofys, it follows that (f (y|y ), 91(Y), 92(y), gs(y)) never takes
any of the values that falsifi@dand thus this modification does not cause the verifier
to reject a correct proof and we still have perfect completeness.

To analyze the soundness, we write the acceptance criteria as a multilinear ex-
pression iNAy wue( f) and Awntue(0i). We have already established that each
multilinear term has small expected value unless there is a good stratdgjyefiod
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P, in the two prover multiprover game. This is sufficient to prove Theorem 6.17.
We omit the detalils. [J

In the test 3§(u) (and hence F3$, we constructed functions, g; andg, such
that the triples € (y|y), 91(Y), 92(y)) never take the values (1, 1) or (1, —1, —1).
In our original application to Max-E3-Sat, we just needed that (1) was avoided.
If we replace the acceptance criteria by the predicate

OXRX1, X2, X3) = X1 V (X2 @ X3),
we get, by a very similar proof, the following theorem. We omit the details.

THEOREM 6.18. The CSP o variables problem given by the predicate OXR is
nonapproximable beyond the random assignment threshold on satisfiable instances.

7. Set Splitting

The verifier that gives a result for set splitting must be a bit different from previous
verifiers for some basic reasons. First, there is no negation present in set splitting
and hence we cannot fold over true. Second, we cannot have the bipartite situation
when we ask some questionsAg and then some questions A . If this was

the case, a cheating prover could fool the verifier by setfip§f) = 1 for all f

and Aw(g) = —1 for all g. We remedy this situation by taking two different sets

of type W. We first give the simpler version just establishing that E4-Set splitting

is nonapproximable beyond the random assignment threshold. As in the case for
Max-E3-Sat, it is more complicated to get the result for satisfiable instances. This
is established in Theorem 7.6 below.

THEOREM 7.1. For anye > 0O, it is NP-hard to approximate &Set splitting
within a factor8/7 — ¢. Said equivalentlyE4-Set splitting is nonapproximable
beyond the random assignment threshold.

PROOF  We first give the test. Assume< 1/2.
Test SS(u)

Written proof.  An SWPQ).
Desired property. To checkthatitis a correct SWilP(for a given formulap = C; ACo A - -+ ACh,.
Verifier

1. Chooseu variablesx, uniformly at random and s& = {X,, X, - - - , Xq, }. FormW?* by, for
eachx choosing a random claugs that conta|n5<kI and then IettlngN1 be the set of variables
appearing in these clauses amd="Al_ i By a similar and independent procedure produce
W? andh? by choosing clauses;..

2. Choosef e Fy with the uniform probability.

. Chooseg} € Fy1 andg? € Fy2 independently with the uniform probability.

4. Fori = 1,2, choose a functiop' € Fyi by settingu'(y) = 1 with probability 1— ¢ and
ui(y) = —1 otherwise, independently for eaghe {—1, 1} and fori = 1 andi = 2.

5. Setg} = fgiu?, thatis, defing} by for eachy e {(—1. 1", gi(y) = f(ylu)g(y)ui(y).

6. Setg? = — fgZu?, thatis, defineg by for eachy € {—1, 1}"*, g3(y) = — f (ylu)GZ(Y)1(Y).
7. Accept iff Ayt n2(91), Awni(93), Awz.n2(92), and Ayz 2(g3) are not all equal.

w

We have the standard completeness lemma that we, since the situation has
changed somewhat, even prove.
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LEMMA 7.2. The completeness of Test @3 is at leastl — ¢.

PrROOF Assume we have a correct SWi.(Then we have a global satisfying
assignmenk and all subtables are long codes of restrictionx.oAssume that
f(x|y) = 1, then unlesg?(x|y2) = —1, we have thag?(X|w2) # g5(X|w2) that
is equivalent to saying thakwz n2(g2) # Awez.n2(g3). Similarly, if f(x|y) = —1,
unlessu(x|y:) = —1, we haveAw: ni(g}) # Awni(gl). Thus, in either case, we
accept with probability + €. [

For the soundness, we have the corresponding lemma below. Theorem 7.1 follows
from Lemma 7.2 and Lemma 7.3 in similar way to which Theorem 5.4 followed
from Lemma 5.1 and Lemma 5.2. We omit the details]

LEmMmMA 7.3. If Test S§u) accepts with probability7 + §)/8, then there is a
strategy for R and R in the u-parallel two-prover protocol that makes the verifier
of that protocol accept with probabilit®se.

PROOF.  Fix U, W%, hl, W2 andh? and setA = Ayip: andB = Ayzpz. The
expression

1_ 1_16((1+ A(g)(1+ A(g2) (L + B(g2) (1 + B(g2)))

1
— 16((1= Al@))(1 - A(gz)) (1 - B(g) (1 - B(¢3))) (46
is 1 if the test accepts and 0 otherwise. Expanding (46), we get

7 A(g1)B(g]) + Ag3)B(97) + A(g1) B(95) + A(g3)B(g3)

8 8
_ Alg)A(%) +B(9)B(9) + AlG)A(%)B(9)B%) (4
3 .

