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Abstract. We prove optimal, up to an arbitraryε >0, inapproximability results for Max-Ek-Sat for
k ≥ 3, maximizing the number of satisfied linear equations in an over-determined system of linear
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1. Introduction

Many natural optimization problems are NP-hard, which implies that they are prob-
ably hard to solve exactly in the worst case. In practice, however, it is sufficient
to get reasonably good solutions for all (or even most) instances. In this paper, we
study the existence of polynomial time approximation algorithms for some of the
basic NP-complete problems. For a maximization problem we say that an algorithm
is aC-approximation algorithm if it, for each instance, produces an solution whose
objective value is at leastOPT/C whereOPT is the global optimum. A similar
definition applies to minimization problems.

A fundamental question is, for a given NP-complete problem, for what value of
C can we hope for a polynomial timeC-approximation algorithm. Posed in this
generality, this is a large research area with many positive and negative results. In
this paper, we concentrate on negative results, that is, results of the form that for
someC> 1 a certain problem cannot be approximated withinC in polynomial time.
These results are invariably based on plausible complexity theoretic assumptions,
the weakest possible being NP6=P since if NP=P, all considered problems can be
solved exactly in polynomial time.

The most basic NP-complete problem is satisfiability of CNF-formulas and prob-
ably the most used variant of this is 3-SAT where each clause contains at most 3
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variables. For simplicity, let us assume that each clause contains exactly three vari-
ables. The optimization variant of this problem is to satisfy as many clauses as
possible. It is not hard to see that a random assignment satisfies each clause with
probability 7/8 and hence if there arem clauses it is not hard (even deterministi-
cally) to find an assignment that satisfies 7m/8 clauses. Since we can never satisfy
more than all the clauses this gives a 8/7-approximation algorithm. This was one
of the first approximation algorithms considered [Johnson 1974] and one of the
main results of this paper is that this is optimal to within an arbitrary additive
constantε >0.

A problem that in many respects is as basic as satisfiability is that of solv-
ing a system of linear equations over a field. If all equations can be satisfied
simultaneously, then a satisfying assignment can be found in polynomial time
by Gaussian elimination. Gaussian elimination is, however, very sensitive to in-
correct equations. In particular, if we are given an over-determined system of
equations, it is not clear how to efficiently find the “best solution”, where we
interpret “best” as satisfying the maximal number of equations. This problem is
NP-complete over the field of two elements since already the special case of hav-
ing equations only of the formxi + xj = 1 is equivalent to Max-Cut. We believe
that as an optimization problem this problem will play a natural and important
role. As with 3-SAT there is an obvious approximation algorithm that just does
as well as assigning random values to the variables. In this case, a random as-
signment satisfies half the equations and thus this yields a 2-approximation algo-
rithm. One of the main results of this paper is to prove that this is, again upto
an arbitraryε >0 and based on NP6=P, the best possible for a polynomial time
approximation algorithm. This is true even if each equation only contains exactly
three variables.

Other results included in this paper are similar results for linear equations
over an arbitrary Abelian group0 and set splitting of sets of size 4. By re-
ductions, we get improved constants for Max-2-Sat, Max-Cut and Max-di-Cut
and Vertex Cover. These reductions are all from the problem of satisfying the
maximal number of equations in a system of linear equations over the field of
two elements.

1.1. SHORT HISTORY AND OUR CONTRIBUTION. The question of proving NP-
hardness of approximation problems was discussed at length already in the book
by Garey and Johnson [1979], but really strong results were not obtained un-
til the connection with multiprover interactive proofs was discovered in the
seminal paper of Feige et al. [1996]. There are a number of variants of mul-
tiprover interactive proofs and the two proof models that we use in this pa-
per are that of two-prover interactive proofs and that of probabilistically check-
able proofs.

The first model was introduced by Ben-Or et al. [1988] and here the ver-
ifier interacts with two provers who cannot communicate with each other.
Probabilistically checkable proofs, which from here on we abbreviatePCPs,
correspond to oracle proof systems studied by Fortnow et al. [1994], and it
was given its current name in the paper by Arora and Safra [1998]. In a
PCP, the verifier does (few) random spot-checks in a (large) written proof.
Note that a two-prover interactive proof can be turned into a PCP simply by
writing down the answers of both provers to all possible questions. The verifier
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would then simply check the answers to the questions it intended to pose.
For a complete account of the history of the entire area we refer to Bellare
et al. [1998], but let us here give a short account of the path leading to the
current results.

The surprising power of multiprover interactive proofs was first established by
Babai et al. [1991a] by showing that multiprover proofs with a polynomial time
verifier could recognize all of NEXPTIME. This was scaled down to give very
efficient verifiers for simpler predicates by Babai et al. [1991b] and the connection
to approximability was discovered by Feige et al. [1996].

To obtain stronger bounds, to weaken assumptions, and to widen the range of
problems for which the methods applied, more efficient proofs were sought. Arora
and Safra [1998] discovered proof composition and were the first to construct PCPs
for NP-hard problems with a verifier that used logarithmic randomness and sub-
logarithmic query complexity.

The first result proving hardness for the problems we are discussing here was
obtained in the fundamental paper by Arora et al. [1998] that establishes the cel-
ebrated PCP-theorem that states that each language in NP has a PCP where the
verifier reads only a constant number of bits and uses a logarithmic number of
random coins. This result implies that there is some constantC> 1 such that Max-
3-Sat cannot be approximated withinC unless NP=P. The first explicit constant
was given by Bellare et al. [1993] and based on a slightly stronger hypothesis they
achieved the constant 94/93. Bellare and Sudan [1994] improved this to 66/65 and
the strongest result prior to our results here is by Bellare et al. [1998] obtaining the
bound 80/77− ε for anyε > 0.

The last two papers [Bellare and Sudan 1994; Bellare et al. 1998], use a similar
approach to ours and let us describe this approach. The starting point is an efficient
multiprover protocol, which in our case and in Bellare et al. [1998] comes naturally
from a combination of the basic PCP by Arora et al. [1998] mentioned above and
the wonderful parallel repetition theorem of Raz [1998]. Bellare and Sudan [1994]
used a different protocol since the theorem by Raz was not known at that point
in time.

The multiprover protocol is turned into a PCP by writing down the answers of
the provers in coded form. The main source of the improvements of Bellare et al.
[1998] was the invention of a new code, the marvelous long code. The long code
of an inputx ∈ {0, 1}u is a string of length 22

u
. The coordinates correspond to all

possible functionsf : {0, 1}u 7→ {0, 1} and the coordinate corresponding tof takes
the valuef (x). It is a very wasteful encoding but ifu is a constant it is of constant
size and it is hence, at least in theory, affordable.

When a multiprover protocol is transformed to a PCP by writing down coded
versions of the prover’s answers the verifier can, if the coding is suitable, per-
form its verification in the multiprover protocol much more efficiently. The free-
dom to code the answers might, however, also help a cheating prover in that it
can write down a string that is not a correct codeword and the verifier has to
make sure that such behavior does not destroy the soundness of the new PCP. This
forced previous verifiers under these circumstances to perform two tasks, to check
to original conditions of the multiprover protocol and to check that the coding
is correct.