The expectation of (47) gives the probability that the verifier accepts the proof and
we estimate the expectation of each term separately. All expected values will not
necessarily be small in absolute value, but we only have to worry about each term
taking a negative value of large magnitude and thus we bound the terms from below.
First, we have

LEMMA 7.4. Forl<i, | <2,we have
EWl,Wz’hlyhz,gigf,ul,MZ[A(gil) B(gjz)] > 0.
This is true for any fixed choices of U and f.

PROOF. First, note thatg} and g§ have the same distribution and hence we
only need to consider the case- j = 1. OnceU is fixed, g} andg? are selected
independently with the same distribution and hence the two numi(gry and
B(g?) are also independent and selected with the same distribution. It follows that

Ewl’hl’giiwz,hz’g%[A(gi)B(g%)] = Ewlyhl’gi[A(g%)]z > 0. O

We proceed to handle two more terms.
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LEMMA 7.5. We have Eg 1[A(gi)A(g3)] > O This is true for any fixed
choice of U, W, and h'. The similar statement is true for(8?) B(g3).

PROOF. We replaceA(g]) by the Fourier expansion and then using the lin-
earity of expectation, Lemma 2.27, 2.28, 2.30, and the facttthat andu?! are
independent to obtain

Etg.. [A(G1)A(%)]
= Z AﬂlAazEf,gi,ul [Xﬂll(gi)xaz(g%)]

1,02

= Z AalAazEf,g%,ul [qu(gi)xaz(fgh‘“l)]

1,02

= Z Aoq Aozz Eg} [XalAaz (g%)] Ef [Xﬂz(az)( f )] Eu [Xﬁtz (Ml)] . (48)

o1,02

By Lemma 2.29, ifx; # «a», the first expected value is 0 and unleséx;) = 0 so
is the second. The third expected value is easily seen to be equakt2<)¥! and
thus we get the total result

> AL-2¢), (49)
a|ma()=0

which is clearly positive. The proof of the other part of the lemma s identical except
for notation. [

All that remains is to analyze the “interesting term,” that is,
Efqgiqulqgiuz [A(g%) A(g%) B(gf) B(gg)] :

We replace each factor by its Fourier expansion and use linearity of expectation,
Lemmas 2.27, 2.28, and 2.30 to arrive at

Z Aal A0(2 éﬂl éﬂz E [Xal (g%) ez (g%) XB (g%)xﬂz (gg)]
=D AuAu,By By,
E [ Xow 0 (91) Xrmator) 8a(8) F) Xt () X o0 (92) 4 (—14%)] . (50)
where the sums are ovef, «», 81, andp, and the expectations are taken ovegi,
nt, g2, andu?. Using thatf, g}, andg: are independent, we see, by Lemma 2.29,

that unlessy; = ap, 1 = B2 andm,(a2) = m2(B2) the expected value is 0. Using
this, and the fact tha , [ x. ()] = (1 — 2¢)*!, we see that (50) equals

> RBI-1)FI1 - 2¢)HIA (51)
o, Blma(B)=m2(e)

Note thatro(8) = m»(x) ensures that{1)?! = (—1)*! and thus the result is, as
expected, symmetric i\ and B. Since the terms correspondingst§s) = @ are
positive, we have established that, based on the hypothesis of the lemma,

Aﬁ é%(l _ 26)|Dl\+\ﬂ|

Eu we.ntwz n2 |:
o, Bima(B)=m2(e), 7 (B)#Y

:| > 4. (52)
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The strategies o, and P, in the two prover game are now as follows:

P1 on inputW andh looks atAw , and chooses a with probability A2 and
returns a random € «. The strategy foP; is, givenU, to choose a random set
of clauses givingV andh. This gives a random table and P, chooses a random
B with probability Bg and then returns a randome m,(B). If either of the two
sets is empty, the corresponding prover gives up. Note that, by Lemma 2.34, each
y satisfies the selected clauses and thus we only have to estimate the probability
thaty|, = x. The probability of this is at least

A2@2) -1
EU,Wl,hl,WZ,h2|: A BSla| }

a, Blma(a)=m2(B),m2(B)#0

By Lemma 5.3, withs = 1, |a|™} > 2¢(1 — 2¢)"*! and thus comparing the last
sum to (52), we get that the probability of accepting is at least Zhe proof of

Lemma 7.3 is complete.d

We now turn to the case of satisfiable instances for Set splitting and we want to
establish.

THEOREM 7.6. Foranye > 0,itis NP-hard to distinguish instances fodESet
splitting where all sets can be split from instances where the best partition splits only
afraction7/8 + ¢ of the sets. Said equivalentlydESet splitting is nonapproximable
beyond the random assignment threshold on satisfiable instances.

PrROOF. The proof is, in many respects, very similar to the proof of the cor-
responding result for Max-E3-Sat and in particular we need a parameterized test.
Assumee < 1/2.

TestPSS(u)

Written proof.  An SWP{).
Desired property. To checkthatitis a correct SWi)(for a given formulap = C; AC, A -+ - AC,.
Verifier

1. Chooseu variablesx, uniformly at random and sé&l = {Xy,, X,, - - -, Xk, }. FormW? by for
eachx, choosing a random clauégl that containsq, and then letting/v* be the set of variables
appearing in these clauses, drid=" A1 Gy 1. By a similar and independent procedure, produce
W2 andh? by choosing clauses;..

2. Choosef € Fy with the unn‘orm probability.

. Chooseg} € Fy1 andg? € Fy2 independently with the uniform probability.

4. Defineg} by the following procedure. If (y|y) = —1, then seti(y) = —gi(y) and otherwise
setga(y) = gi(y) with probability 1— ¢ and otherwis@Z(y) = —gi(y).

5. Defineg§ by the following procedure. If (y|y) = 1, then segz(y) = —gZ(y) and otherwise set

g2(y) = g2(y) with probability 1— e and otherwis@2(y) = —g2(y).

6. Accept iff A n1(98), Awani(92), Awznz(93), and Ayz 12(g3) are not all equal.

w

Completeness is straightforward.
LEMMA 7.7. The completeness of Test P&pis 1.

PROOF. Assume we have a correct SWiP(Then we have a global satisfying
assignmenk and all subtables are long codes of restrictiong.df f(x|y) = 1,
then Awz n2(92) # Awz.nz2(g3) and otherwiseAw: pi(9) # Aweni(g3). O

Next we need to analyze the soundness and hence estimate (47).
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LEMMA 7.8. Forl<i,j <2, we have

Ewewe 2.t 3. 2.2 A(G1) B(g7)] = 0
This is true for any fixed choices of U and f.

The proof is the same as that of Lemma 7.4 that depended on the fas(giat
and B(gz) are |dent|cally dlstrlbuted and independent. We omit it.

Next observe thag] and g} in test PSSu) are taken with exactly the same
distribution asg; andg, in test 3S(u). The lemma below should hence not come
as a surprise.

LEMMA 7.9. When ¢ and g are chosen as in test PS8), we have

Eu,rgna [ A(GH A(G)] = —35 — > AL

a | Se~l<|a|<(28—2)l/ce—1
where c is the constant of Lemi®&. The similar statement is true for(82) B(g3).

PROOF. We again prove the statement about t@?r)A(g3), the other part
having an almost identical proof. As observed abolke W?, f, g7, g3) have the
same distribution as the corresponding objects in tesfu3and the only reason
we cannot simply appeal to Lemma 6.7 is that we are not assuming tedblded
over true. The only place in the proof of Lemma 6.7 this fact is used is in the proof
of Lemma 6.8 where we conclude thgtis odd for somex. However, we need
only observe that the terms in the expansion (36) witlsa#lven are positive and
hence can safely be disregarded with the present statement of the lemma.

It remains to estimate the most complicated term

EU,Wl,hl,WZ,hZ, f,g},03.0%2,02 [A(g%) A(g%) B(g%) B(g%)]

The expansion in the first half of (50) is still valid and terms where# o, or
B1 # B2 evaluate to 0 also in this case. Thus, we need to study

Er g on02.2[ Xa (910) x5 (0503) |- (53)

The pairs ¢1, g) and @2, g2) are dependent through. For eachx, lets, be the
number ofy € a with y|y = x andty the number oz € g with zjy = x. A
straightforward calculations shows that (53) equals

I1 (%((—1)*(1 —2ef (1 2e)5x(—1)tx)) . (54)

X

Thus, we want to estimate
Eu.wihiwz 2 [Z A2B2 ]—[ ( (1> (1 — 2e)> + (1 — 26)>(— 1)tx)>} .(55)

To estimate this, we divide the sum into three pieces, depending on the sizes of
andg.
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LEMMA 7.10. If we restrict summation to terms where eitleor 8 is of size
at least(256~2)Y/%~1, where c> 0is the constant from Lemn9, then

Eu.wi.htwe.pe [Z ABIT (%((—1)&(1 —2e)% 4+ (1 — 2&(-1)“))} < 48.
o,pB X

(56)

PROOF. Let us analyze the terms witfi| > (26~2)Y/%¢~1. Note that, by (39),
1
<§«—1P%1—Zd“+&1—2@%04yﬁ)‘

S ( % (20 + 1)> < eXp(w>

and thus

l_[ (%((—1)5“(1 — 26)tx +(1- 26)&(_1)tx))

X

< exp(ﬁ) )

By Corollary 6.10, we know that the probability (over the choic®dthatS’ (8)
is smaller than & ! is bounded by. This implies that the total contribution of all
terms includings is

Eu[BS exp(—S(B))] < (6 + exp(=5~1)B5 < 25B3

and the lemma follows by the linearity of expectation, tEsgﬁ Aﬁ ég =1,anda
similar estimate wheun is large. []

Next, we have

LEMmMA 7.11. If we restrict summation to terms where bettand 8 is of size
at mostse 1, then

Y RBIT] (%((—1)%(1 — 2e)™ 4 (1 - 26)%(—1)&))
o,f X

Z_<5+ 3 Agég), (57)
o, Bl ()N (B)#£9

where the sum on the right-hand side is also avend 8 of size at mos§e 1.