We use the same written proof as Bellare et al. [1998] and our improvement comes
from the ability to completely integrate the two tasks of checking acceptance in the
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two-prover protocol with checking that we have a correct coding of the prover’s
answers. We do not really check that the coding is correct in that all we need is that
it is possible, given a written proof for the PCP that convinces the verifier to accept
with high probability, to extract a strategy for the provers in the two-prover game.
Previously, such strategies were extracted by looking at the legitimate codewords
that were close (i.e., agreed for more than half the inputs) to the codewords presented
by the prover. In our case, we extract the strategies by looking at discrete Fourier
transform of these given codewords.

The written proof is the same in most of our tests yielding inapproximability
result for the various problems we study. The acceptance criteria are, however,
specially designed to suit the targeted optimization problem. For example, for the
result for linear equations the verifier decides whether to accept based solely on the
exclusive-or of three bits. This philosophy of designing special purpose PCPs for
each optimization problem was first done on a major scale by Bellare et al. [1998].
It seems like this is required to obtain tight result for the problems discussed in this
paper. This special design might make some of our tests seem awkward but this is
probably inevitable.

For some other problems, most notably clique [H˚astad 1994] (and almost for
its relative chromatic number [Feige and Kilian 1998]), the optimal results are
established by looking at natural parameters of the PCP and in particular by studying
the number of free bits read by the verifier. Informally, assuming that a verifier
always accepts a correct proof of a correct statement, this number is defined as
follows. A bit read in a PCP is not free if, at the time of reading, the verifier
will always reject unless it has a prespecified value. If this is not the case, the bit
is free.

The only problem in our paper that relates in a straightforward way to such natural
parameters of a PCP is vertex cover. A PCP that usesf free bits has completeness
c and soundnesss gives an inapproximability factor of

2 f − s

2 f − c

for vertex cover. Our proof system giving the result for linear equations hasf = 2,
c = 1− ε ands= 1/2+ ε yielding an inapproximability factor arbitrarily close to
7/6. As this is our only use of free bits, we do not define it explicitly but rather refer
to Bellare et al. [1998] for its formal definition as well as a thorough discussion
of the free bit concept and its applications to inapproximability results and to the
theory of PCPs in general.

1.2. SUMMARY OF RESULTS. For easy reference, we state most of our results
in tabular form. We also compare to the best previous lower bounds as well as the
performance ratio of the best polynomial time approximation algorithms. In most
cases, the previously best result was obtained by Bellare et al. [1998] and for a
detailed account of the earlier history of each problem we refer to this paper. For
formal definitions of the stated problems, we refer to Section 2.2.

The numberδ below has the meaning “a positive but unspecified constant” while
ε can be replaced by any positive constant. The assumption used in all the lower
bounds is P6=NP.
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Upper Prev. best lower Our lower

Constant Source Constant Source

E3-LIN-2 2 folklore 8
7 − ε Note (1) 2− ε

E3-LIN-p p folklore pδ Note (2) p− ε
E3-LIN-0 |0| folklore – |0| − ε
E2-LIN-2 1.1383 Note (3) – 12

11 − ε
E3-SAT 8

7 Note (4) 80
77 − ε Note (1) 8

7 − ε
E2-SAT 1.0741 Note (5) 220

217 − ε Note (1) 22
21 − ε

E4-Set Splitting 8
7 folklore 1+ δ Note (6) 8

7 − ε
Max-Cut 1.1383 Note (3) 72

71 − ε Note (1) 17
16 − ε

Max-di-Cut 1.164 Note (3) 72
71 − ε Note (1) 12

11 − ε
Vertex cover 2 Note (7) 233

218 − ε Note (1) 7
6 − ε

Notes:
(1) Bellare et al. [1998].
(2) Amaldi and Kann [1995].
(3) Goemans and Williamson [1995].
(4) Johnson [1974].
(5) Feige and Goemans [1995].
(6) Kann et al. [1996].
(7) Garey and Johnson [1979], Bar-Yehuda and Even [1981], and Hochbaum [1983].

Our lower bounds using gadgets (E2-SAT, E2-LIN-2, Max-Cut, Max-di-Cut)
rely on the gadgets produced by Trevisan et al. [2000] and since the prior published
work in some cases depended on worse gadgets the improvements are not only due
to our results.

The 2-approximation algorithm for vertex cover is an unpublished result due to
Gavril that is given in Garey and Johnson [1979]. The case of weighted graphs was
treated by Bar-Yehuda and Even [1981] and Hochbaum [1983].

The inapproximability result for linear systems of equations modp of Amaldi
and Kann [1995] needed arbitrary systems of linear equations modp and hence
did not, strictly speaking, apply to Max-E3-Lin-p.

An outline of the paper is as follows: In Section 2, we introduce notation, give
definitions and state some needed results from earlier papers. Most of our PCPs
use the same written proof and in Section 3 we describe this proof. In Section 4,
we describe tests for being a correct long code. These tests are presented for peda-
gogical reasons but are in Section 5 naturally extended to give the results for linear
equations. In Section 6, we give the results on Max-k-Sat and in Section 7 we give
corresponding results for Set Splitting. We obtain some results for other problems
in Section 8. We finally briefly discuss how to make our arbitrary constants be
functions of the input-length in Section 9 and end by some concluding remarks.

This is the complete version of the results announced in H˚astad [1997].

2. Notation and Some Essential Previous Results

In this section, we give basic notation and collect the needed results from earlier
papers.
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2.1. BASIC NOTATION. All logarithms in this paper are to the base 2. We use
vertical bars| · | to denote the size of an object. For a real or complex number, it
is the absolute value; for strings, it is the length; and for sets, the size. We use the
notationα1β for two setsα andβ to denote the symmetric difference, that is, the
elements that appear in exactly one of the setsα andβ. The notationα \ β denotes
the elements inα but not inβ.

In sums and products, we always indicate the variable over which the sum/product
is taken. Sometimes, however, we do not explicitly give the range. This happens
when this range is considered obvious and it is usually the case that we are summing
over all objects of the given kind. An empty sum is taken to be 0 and an empty
product takes the value 1. The expected value of a variableX is denoted byE f [X]
assuming we are taking the expected value over a randomf . We do not give the
distribution of this f , which is supposed to be clear from the context.

For most of the paper, we work with binary-valued objects, but for a number of
reasons it is more convenient for us to work over{−1, 1} rather than the standard
{0, 1}. We let−1 correspond to true and our most important Boolean operation
is exclusive-or, which is in our notation the same as multiplication. We also need
other Boolean operations like∧, which is defined in the usual way using true and
false, and the fact that−1 is short for “true” and 1 is short for “false”. Thus, in
particular,−1∧ 1= 1 and−1∧−1= −1.

We do not distinguish a set of variables and the set of indices of these variables.
For a setU of variables, we let{−1, 1}U be the set of all possible assignments to
these variables and we use{−1, 1}n instead of{−1, 1}[n] . SupposeU ⊆ W, then,
for x ∈ {−1, 1}W, we denote its restriction to the variables occurring inU by x|U .
For a setα ⊆ {−1, 1}W, we defineπU (α) by lettingx ∈ {−1, 1}U belong toπU (α)
if x = y|U for somey ∈ α. We also need a mod 2-projection and we letx ∈ πU

2 (α)
iff α contains and odd number of elementsy such thaty|U = x. When the identity
of the setU is evident from the context the superscript ofπ is omitted.

For a setU , we letFU be the set of all functionsf : {−1, 1}U 7→ {−1, 1}. A
central point in this paper is to study functionsA: FU 7→ {−1, 1}. One particular
type of such functions is given by the long codes of assignments.

2.1 [Bellare et al.1998]. Thelong codeof an assignmentx ∈ {−1, 1}U is the
mappingAx:FU 7→ {−1, 1} whereAx( f )= f (x).

We identify a function with its truth-table and thus a long code is a string of
length 22

|U |
where we use an arbitrary but fixed convention to order the elements

of FU .
A CNF-formula is a formulaϕ of n Boolean variables (xi )n

i=1 given bym clauses
(Cj )m

j=1. A clause contains a number of literals, that is, variables or their negations,
and it is true if at least one of the literals is true. The number of literals in a clause
is the length of the clause.

Definition 2.2. Let e ∈ [0, 1] be a real number. A CNF-formulaϕ with m
clauses ise-satisfiable, iff some assignment satisfiesemclauses and no assignment
satisfies more thanemclauses.

Using the natural extension of this, we say thatϕ is at moste-satisfiable if it is
d-satisfiable for somed ≤ e.
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2.2. PROBLEMS CONSIDERED. Let us give formal definitions of the problems
we consider in this paper.

Definition 2.3. Letk be an integer. ACNF-formulais anEk-CNF-formulaiff
each clause is of length exactlyk.

For a CNF-formulaϕ and an assignmentx let N(ϕ, x) be the number of clauses
of ϕ satisfied byx.

Definition 2.4. Max-Ek-Satis the optimization problem of, given aEk-CNF
formulaϕ, to findx that maximizesN(ϕ, x).

We are also interested in the problem of solving systems of linear equations over
the finite field with 2 elements. Let us denote a typical system of linear equationsL
and, similarly to above, for an assignmentx let N(L , x) be the number of equations
of L satisfied byx.

Definition 2.5. Max-Ek-Lin-2 is the problem of, given a systemL of linear
equations overZ2, with exactlyk variables in each equation, to findx that maximizes
N(L , x).

Definition 2.6. Max-Cut is the problem of given an undirected graphG with
verticesV to find a partitionV1,V2 of V such that the number of edges{u, v} such
that{u, v} ∩ V1 and{u, v} ∩ V2 are both nonempty is maximized.

Definition 2.7. Max-di-Cut is the problem of, given a directed graphG with
verticesV , to find a partitionV1,V2 of V such that the number of directed edges
(u, v) such thatu ∈ V1 andv ∈ V2 is maximized.

Definition 2.8. Vertex Coveris the problem of, given an undirected graphG
with edgesE and verticesV , to find a V1⊆V with |V1| minimal such thatV1
intersects each edge.

Definition 2.9. Ek-Set Splitting.Given a ground setV and a number of sets
Si ⊂ V each of size exactlyk. Find a partitionV1,V2 of V to maximize the number
of i with bothSi ∩ V1 andSi ∩ V2 nonempty.

Note that E2-Set Splitting is exactly Max-Cut and that E3-Set Splitting is very
related to E2-Set Splitting in that the set (x, y, z) is split exactly when two of the
three pairs (x, y), (x, z) and (y, z) are split. Thus, the first really new problem is
E4-Set Splitting.

Several of the above problems are special cases of a general class of problems
calledconstraint satisfaction problems(CSP).

Let k be an integer and letP be a predicate{−1, 1}k 7→ {−1, 1}. An instance
of CSP-P is given by a collection (Ci )m

i=1 of k-tuples of literals. For an assignment
to the variables, a particulark-tuple is satisfied ifP, when applied to values of the
literals, returns−1. For an instanceI and an assignmentx, we let N(I , x, P) be
the number of constraints ofI satisfied byx under the predicateP.

Definition 2.10. Max-CSP-Pis the problem of, given an instanceI , to find the
assignmentx that maximizesN(I , x, P).

It is straightforward to check that Max-Ek-Sat, Max-Ek-Lin, Max-Cut, and Max-
di-Cut are all CPSs for particular predicatesP. We are also interested in cases when
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negation is not allowed. We call suchmonotone CSPand one particular case is given
by Ek-Set Splitting.

A key parameter for a CSP is the number of assignments that satisfy the defining
predicateP.

Definition 2.11. Theweight, w(P, k), of a CSP problem given by a predicate
P onk Boolean variables is defined asp2−k wherep is the number of assignments
in {−1, 1}k that satisfiesP.

The weight of Ek-Max-Lin-2 is 1/2 for anyk, it is 1− 2−k for Ek-Max-Sat, 1/2
for Max-Cut, 1/4 for Max-di-Cut and 1− 21−k for Ek-Set Splitting. We note that
the concept extends in the obvious way to non-Boolean domains.

For each of the above problems, we could think of both finding the numerical
answer (e.g., the size of a certain cut) or the object that gives this answer (e.g.,
the partition giving the numerical answer). The lower bounds we prove apply to the
simpler variant, that is, the variant where the algorithm is supposed to supply the
numerical answer. Since we are proving inapproximability results, this only makes
our results stronger.

Finally, we define what it means toC-approximate an optimization problem.

Definition 2.12. Let O be a maximization problem and letC≥ 1 be a real
number. For an instancex of O letOPT(x) be the optimal value. AC-approximation
algorithm is an algorithm that on each inputx outputs a numberV such that
OPT(x)/C ≤ V ≤ OPT(x).

Definition 2.13. Let O be a minimization problem and letC≥ 1 be a real
number. For an instancex of O letOPT(x) be the optimal value. AC-approximation
algorithm is an algorithm that on each inputx outputs a numberV such that
OPT(x)≤V ≤C ·OPT(x).

Definition 2.14. An efficientC-approximation algorithm is aC-approximation
algorithm that runs in worst-case polynomial time.

The formulation “having performance ratioC” is sometimes used as an alterna-
tive to saying “being aC-approximation algorithm”.

Any Max-CSP-problem has an approximation algorithm with constant perfor-
mance.

THEOREM 2.15. A Max-CSP given by predicateP on k variables admits a
polynomial time approximation algorithm with performance ratiow(P, k)−1.

PROOF. A random assignment satisfies a givenk-tuple with probability
w(P, k). It is not difficult to find an assignment that satisfies this fraction of the given
k-tuples by the method of conditional expected values. We omit the details.

The main point of this paper is to establish that for many CSPs, Theorem 2.15 is
in fact the best possible for a polynomial-time approximation algorithm.

Definition 2.16. A Max-CSP given by predicateP on k variables is
nonapproximable beyond the random assignment thresholdiff, provided that
NP 6=P, for anyε >0, it does not allow a polynomial time approximation algo-
rithm with performance ratiow(P, k)−1− ε.
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Some CSP become easier if you only consider satisfiable instances but some do
not. We formalize also this notion.