PROOFE  Any term with alls, andty even is positive and any term wigh andty
both nonzero contributes to the sum on the right-hand side of the inequality. Hence,
we only have to bound terms not satisfying either of these properties. Assume
without loss of generality tha, is odd andy is 0. Then

%((—1)&(1 —26)" + (1 —2e)>(—1)) = %((1 —26)> —1),

which, since (1- 2¢)> > 1— 2s,¢, is a number between 0 and. Thus, the terms
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we are interested in gets multiplied by a number of absolute value atsmBistce
s A2B3 = 1, the lemma follows. [J

Now consider the following strategies f& and P,. P, chooses a randoim
with probability A2 and answers with a random € «. P; chooses a random
W andh and then a randong with probablllty 82 and then responds with a
randomx € 7 (B). If either of the two sets is empty, the corresponding prover gives
up. Note that, by Lemma 2.34, eaghsatisfies the selected clauses and thus we
only have to estimate the probability that, = x. This happens with probability

at least
-2 2 A2 B2
8% E|: > AaBﬂ},
o Bl () (B)#0

where the sum is over satsandp of size at mosée . The work done so far can
be summarized as follows:

LEMMA 7.12. Let Acc be the accept probability of V in the u-parallel two-
prover interactive proof with optimalFand B then

Eu wewe hehe 1ot ol o202 [A(gi) A(Q%) B(gf) B(gg)]

> —(55+826_2ACC+ 2EW1,h1|: > AgD. (58)

alSe1<|a|<(25-2)Y/ce-1

PROOF We have seen that the left-hand side equals (55). The terms when the
size of both sets are boundéd=! is bounded, by Lemma 7.11, and the prover
strategy given after the lemma, from below bys + §%¢ ?Acc). The case when
either set is of size at leastd2)Y/°c~ is bounded, by Lemma 7.10, in absolute
value by 4. Flnally, terms withSe ! < |o| < (26~ 2)1/C —1 are bounded in absolute
value, usingd_, B =1, by the sum on the right- hand side of (58), and the same
bound applles to ferms withe—1 <|Bl < (267?)Yee L. O

We are now ready to give the test to prove Theorem 7.6.

Test FSS(u)
1. Sett = [671], €1 = 8§ andeg = §17%/°2" 1 _  fori =2, 3, ... 1.
2. Choose arandom 1 < j <t with uniform distribution. Run test PS%u).
We note that we have perfect completeness.
LEMMA 7.13. The completeness of test E&§ s 1.

For the soundness, we have the crucial lemma below and this proves Theorem 7.6
by the standard argument. We omit the details]

LEMMA 7.14. If the test FSSu) accepts with probabilit{7 + 1125)/8, then
there is a strategy for Pand B in the u-parallel two- proverprotocol that makes
the verifier of that protocol accept with probabiligy ©¢ 1096~
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PROOF. We have by Lemma 7.9 that when andg, are taken as in test F$S
then

1
E[Aw,h(g%) AW,h(g%)] > 1

35 + > A2

t
i=1 o | 8¢ <ol <(26-2) Vet

1

since the summation intervals are disjoint. Using Lemma 7.12 and doing a similar
calculation, we conclude th&[ A(gi) A(g2)B(g2)B(g3)] is at least

—(55 + 8% *Acc+ %) > —(78 + 8% *Aco).
Since the probability of accept is given by the expectation of (47) and the four
remaining terms can be ignored due to Lemma 7.8, we conclude that
7+125 _7+45478 + 8% 2Acc
8 8 ’
from which we conclude thaf\cc > 655—1 and the lemma follows frora; >
5706, O

7.1. IMPLIED RESULTS FOROTHER CSFs.  We first derive some consequences
from the proof of Theorem 7.1.

THEOREM 7.15. Let P be a predicate ofi-1, 1}* such that
{(1,1,1,1), (-1, -1, -1, -1)) € P1(1)

and such that X, y, z, w) = —1for any x vy, z, w satisfying xyzw= —1. Then
the monotone CSP defined by P is nonapproximable beyond the random assign-
ment threshold.

PrROOF. By Theorem 7.1, we can assume tRas not the set-splitting predicate,
and we can, since reordering the inputs does not disturb the theorem, assume that
(1,1, —1, —1) belongs taP~(1). If P rejects at least six inputs, it is easy to check
that we can reorder the inputs so that alsd(—1, 1, 1) belongs toP~(1).

Now consider Test S@u) with the change that the acceptance criteria is given
by P. Then since

Awe e (97) Awe e (93) Awe e () Awzne (95) = —1

unlessu?® or 12 takes the value-1 on the satisfying assignment we see that the
completeness of the test is at least 2¢. We need to analyze the soundness.

As usual, we write the acceptance criteria as a multilinear function. We need some
properties of the multilinear expansion Bfsummarized in the lemma below. Let
Q= (1-P)/2,whichis 1ifP accepts and 0 iP rejects.

LEMMA 7.16. The multilinear expansion of @, vy, z, w) has the following
properties:

(1) The sum of the coefficients of all degfeterms is0.
(2) The sum of the coefficients of the terms xz, xw, yz, and yw is nonpositive.
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(3) The sum of the coefficients of the terms xy and zw is nonpositive.
(4) The sum of the coefficients of all deg@trms is0.
(5) The coefficient of xyzw is negative.

ProOFE We have

1
QX,y,zw) =1~ 16 E (1 + a1X)(1 + o2Y)(1 + a32Z)(1 + caw).
aeP-1(1)

Now (1) follows from the fact that

> Y=o

aeP~1(1) i=1

and similarly (4) the sum of all products of triples also is 0. For (2), we need to
study the quadratic form

—(or1 + ) (a3 + aa),

whichtakesthevalue4on (1 1,1,1)and 1, -1, -1, -1),40on(11, -1, -1)
and (-1, —1, 1, 1) and 0 on the rest of the possible element®ot(1). Clearly,
the sum over the actual elementskf1(1) is nonpositive and (2) follows.

To address (3), we need to study

— (o102 + azaa),

which takes the value-2 on (1, 1,1,1), (-1, -1, -1, -1), (1,1, -1, 1),
and 1,-1,1,1) and 2 0n (1-1,1,-1), (L, -1,-1,1), (-1,1,1,-1), and
(—1,1, —-1,1). By our assumption of® we have at least as many elements in
P~1(1) of the former kind as of the latter and hence this sum of coefficients
is nonpositive.

Flinally, (5) follows from the fact thatwyosaszas=1 for any element in
P~1). O

Let us now return to the analysis of the soundness of the téswB& P is used
as the acceptance predicate. As discussed above, we use the multilinear expansion
of Q and we analyze terms collected into terms of the same types. Since each
Awi i (g'j) has the same distribution independenitahnd |, by (1) of Lemma 7.16,
we see that the expected value of all degree one teriQgife a total contribution
of 0. Similarly, from (4) of the same lemma, we see that the same is true for
degree 3 terms.

From (2) of Lemma7.16, and Lemma 7.4, we see that the mixed terms have a total
contribution that is nonpositive and finally by (3) of Lemma 7.16 and Lemma 7.5
the same can be said about the other terms of degree 2.

Tofinish the proof of Theorem 7.15, we just have to prove that a negative expected
value of large magnitude of the product of all four factors imply a good strategy
for P, and P, in the two-prover protocol, but this was already done in the proof of
Lemma 7.3. O

Note that Theorem 5.6 is a special case of Theorem 7.15 and that the constructed
PCPs are in fact different and thus we have an alternative proof for this theorem.
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Note also that the condition that both{, —1, —1, —1) and (1 1, 1, 1) belong
to P~1(1) is necessary since a monotone CSP that does not reject batH (1)
and 1, —1, —1, —1) can trivially be satisfied by a constant assignment.

Next we turn to studying inapproximability for satisfiable instances. Let’s first
discuss monotone CSPs.

THEOREM 7.17. Let P be a predicate of-1, 1}* such that

(1.1,1,1), (-1, -1, -1, -1)} € P7(1)
C{(1,1,1,1), (11 -1, -1),(-1,-1,1,1), (-1, -1, -1, —1)}.

Then the monotone CSP defined by P is nonapproximable beyond the random
assignment threshold on satisfiable instances.

PROOF. The test we apply is FS@I) with the acceptance criteria thAtshould
hold for the quadrupleAw: n:(91), Awsnt(93), Awznz(92), Awzn2(g3)). It is not
difficult to see that the verifier always accepts a correct proof.

For the soundness, note that aRywe study is covered by Lemma 7.16. The
analysis of each set of terms is done as in the proof of Theorem 7.15.

If we allow negation, we can fold the tables over true and we obtain
THEOREM 7.18. Let P be a predicate of-1, 1}* such that
P’l(l) c{(1,1,11),(4,2,-1,-1),(-1,-1,1,1),(-1, -1, -1, -1)}.

Then the CSP defined by P is nonapproximable beyond the random assignment
threshold on satisfiable instances.

PROOF.  Apply test FS&u) except that tables are folded over true and that the
final acceptance criteriais given By Itis not difficult to check that we have perfect
completeness.