Definition 2.17. A Max-CSP given by predicateP onk variables isnonapprox-
imable beyond the random assignment threshold on satisfiable instancesiff, for any
ε > 0 it is NP-hard to distinguish instances where all constraints can be simulta-
neously satisfied from those where only a fractionw(P, k) + ε of the constraints
can be simultaneously satisfied.

2.3. PROOFSYSTEMS. We define proofs systems by the properties of the verifier.
The verifier needs help to verify a statement and we allow a verifier to have

access to one or more oracles. In different variants of proof systems, the notions of
provers and written proofs are discussed. Written proofs are, in fact, identical with
proofs using oracles where reading thei th bit corresponds to asking the oracle the
question “i ?”. Provers, in general, are more powerful than oracles in that they are
allowed to be randomized and history dependent. We discuss these complications
in connection with the definition of two-prover protocols below.

Definition 2.18. Anoracle is a function6∗ 7→ {0, 1}.
A typical verifier Vπ (x, r ) is a probabilistic Turing machines whereπ is the

oracle,x the input andr the (internal) random coins ofV . We say that the verifier
acceptsif it outputs 1 (written asVπ (x, r ) = 1) and otherwise itrejects.

Definition 2.19. Letc ands be real numbers such that 1≥ c > s ≥ 0. A
probabilistic polynomial time Turing machineV is a verifier in aProbabilistically
Checkable Proof(PCP) with soundnesss and completenessc for a languageL iff

—For x ∈ L there exists an oracleπ such that Prr [Vπ (x, r ) = 1] ≥ c.
—For x 6∈ L, for all π Prr [Vπ (x, r ) = 1] ≤ s.

We are interested in a number of properties of the verifier and one property that
is crucial to us is thatV does not use too much randomness.

Definition 2.20. The verifierV useslogarithmic randomnessif there is an
absolute constantc such that on each inputx and proofπ , the length of the random
stringr used byVπ is bounded byc log |x|.

Using logarithmic randomness makes the total number of possible sets of coin
flips for V polynomial in |x| and hence all such sets can be enumerated in
polynomial time.

We also care about the number of bitsV reads from the proof.

Definition 2.21. The verifierV readsc bits in a PCP if, for each outcome of its
random coins and each proofπ , Vπ asks at mostc questions to the oracle.

The surprising power of interactive proofs was first established in the case of
one prover by Lund et al. [1992], and Shamir [1992] and then for many provers
by Babai et al. [1991a]. After the fundamental connection with approximation was
discovered by Feige et al. [1996] the parameters of the proofs improved culminating
in the following result [Arora and Safra 1998; Arora et al. 1998].

THEOREM2.22 [ARORA ET AL. 1998]. There is a universal integer c such that
any language in NP has a PCP with soundness1/2 and completeness1 where V
uses logarithmic randomness and reads at most c bits of the proof.
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Remark2.23 Although the number of bits read is independent of which lan-
guage in NP we are considering, this is not true for the amount of randomness. The
number of random bits isd logn for any languageL, but the constantd depends
on L.

The soundness can be improved by repeating the protocol a constant number of
times. The number of bits can be reduced to 3 but this pushes the soundness towards
1, although it remains a constant below one. Properties described by reading three
bits of the proof can be coded by a 3-CNF formula where the variables correspond
to bits of the proof. The acceptance probability of a proof is then closely related
to the number of clauses satisfied by the corresponding assignment and we obtain
an inapproximability result for Max-3Sat. There is an approximation-preserving
reduction [Papadimitrion and Yannakakis 1991] reducing general 3-CNF formulas
to 3-CNF formulas in which each variable appears a bounded number of times.
It has later been established [Feige 1998] that we can make each variable ap-
pear exactly 5 times even if we require each clause to be of length exactly 3.
These properties ensure that choosing a clause uniformly at random and a vari-
able, uniformly at random, in this clause is the same as choosing a variable uni-
formly at random variable and then, uniformly at random, a clause containing
this variable.

THEOREM2.24 [ARORA ET AL. 1998]. Let L be a language in NP and x be a
string. There is a universal constant c< 1 such that, we can in time polynomial
in |x| construct a E3-CNF formulaϕx,L such that if x∈ L , thenϕx,L is satisfiable
while if x 6∈ L, ϕx,L is at most c-satisfiable. Furthermore, each variable appears
exactly5 times.

We next describe a two-prover one-round interactive proof. The verifier in such
a proof has access to two oracles but has the limitation that it can only ask one
question to each oracle and that both questions have to be produced before either
of them is answered. We do not limit the answer size of the oracles but since the
verifier runs in polynomial time it will not read more than a polynomial number
of bits. We call the two oraclesP1 and P2 and the two questionsq1 andq2. Since
the oracles are only accessed through these questions, we refer to the fact thatV
accepts asV(x, r, P1(q1), P2(q2)) = 1.

Definition 2.25. Letc ands be real numbers such that 1≥ c > s ≥ 0. A
probabilistic polynomial time Turing machineV with two oracles is a verifier in
a two-prover one-round proof systemwith soundnesss and completenessc for a
languageL if on inputx it produces, without interacting with its oracles, two strings
q1 andq2, such that

—For x ∈ L, there are two oraclesP1 and P2 such that Prr [V(x, r, P1(q1),
P2(q2))= 1]≥ c.

—For x 6∈ L, for any two oraclesP1 andP2, Prr [V(x, r, P1(q1), P2(q2))= 1]≤ s.

The questionsq1 andq2 are in both cases the only questionsV asks the oracles.
P1(q1) depends onx, but may not depend onq2 and similarlyP2 is independent
of q1.

It is very convenient to think ofP1 andP2 as two actual dynamic provers rather
than written proofs. They are infinitely powerful and are cooperating. They can
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make any agreement before the interaction withV starts but then they cannot
communicate during the run of the protocol. Thus, it makes sense to askP1 andP2
for the same information in different contexts.

Provers are, in general, allowed to be both history dependent and randomized.
Since we are only considering one-round protocols, there is no history and hence
the question whether the provers are history dependent plays no role. As with
randomization, it is easy1 to see that for anyx, the proversP1 andP2 maximizing
Prr [V(x, r, P1(q1), P2(q2)) = 1] can be made deterministic without decreasing
the acceptance probability. When proving the existence of good strategies for the
provers we will, however, allow ourselves to design probabilistic strategies, which
then can be converted to deterministic strategies yielding ordinary oracles.

In the case of two-prover protocols, we only consider the case of perfect com-
pleteness, that is,c = 1 in the above definition. Given such a one-round protocol
with soundnesss, we can repeat it twice in sequence improving the soundness to
s2. Similarly repeating the protocolu times in sequence gives soundnesssu. This
creates many round protocols and we need our protocols to remain one-round. This
can be done by what has become known as parallel repetition whereV repeats
his random choices to chooseu independent pairs of questions (q(i )

1 ,q
(i )
2 )u

i=1 and
sends (q(i )

1 )u
i=1 to P1 and (q(i )

2 )u
i=1 to P2, all at once.V then receivesu answers from

each prover and accepts if it would have accepted in allu protocols given each
individual answer. The soundness of such a protocol can be greater thansu, but
when the answer size is small, Raz [1998] proved that soundness is exponentially
decreasing withu.

THEOREM2.26 [RAZ 1998]. For all integers d and s< 1, there exists cd,s< 1
such that given a two-prover one-round proof system with soundness s and answer
sizes bounded by d, then for all integers u, the soundness of u protocols run in
parallel is bounded by cud,s.

Since we do not limit the answer size of the provers, they can, of course, misbe-
have by sending long answers that always causeV to reject. Thus, by answer size,
we mean the maximal answer size in any interaction whereV accepts.

2.4. FOURIERTRANSFORMS. Our proofs depend heavily on Fourier analysis of
functions A: FU 7→R whereR is the set of real numbers. We recall some basic
facts. For notational convenience letu denote|U |. The set of basis functions used
to define the Fourier transforms areχα( f )= ∏x∈α f (x) whereα ⊆ {−1, 1}U . The
inner product of two functionsA andB is given by

(A, B) = 2−2u
∑
f ∈FU

A( f )B( f ).

Under this inner product, the basis functions form a complete orthonormal system
and the Fourier coefficients ofA are defined as the inner products with the basis

1 Fix an optimal strategy, which might be randomized, ofP1. Now, for eachq2, P2 can consider
all possibler of V producingq2, computeq1 and then, since the strategy ofP1 is fixed, exactly
calculate the probability thatV would accept for each possible answer.P2 then answers with the
lexicographically first string achieving the maximum. This gives an optimal deterministic strategy for
P2. We can then proceed to makeP1 deterministic by the symmetric approach.
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functionsχα. In other words, for eachα ⊆ {−1, 1}U ,

Âα = (A, χα) = 2−2u
∑

f

A( f )
∏
x∈α

f (x).

We also have the Fourier inversion formula

A( f ) =
∑

α⊆{−1,1}U
Âαχα( f ) =

∑
α⊆{−1,1}U

Âα
∏
x∈α

f (x). (1)

The Fourier coefficients are real numbers and we have Parseval’s identity∑
α

Â2
α = 2−2u

∑
f

A2( f ).

This sum is, in this paper, usually 1 since we mostly studyA with range{−1, 1}.
The reader might be more familiar with the Fourier transform of ordinary func-

tions and hence with the formulas

F̂α = 2−n
∑

x

F(x)
∏
i∈α

xi

and

F(x) =
∑
α⊆[n]

F̂α

∏
i∈α

xi .

Pattern matching tells us that the difference is that{−1, 1}U takes the place of
[n]. The inputs to “ordinary” functions aren bit strings, which can be thought of
as mappings from [n] to {−1, 1}. The inputs to our functions are mappings from
{−1, 1}U to {−1, 1} and this explains the change from [n] to {−1, 1}U .

SupposeA is the long code of an inputx0. By definition, the basis functionχ{x0}
is exactly this long code. Thus, the Fourier transform satisfiesÂ{x0} = 1 while all
the other Fourier coefficients are 0.

A significant part of this paper consists of manipulations of Fourier expansions
and let us state a couple of basic facts for future reference. The proofs of the first
two are straightforward and are left to the reader.

LEMMA 2.27. For any f, g∈FU and α⊆{−1, 1}U , we have χα( f g)=
χα( f )χα(g).

LEMMA 2.28. For any f ∈FU andα, β ⊆{−1, 1}U , we haveχα( f )χβ( f )=
χα1β( f ).

LEMMA 2.29. Let k be an integer and suppose that for each1≤ i ≤ k we have a
random variable fi whose range isFUi and that we are givenαi ⊆{−1, 1}Ui . Sup-
pose that there is an i0 and x0∈ {−1, 1}Ui0 such that x0 ∈ αi0 and that fi0(x0) is ran-
dom with the uniform distribution and independent of fi (x) for all (i, x) 6= (i0, x0)
with x ∈ αi . Then

E

[
k∏

i=1

χαi ( fi )

]
= 0,

where the expectation is taken over a random selection of( fi )k
i=1. In particular,

E[χα( f )] = 0 when f is chosen randomly with the uniform probability andα 6= ∅.
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PROOF. By the independence condition, we have, withα′i =αi for i 6= i0 and
α′i0=αi01{x0},

E

[
k∏

i=1

χαi ( fi )

]
= E

[
fi0(x0)

]
E

[
k∏

i=1

χα′i ( fi )

]
= 0

since the first factor is 0.

In many cases, we haveU ⊆ W and we havef ∈FU that we want to interpret
as a function on{−1, 1}W. We do this by ignoring the coordinates not belonging to
U . We use the same symbolf , but we write f (y|U ) to make the restriction of the
domain explicit. We have the following basic fact.

LEMMA 2.30. Assume U⊂W and f∈FU . Then for anyβ ⊆{−1, 1}W, we
haveχβ( f )=χπU

2 (β)( f ).

PROOF. We use the definition

χβ( f ) =
∏
y∈β

f (y|U ).

The number of times a valuex appears in this product is exactly the number of
y ∈ β such thatπU (y) = x. Since we only care whether the sum is even or odd,
the product equals ∏

x∈πU
2 (β)

f (x)

and this is exactlyχπU
2 (β)( f ).

2.5. FOLDING AND CONDITIONING OF LONG CODES. It is many times conve-
nient to make sure thatA( f ) = −A(− f ) is true for all f . The mechanism to
achieve this was introduced by Bellare et al. [1998] and was called “folding over
1” since 1 was used to denote true. Here, we are folding over−1 but to emphasize
that we are using the same notion we call it “folding over true.”

Definition 2.31. Given a functionA:FU 7→ {−1, 1}. The function Atrue,
folding A over trueis defined by for each pair (f,− f ) selecting one of the two
functions. If f is selected thenAtrue( f ) = A( f ) and Atrue(− f ) = −A( f ). If − f
is selected thenAtrue( f ) = −A(− f ) andAtrue(− f ) = A(− f ).

Note that the definition implies thatAtrue( f ) = −Atrue(− f ) is always true. The
function Atrue depends on the selection function but since this dependence is of no
importance we leave it implicit.

LEMMA 2.32. If B = Atrue, then for allα with B̂α 6= 0,we have that|α| is odd
and in particularα is not empty.

PROOF. By definition:

B̂α = 2−2u
∑

f

B( f )
∏
x∈α

f (x).

SinceB( f ) = −B(− f ) while
∏

x∈α f (x) = ∏
x∈α(− f (x)) when|α| is even the

two terms corresponding tof and− f cancel each other and hence the sum is 0.
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We sometimes know that the inputx for which a given tableA is supposed to be
the long code should satisfyh(x) = −1 (i.e.,h is true) for some functionh. This
was also needed in the paper by Bellare et al. [1998] where they defined “folding
overh” analogously to folding over 1. We need a stronger property which we call
“conditioning uponh.”

Definition 2.33. For functionsA:FU 7→ {−1, 1} andh ∈ FU , we define the
functionAh: FU 7→ {−1, 1}, that we callA conditioned upon hby setting, for each
f , Ah( f ) = A( f ∧ h).

We have the following lemma:

LEMMA 2.34. Let B= Ah where A: FU 7→ {−1, 1} and h∈ FU are arbitrary.
Then, for anyα such that there exists x∈ α with h(x) = 1 we haveB̂α = 0.