For the soundness, we again study the multilinear expression evaltathuid-
ing over true lets us conclude that all terms excafdi) A(g3), B(g?)B(g3) and
A(gh)A(g2)B(g?)B(g3) have expected value 0. We need just observe that these
three terms appear with negative sign for any of the alidwand the rest of the
proof follows similarly to the proof of Theorem 7.6

8. Results for Other Problems

We use a general method for converting efficient PCPs for NP-problems to lower
bounds for vertex cover and we get

THEOREM 8.1. Foranys > 0, itis NP-hard to approximate vertex cover within
7/6—36.

ProOOF.  This follows from Proposition 11.6 of Bellare et al. [1998] with= 2,
c=1-—¢,ands = 1/2+ ¢ and the fact that our PCP that gave the result for Max-
E3-Lin-2 used two free bits, had completeness & and soundness/2 + €. For
completeness, we sketch the proof.

Start with test E(u). We create a graph (as first done in Feige et al. [1996])
whose nodes are given by accepting views of the verifier. A view is determined by
the random coins flipped by and the bits read in the proof. W flipsr coins, the
total number of nodes is'®?, since the third bit read in the proof is determined
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by the previous two and the fact that the verifier should accept. Draw an edge
between two nodes if they are conflicting in that the two views examine the same
bit but this bit takes different values in the two nodes. An independent set in this
graph corresponds to a written proof and the size of this independent Set is 2
times the probability that the verifier accepts this proof. Thus, when the formula
@ is satisfiable, there is an independent set of sif& 2 ¢) while, when it is not
satisfiable, the size of any independent set is at mMd&y2 + ¢). Since a set of
nodes is a vertex cover iff its complement is an independent set we have vertex
covers of sizes'Z3+¢) and 2(7/2 — €) in the two cases respectively. This implies
that a ((76) — §)-approximation algorithm can, by choosiagufficiently small,

be used to decide an NP-hard questionl

By using the gadgets of Trevisan et al. [2000], the optimal result for Max-E3-
Lin-2 also give improved inapproximability results for a number of other problems.

THEOREM 8.2. For anye > 0, it is NP-hard to approximate undirected Max-
Cut within a factorl7/16 — .

PrROOF. Use the 8-gadget fa@bc = 1 and the 9-gadget f@bc= —1. If there
are more equations of the second type, we complement all the variables. The result
follows from a minor extension of Lemma 5.13.]

THEOREM 8.3. For anye > 0, itis NP-hard to approximate Max-di-Cut within
13/12—e.

PrROOF There is a 6.5-gadget [Trevisan et al. 2000] and we can apply
Lemma 5.13. [J

9. Getting Nonconstarg

There is nothing that prevents us from usirends that are decreasing as functions

of n in our proofs. The acceptance probability of the constructed strategy in the
two-prover protocol would then also decrease witfthis, in its turn, implies that,

to get a contradiction, we would need a valueuahat is increasing witm and

then the PCP would no longer be of polynomial size. If we are willing to assume a
stronger hypothesis than NP P, something can still be achieved.

THEOREM 9.1. Assume NRZ DTIME(2C(canleg legn)y Then there is a con-
stant c> 0 such fore = (log n)~¢, Max-E3-Lin-2 cannot be approximated within
2 — € in polynomial time.

PROOF. Let ¢’ be a constant to be determined. We apply the proof of Theo-
rem 5.4 withe = § = (logn)~° andu = dc log logn for some absolute constant
d chosen such that' < 253, wherec; is the constant from Lemma 3.2. We get that
unlessy is satisfiable, the maximal acceptance probability in the PCP+s§jl/ 2
while if ¢ is satisfiable this acceptance probability of a correct proof is €).
Translating this to a linear system of equations, we get a system in

mu22* 4 puo?"
variables with at most

mu 223u+1nuZ2u
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eqguations such that determining the number of simultaneously satisfiable equations
within a factor

2(1—¢)
1+6

is NP-hard. Note that size of the system s, for a suitably small constdrtunded
by 20(lognloglogn)

Assume that there is an approximation algorithm running in polynomial time
and having performance ratio-2 (logn)®/2. Note that both performance ratio
and running time are with respect to the size of the linear system constructed and
not the originaln used above. IN is the size of the system of linear equations
described above, oy € o(logn)? the hence assumed approximation algorithm
would be able to tell whether the original formula is satisfiable. The running time
would be

=2 — O((logn)°)

NO(l) — 20(Iogn|og|ogn).

The theorem follows. [

The proof of Theorem 6.2 has as good constants at that of Theorem 5.4 and hence
we have

THEOREM 9.2. Assume NRZ DTIME(20(09nlog loa M) Then there is a con-
stant c> 0 such fore = (logn)~¢, satisfiable B-Sat formulas cannot be distin-
guished from those where only a fracti(ib+ ¢)/16 of the clauses can be satisfied
in polynomial time.

We omit the proof since the modifications needed over previous proofs are the
same as those described in the proof of Theorem 9.1.