PROOF. Let us first note that the conclusion is natural sinceB( f ), by definition,
only depends on the value off at points such thath(x) = −1 and hence these are
the only inputs that should appear in the Fourier expansion. Formally, we use the
definition

B̂α = 2−2u
∑

f

B( f )
∏
x∈α

f (x).

Now suppose there isx0 ∈ α such thath(x0)= 1. Then, for anyf , considerf ′, where
f ′(x0)= − f (x0) while f ′(x) = f (x) for x 6= x0. The set of all functions is divided
into 22u−1

pairs (f, f ′) and sinceB( f )= B( f ′) while
∏

x ∈α f (x)=−∏x∈α f ′(x)
the elements of a pair cancel each other in the above sum and thus the sum evaluates
to 0.

We can apply folding over true and conditioning uponh simultaneously by
defining a pairing of all functions of the type (g∧h). Note that unlessh is identically
true not bothf and− f can be of this form and we pair (g∧h) with ((−g)∧h) and
defineAh,true( f ) as A( f ∧ h) if f ∧ h is chosen in its pair and as−A((− f ) ∧ h)
if (− f ) ∧ h is chosen. It is easy to verify thatAh,true( f ) = −Ah,true(− f ) and that
Ah,true( f ) only depends onf ∧ h.

2.6. EXTENSIONS TOARBITRARY ABELIAN GROUPS. We extend some results
to arbitrary Abelian groups and hence we extend the definitions in the previous
section, which applied to the group with 2 elements, to general Abelian groups.

Let 0 be an Abelian group. By the structure theorem [Judson 1994] of Abelian
groups0 can be represented as a direct product of cyclic groups,0 = Ci1 ×Ci2 ×
Ci3 · · ·Cik . The number of elements,|0|, of 0 is

∏k
l=1 i l . We represent a cyclic

groupCi as thei th roots of unity and an elementγ of 0 is thus ak-tuple of complex
numbers and the group operation is coordinate-wise multiplication.

We also need the dual group0∗ of 0 which is the group of homomorphisms
of 0 into the complex numbers. We need very few properties of the dual group
and we refer to Judson [1974] for a general discussion. For Abelian groups,0∗ is
isomorphic to0 but we choose to represent it as elements ofZi1×Zi1 · · ·Zi k where
the group operation is component-wise addition. Withγ = (γ1,γ2, . . . ,γk) ∈ 0
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andγ∗ = (γ∗1,γ
∗
2, . . . ,γ

∗
k) ∈ 0∗ we letγγ

∗
be the complex number

k∏
i=1

γ
γ∗i
i .

We are here using slightly nonstandard terminology. As defined above the dual
group should really be functions mapping0 to the complex numbersC. An element
of the dual group is given byγ∗ and the associated function, in our notation,
is γ 7→γγ

∗
. We do not here make the distinction betweenγ∗ and the function

it represents.
We letF0U be the set of functionsf : {−1, 1}U 7→ 0 and we have a generalization

of the long code.

Definition 2.35. Thelong0-codeof an assignmentx ∈ {−1, 1}U is the mapping
Ax: F0U 7→ 0 whereAx( f ) = f (x).

We next define the Fourier transform. We study functionA:F0U 7→CwhereC are
the complex numbers. The basis functions are given by functionsα : {−1, 1}U 7→
0∗ and are defined by

χα( f ) =
∏

x∈{−1,1}U
f (x)α(x).

We have the inner product defined by

(A, B) = |0|−2u
∑

f

A( f )B( f ),

whereB( f ) denotes complex conjugation. The basis functions form a complete
orthonormal system and we define the Fourier coefficients by

Âα = (A, χα),

which is inverted by

A( f ) =
∑
α

Âαχα( f ). (2)

The numbersÂα are complex numbers and Parseval’s identity gives,∑
α

|Âα|2 = |0|−2u
∑

f

|A( f )|2 = 1,

if we are working with a function satisfying|A( f )| = 1 for all f .
We have three lemmas extending Lemmas 2.27, 2.28, and Lemma 2.29. The first

two follow in a straightforward way from the definitions.

LEMMA 2.36. For any f, g ∈ F0U andα: {−1, 1}U 7→ 0∗, we haveχα( f g) =
χα( f )χα(g).

LEMMA 2.37. For any f ∈F0U and α, β: {−1, 1}U 7→0∗, we haveχα( f )
χβ( f )=χα+β( f ).
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LEMMA 2.38. Let k be an integer and suppose that for1 ≤ i ≤ k we have
a random variable fi whose range isF0Ui

and we are givenαi : {−1, 1}Ui 7→ 0∗.
Suppose that there is an i0 and x0 ∈ {−1, 1}Ui0 such thatαi0(x0) 6= 0k and that
fi0(x0) is random with the uniform distribution and independent of fi (x) for all
(i, x) 6= (i0, x0) with αi (x) 6= 0k. Then

E

[
k∏

i=1

χαi ( fi )

]
= 0.

In particular for anyα that is not identically0k, we have E[χα( f )] = 0 when f is
chosen uniformly at random.

PROOF. By definition

k∏
i=1

χαi ( fi ) =
k∏

i=1

∏
x∈{−1,1}Ui

fi (x)αi (x).

Now fi0(x0)αi0(x0) appears in this product and is by assumption independent of all
other factors. We need just observe thatEγ [γα] = 0 for γ chosen uniformly in0
andα 6= 0k. This follows sinceγα ranges over a full set of roots of unity.

We have a natural extension ofπU
2 .

Definition 2.39. LetU ⊆ W andβ: {−1, 1}W 7→ 0∗. ThenπU
0 (β) = α where

α(x) =∑y:y|U=x β(y).

We next have the analogue of Lemma 2.30. Also the proof is analogous to and
we omit it.

LEMMA 2.40. Assume U⊂W and f∈F0U . Then, for anyβ: {−1, 1}W 7→0∗
we haveχβ( f )=χπU

0 (β)( f ).

When working with long0-codes, we need to fold over0.

Definition 2.41. Given a functionA:F0U 7→ 0. The functionA0, folding A
over0 is defined by for each set of functions (γ f )γ∈0 selecting one function. If
γ0 f is selected, thenA0(γ f ) = γγ−1

0 A(γ0 f ) for all γ ∈ 0.

A long0-codeA has range0 and since we want to study functions with a range
in C, typically we studyAγ

∗
for someγ∗ ∈ 0∗. Multiplying such a function by the

group elementγ should multiply the result byγγ
∗

and thus the below definition
is natural.

Definition 2.42. Given a functionA:F0U 7→ C andγ∗ ∈ 0∗. The functionA is
γ∗-homogeneousif for each f ∈ F0U andγ ∈ 0 we haveA(γ f ) = γγ∗A( f ).

We have the following consequence of the definitions.

LEMMA 2.43. Given a function A:F0U 7→ 0, andγ∗ ∈ 0∗. Then, if B = A0,
we have that Bγ

∗
is γ∗-homogeneous.

PROOF. From the definition of folding, it follows thatB(γ f ) = γB( f ). The
lemma is now immediate.
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We need the consequence for the Fourier transform.