The situation for Theorem 6.5 is different in that the obtained acceptance prob-
ability in the two-prover game is much smaller as a functioa.of

THEOREM 9.3. Assume NPZ DTIME(20(canloglogan) There is a constant
¢ > Osuch for
__clog log log n
~ loglogn
satisfiable E3-CNF formulas cannot be distinguished fréaCiNF formulas where
only a fraction7/8 + ¢ of the clauses can be satisfied in polynomial time.
Proor Chooseu = cloglogn and

_ C’logloglogn
" loglogn

in FSS(u) for constantk andc’ to be determined. By Lemma 6.13, the success
probability of P, and P, by the defined strategy is 2¢ " 1°95™). The soundness of

the two-prover protocol is{ and hence for ang there is a large enougti, that

makes this smaller than the success-rate of the obtained strategy. Since the size of
the obtained 3SAT formula s, for small enougtC(egniogloan) 5 similar argument

to that given in the proof of Theorem 9.1 establishes the theorém.
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Clearly, we can study the extension to nonconstafur all the problems we
have encountered. Since the proofs are very similar, this is a rather tedious exercise
and we only state the result.
Theorems5.5,5.6,5.9,5.14,5.15,5.16,6.1,6.2,6.14,6.16,6.17,7.1,8.1,8.2,and
8.3. extend along the lines of Theorem 9.1 witk: (logn)~—° and the assumption
that NPZ DTIME(20(egnloglogn)y,
Theorems 6.15, 6.18, 7.6, 7.17, and 7.18 extend along the lines of Theorem 9.3
with € = (¢’ log log logn)(log logn)~! and the same assumption.

10. Concluding Remarks

The technique of using Fourier transforms to analyze PCPs based on the long code
seems very strong (see alsastad [1999]). It does not, however, seem universal
even limited to CSPs. In particular, an open question that remains is to the decide
whether the predicate “nottwo” is nonapproximable beyond the random assignment
threshold on satisfiable instances. This question is a special case of the more general
program of trying to understand exactly which CSPs are nonapproximable beyond
the random assignment threshold. For predicates on three variables the situation is
completely resolved by the paper of Zwick [1998]. The result is that all predicates
implied by a linear constraint are non-approximable beyond the random assignment
threshold (as also proved in Theorem 5.15).

For predicates on four variables, the situation is less clear and apart from the
information in this paper we refer to the paper by Guruswami et al. [1998]. We
have, at this stage, not made an attempt to systematize the information, but this
would clearly be a worthwhile effort.

It seems like predicates on two variables are not nonapproximable beyond the
random assignment threshold. In the Boolean case, this follows from the approx-
imation results obtained by semidefinite programming [Goemans and Williamson
1995]. Over other ranges, less is known, but in the case of linear constrains, non-
trivial approximation is obtained by Andersson et al. [1999].

Appendix

A. Proof of Lemm&.9

Assume without loss of generality thét is generated by clauseS;{i’_; whereC;
contains the variabless_,, X3 _1, andxs. We think of selectind) as a process
where at stagg we decide which variable fror@; to include intoU. We denote
the jth chosen b¥; and thuk; € {3j — 2, 3j — 1, 3j}.

The elements 0B are during this process divided into groups defined by their
values on the variables put intbat a given point. More formally, we |&, where
x € {—1,1}), be the set of elementse g such thaty, = x fori =1,2,...].
Two elements in the same gro@), might eventually turn out to have dn‘ferent
projections ontd) due to the fact that they take different values on later coordinates
being put intoJ.. ' _

For eachGy, we have a weightv(G) defined as follows: As long &3 contains
at leaste ! elements with different projections onto the coordinates that has not
yet been decided whether they will be put ittpwe setW(G¥) = (eds)° wheredy,
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is the number of such different prOJectlons If the number of different prOJectlons is
smaller thare—1, we deflne\N(GX) to be the minimum of 1 ands! wheres! is the

total number of elements (with or without different projectionsfsifi At times in

our calculations, when we are uncertain if a certain groupshaslistinct projec-

tions, we use the latter definition @#(G). This results in a lower weight since the
first definition gives a value that is at least 1 and the second a value that is at most 1.

We study the quantity
-1
(> wien)

xe{—1,1}i
and we prove that
E[F/*F/] < F/ (59)

for eachj. SinceF°® = (¢|8])~¢ andF! = S/(8)~1, the lemma follows from (59).

Let Xl = (F)=1, Our method to prove (59) is to introduce a random variable
Y! that is coupled withX!, such thaty! < X! is always true and furthermore we
establish thaE[(Y! )~ 1|F1] < Fl.

For a stringx of length | letx+ andx~ be the two strings of length+1 obtalned
from concatenating with 1 and—1, respectively. We want to analyW(G N )
andW(G!™) in terms ofW(G).