LEMMA 2.44. Given A:F0U 7→ C, and γ∗ ∈ 0∗ and assume that A isγ∗-
homogeneous. Then, for all α with Âα 6= 0, we have

∑
x α(x) = γ∗. In particular

if γ∗ is nonzero, there is some x withα(x) 6= 0k.

PROOF. Assume that
∑

x α(x) 6= γ∗ and take someγ ∈G withγγ
∗−∑x α(x) 6= 1.

We have

Âα =
∑

f

A( f )χα( f ) =
∑

f

A(γ f )χα(γ f ). (3)

Now using

χα(γ f ) = χα( f )
∏

x

γα(x) = γ
∑

x α(x)χα( f )

and the assumption of beingγ∗-homogeneous we see that the right-hand side of
(3) equals ∑

f

γγ
∗
A( f )γ−

∑
x α(x)χα( f ) = γγ∗−

∑
x α(x) Âα.

We conclude that̂Aα = 0.

The notion of conditioning extends without virtually any changes.

Definition 2.45. From a functionA:F0U 7→ R for any rangeR andh ∈ FU ,
we construct a functionAh, calledA conditioned upon hby for each f , Ah( f ) =
A( f ∧ h). Here f ∧ h is defined by f ∧ h(x) = f (x) when h(x) = −1 and
f ∧ h(x) = 1k otherwise.

We state the corresponding lemma without a proof.

LEMMA 2.46. Let A:F0U 7→ C and h∈ FU be arbitrary and set B= Ah. Then
for anyα such that there exists x withα(x) 6= 0k and h(x) = 1 we haveB̂α = 0.

The computational problem we study is given by systems of linear equations in
the group0. If L is such a system, we letN(L , x) be the number of equations
satisfied byx.

Definition 2.47. Max-Ek-Lin-0 is the problem of given a systemL of linear
equations over an Abelian group0, with exactlyk variables in each equation, find
x that maximizesN(L , x).

3. The Basic Two-Prover Protocol and the Corresponding PCP

To get our inapproximability results, we construct a range of different PCPs. Most
of these PCPs have the same written proof, and only the method to check this proof
is customized to fit the combinatorial problem in mind. In this section, we show
how to construct this written proof by going through a two-prover protocol.

We start with a 3-CNF formulaϕ given by Theorem 2.24. Thus, eitherϕ is
satisfiable or it is at mostc-satisfiable for somec < 1 and it is NP-hard to distinguish
the two cases. We also have the property that each clause is exactly 3 in length and
each variable appears in exactly 5 clauses.
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Basic two-prover protocol

{Input. A 3-CNF formula ,ϕ = C1∧C2∧ · · ·∧Cm, whereCj contains the variablesxaj , xbj andxcj .

Verifier

1. Choosej ∈ [m] andk ∈ {aj , bj , cj } both uniformly at random and sendj to P1 andk to P2.
2. Receive values forxaj , xbj andxcj from P1 and forxk from P2. Accept iff the two values forxk

agree andCj is satisfied.

We have:

LEMMA 3.1. If ϕ is c-satisfiable, then for any P1 and P2, V accepts in the basic
two-prover protocol with probability at most(2+ c)/3.

PROOF. The answers byP2 define an assignmentα0 to all variables. Whenever
V chooses a clause not satisfied byα0, either P1 answers with an unsatisfying
assignment, causingV to reject outright or has at least probability 1/3 of being
caught for not being consistent withP2. Sinceα0 satisfies at most a fractionc of
the clauses the probability ofV rejecting is at least (1− c)/3.

The basic two-prover protocol is good in thatV only asks for the value of four
bits, but it is bad in that the acceptance probability is rather close to 1. We improve
this second parameter by running the protocol in parallel.

u parallel two-prover protocol

Input. A 3-CNF formula ,ϕ = C1 ∧C2 ∧ · · · ∧Cm whereCj contains the variablesxaj , xbj andxcj .
Verifier

1. Fori = 1, 2, . . . ,u, chooseji ∈ [m] andki ∈ {aji , bji , cji } all uniformly at random and indepen-
dently and send (ji )u

i=1 to P1 and (ki )u
i=1 to P2.

2. Receive values forxaji
, xbji

andxcji
from P1 and forxki from P2 for i = 1, 2, . . . ,u. Accept iff

the two values forxki agree andCji is satisfied for all 1≤ i ≤ u.

By applying Theorem 2.26 and Lemma 3.1 and using the honest strategy when
ϕ is satisfiable, we get:

LEMMA 3.2. If ϕ is c-satisfiable, where c< 1, then there is a constant cc < 1
such that for any integer u, the optimal strategy for P1 and P2 causes V to accept
in the u-parallel two-prover protocol with probability at most cu

c . If ϕ is satisfiable,
then V can be made to always accept.

To simplify notation, we denote a set of variables (ki )u
i=1 sent toP2 by U and a

set (xaji
, xbji

, xcji
)u
i=1 sent toP1 by W. Thus, typically, a setU is of sizeu and a set

W is of size 3u.
Now we want to convert thisu-parallel two-prover protocol into a PCP. We write

down for each possible question the long code of the answer. We call this proof,
the Standard Written Proof (SWP).

Definition 3.3. AStandard Written Proofwith parameteru (SWP(u)), contains
for each setV ⊂ [n] of size at most 3u a string of length 22

|V |
, which we interpret

as the table of a functionAV: FV 7→ {−1, 1}.
Definition 3.4. An SWP(u) is acorrect prooffor a formulaϕ of n variables if

there is an assignmentx that satisfiesϕ such thatAV is the long code ofx|V for
anyV of size at most 3u.
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The size of a SWP(u) is aboutn3u223u
and thus, as long asu is a constant, it is of

polynomial size.
When accessing a long code on a set of inputs for which we have some information

(like a set of clauses on these inputs being true), we use conditioning. We use the
notationAV,h rather than (AV )h for the tableAV conditioned uponh. We often fold
the tables over true, yielding a function calledAV,h,true.

The general strategy for proving inapproximability for an optimization problem
is to design a test of SWP(u) that closely mimics the optimization problem.

The standard proof strategy for establishing that such a PCP has small soundness
is to prove that if a specific SWP(u) passes a particular test with high probability
then we can use this proof to create strategies forP1 andP2 to convince the verifier
in u-parallel two-prover protocol to accept with high probability.

Finally, we generalize the notation to deal with long-0-codes.

Definition 3.5. A Standard Written0-Proof with parameteru (SW0 P(u))
contains for each setV ⊂ [n] of size at most 3u a string of length|0|2|V | that
we interpret as the table of a functionAV : F0V 7→ 0. The symbols of the proof
represent elements of0.

Definition 3.6. An SW0 P(u) is acorrect prooffor a formulaϕ of n variables
if there is an assignmentx which satisfiesϕ such thatAV is the long0-code ofx|V
for anyV of size at most 3u.

4. Testing a Long Code

Having collected all the important tools, we are now ready to describe the first
interesting test; namely, to test whether a given functionA:FU 7→ {−1, 1} is a
long code of some inputx. This test has no consequences for the optimization
problems we want to study, and we present it for pedagogical reasons. It is easy to
analyze, given the correct tools, but still gives a nontrivial conclusion.