The eIements oGJ naturally fall into eight classei)xa, wherex € {—1, 1)°
gives the values of a particular element on the varlabdgqa( X3j+2, x3j+3) Once
Kj+1 is chosen it determines which classes fc@il and which formG* L As
an example ifsj» is chosen theiG./" is the union ofD} ,,,,D} 11_1,D>‘( Cin
and D)‘( 111, While GJT is GX\GJ+l Letd, ., be the number distinct projections

in DX «- We have
=K

Obviously

j+1
d)t > maxdJ

X,o?
where the maX|mum ranges over allised to formijl and a similar inequality
holds ford) **

The mterestlng case is wheB) has at least~! different projections since
otherwise

W(GY) < W(G!) + W(G, )

and such groups add at least as muchxid?! as to X). Since, by convexity,
E[1/X] < 1/aimpliesE[1/(X + b)] < 1/(a + b) for a positive random variable
X and positive numberg andb, we can simply ignore these terms.
Suppose, without loss of generality, tr[agt 111 1S the largest of the elght groups.
We have two cases depending on whetjl;{;e_lr11 > e~1. Suppose first that, ,,, >
e~L. For notational simplicity, letl denotecdy and letd’ be the size of the second
Iargest group multiplied by.
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We analyze what happens to the two I_;ilrgest groups. We say that these tV\{O classes
are separated iff one becomes parGiﬂ and the other becomes part @ﬁ,
Define a random variabMg!™ by

— If the two largest classes are not separated, Wen equals max(1(d — 7d")%)
if d < d/8 and max(1(d/8)°), otherwise.

— If the two largest classes are separated, ti‘)!é*riL equals max(l(d — 7d)°) +
W(d") if d’ < d/8, max(1 (d/8)°) + W(d/8), otherwise. Her&V(d’) = d’* for
d’ > 1 andW(d") = d’, otherwise.

In the case Whed)’( 111< €1, we defined” = min(d — 1, d’, 1) and definey, **
as follows:

— If the two largest classes are not separated, Wen equals 1.
— If the two largest classes are separated, et equals 1+ d”.

Finally, we sety i1 = 3" Y{ ™. We claim thatxi*1 > Yi+! and this follows
from

Y < w(GH) + w(GL™). (60)

To see (60) whedX 111> € 1 note that the group to whlcb 11joins has a num-
ber of distinct elements which is at least the maxmumnﬁf ~}d - 7d") and
e~1d’. Furthermore, in the case the two largest classes are separated, the number

of distinct element (and hence also the number of elements) in the group in which
the second largest class ends up is of size at tedst.

Whend, < e, then sinces) ™ + /1 = de~2, if min(sl ™t sl =
thenW(GJ hrweih>1+ min(s, d — 1). Both cases follow from thls fact.
In the first case, we havie= 0 and in the second we use> d'.

We now establish thaE[1/Yi+1|F;] < Fi. Letw, be the value oft, ™ if the
two large groups are not separated aneviet- by be the value if they are separated.
We have

D owy <Y<Y (wy + by), (61)
X X
and since any two classes are separated with probability at |[Eastelalso have
: 1
E[YI*] > ZX: (wx + ébx) . (62)

Since the functionf (z) = 1/z is concave and decreasing the random variable
that satisfies (61) and (62) and which gives the largest vallgbfZ] is the one
which takes the valu@_, wy which probability 23 and the valué _, (wy + by)
with probability /3. We conclude that

EGIE g(wa> %(;mxm))

-1
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Since) _, by < )", wy (in fact, by, < wy for everyx) and
21 1 1 1
—— 4+ = <
3w 3w+b T w+b/5

for any 0< b < w we conclude that

E[Y]H } (wa )l. (63)

Finally, we claim thatvy + by /5 > W(Gi), for anyx. To establish this, let us go
over all possible cases.

If d;,, > et andd’ < 1, then we need to establish

/

d
max(1— (d — 7d)°) + G > d°.

Since the derivative ofv® is bounded byc whenw > 1, this is true provided
c=<1/35.

If d{llx > e tandd’ > 1, then we can assume thdit< d/8 sinced’ > d/8is
equivalent tad’ = d/8. We need to establish

/c

max(1, (d — 7d")°) + % > d°.

To see this note that if (x) = (d — 7x)° + x°/5 — d°® then, assuming & ¢ < 1,
f'(t) < 0 in the entire interval and hence to check tliais nonnegative in the
interval we only have to check this property at the end-points. Cle&(B) = 0

and
d 6 /d\° 6
fl=)==(=) —d°=d°[=-2"%*—-1).
(8) 5(8> (5 )

This last number is nonnegatlve for0c < 1 3 109,(6/5) and hence foc < 1/35.
Finally, whend,,, < ¢, then we need to establish that

4

d
1+ — >d°
+5_

Nowd’ > (d — 1)/7 and since the derivative df is bounded by whend > 1 the
inequality is true as long as< 1/35.
We conclude that (63) is bounded from above by

-1
(ZW(GD> =F.
X
and the proof of the lemma is complete.
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