In most previous code-testing situations [Arora et al. 1998; Arora and Safra 1998;
Bellare et al. 1998] the key parameter that has been analyzed is the distance from
a given word to different code words. This is a natural parameter, but considering
only distances turns out to be too restrictive. We follow the path of H˚astad [1999]
and use a strategy not only based on distances but on the complete Fourier transform
that, for anyA that passes the test with high probability, associates a small set of
inputs. These inputs can later be used as strategies in the underlying two-prover
interactive proof.

Long code test, first attempt

Written proof. A string of length 22
u
, to be thought of as a functionA : FU 7→ {−1, 1}.

Desired property. The functionA should be a long code, that is, there exists anx ∈ {−1, 1}U such
that for all f , A( f ) = f (x).
Verifier

1. Choosef0 and f1 fromFU with the uniform probability.

2. Set f2 = f0 f1, that is, definef2 by for eachx ∈ {−1, 1}U , f2(x) = f0(x) f1(x).

3. Accept iff A( f0)A( f1)A( f2) = 1.
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First note thatV always accepts a correct proof since, ifA is the correct long
code forx0, then

A( f0)A( f1)A( f2) = f0(x0) f1(x0) f2(x0) = f 2
0 (x0) f1(x0)

2 = 1,

and we need to analyze the acceptance probability whenA is not a correct long code.
A randomA is accepted with probability 1/2 and thus this acceptance probability
does not have any implications on the structure ofA. We will establish, however,
that anyA that is accepted with probability (1+ δ)/2 for δ > 0 must have some
special structure.

By definition, A( f0)A( f1)A( f2) is one when the test accepts and negative one
when it fails, and thus under the above assumption

E f0, f1[ A( f0)A( f1)A( f2)] = δ. (4)

We replaceA( fi ) by its Fourier expansion, that is, using (1), and see that (4) equals

E f0, f1

[ ∑
α0,α1,α2

Âα0 Âα1 Âα2χα0( f0)χα1( f1)χα2( f2)

]
. (5)

Using the linearity of expectation, (5) equals∑
α0,α1,α2

Âα0 Âα1 Âα2 E f0, f1

[
χα0( f0)χα1( f1)χα2( f2)

]
. (6)

By the definition of f2, Lemma 2.27, and Lemma 2.28, we have

χα0( f0)χα1( f1)χα2( f2) = χα0( f0)χα1( f1)χα2( f0 f1)
= χα0( f0)χα1( f1)χα2( f0)χα2( f1)
= χα01α2( f0)χα11α2( f1).

Since f0 and f1 are independent, (6) equals∑
α0,α1,α2

Âα0 Âα1 Âα2 E f0

[
χα01α2( f0)

]
E f1

[
χα11α2( f1)

]
. (7)

By Lemma 2.29, we to see that, unlessα0 = α2, we haveE f0[χα01α2( f0)] = 0.
Similarly, unlessα1 = α2, E f1[χα11α2( f1)] = 0. Using these two facts, we see that
(7) simplifies to ∑

α

Â3
α.

Now, since
∑

α Â2
α = 1, we have that∑

α

Â3
α ≤ max

α
Âα
∑
α

Â2
α = max

α
Âα.

We conclude that this maximum is at leastδ. Thus, we have proved that there is at
least oneα such thatÂα ≥ δ and by Parseval’s equality there can be at mostδ−2

suchα. Thus, with anyA that causes the test to accept with high probability, we
can associate a small number of sets but, since each set might be large, we have
failed to find a small set of inputs.

Since the test accepts with probability one, ifA = χα, we cannot do much better
with the current test. In fact, what we have presented is the linearity test of Blum
et al. [1993] and one part of the analysis given in the paper by Bellare et al. [1996].

To make the test closer to a test of the long code, we give up perfect completeness
and allow for a small probability of rejecting a correct long code.
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Long code test, second attempt, parameterized byε

Written proof. A string of length 22
u
, to be thought of as a functionA:FU 7→ {−1, 1}.

Desired property. The functionA should be a long code, that is,A( f ) = f (x) for somex ∈
{−1, 1}U .
Verifier

1. Choosef0 and f1 fromFU with the uniform probability.

2. Choose a functionµ ∈ FU by settingµ(x) = 1 with probability 1− ε andµ(x) = −1 otherwise,
independently for eachx ∈ {−1, 1}U .

3. Set f2 = f0 f1µ, that is, definef2 by for eachx ∈ {−1, 1}U , f2(x) = f0(x) f1(x)µ(x).

4. Accept iff A( f0)A( f1)A( f2) = 1.

This timeV accepts a correct long code for an inputx0 exactly iffµ(x0)= 1 which,
by definition, happens with probability 1− ε. Now, let us analyze the general case.
We again want to calculateE f0, f1,µ[ A( f0)A( f1)A( f2)] and the expansion up to (6)
is still valid and we need to consider

E f0, f1,µ
[
χα0( f0)χα1( f1)χα2( f2)

]
= E f0, f1,µ

[
χα01α2( f0)χα11α2( f1)χα2(µ)

]
, (8)

where we used the definition off2, Lemma 2.27, and Lemma 2.28.
Since f0, f1, andµ are independent, we can use Lemma 2.29 to see that, unless

α0 = α1 = α2, the above expected value is 0. SinceEµ[µ(x)] = 1− 2ε for each
x, andµ(x) are independent for differentx, we have

Eµ
[
χα2(µ)

] = (1− 2ε)|α2|

and thus

E f0, f1,µ [ A( f0)A( f1)A( f2)] =
∑
α

Â3
α(1− 2ε)|α| ≤ max

α
Âα(1− 2ε)|α|,

where the inequality follows from Parseval’s identity.
This time, we can conclude that for someα we haveÂα(1− ε)|α| ≥ δ. Since

this inequality implies that|α| ≤ ε−1 logδ−1, we have identified large Fourier
coefficients that correspond to sets of limited size. This implies that we get the
small set of inputs we were aiming for. These inputs can then be used as strategies
in the two-prover protocol.

5. Linear Equations

We first study the optimization problem Max-E3-Lin-2 and for natural reasons we
want to design a test for SWP(u) that accepts depending only on the exclusive-or
of three bits of the proof. It turns out that we can take the second long code test on
W and simply move one of the three questions to the smaller setU . This allows
us to test consistency at the same time as we are testing that the tables are correct
long codes. The existence of the clauses are handled by using conditioning when
accessing the long code on the setW.

Test Lε2(u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula,ϕ = C1∧C2∧· · ·∧Cm.
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Verifier

1. Chooseu random clauses (Cji )
u
i=1 with uniform probability and for eachi choose, uniformly at

random, a variablexki occurring inCji . SetU = {xk1, xk2, . . . , xku}, W to be the set of all variables
occurring in the chosen clauses, andh = ∧u

i=1Cji .

2. Choosef ∈ FU with the uniform probability.

3. Chooseg1 ∈ FW with the uniform probability.

4. Choose a functionµ ∈ FW by settingµ(y) = 1 with probability 1− ε andµ(y) = −1 otherwise,
independently for eachy ∈ {−1, 1}W.

5. Setg2 = f g1µ, that is, defineg2 by for eachy ∈ {−1, 1}W, g2(y) = f (y|U )g1(y)µ(y).

6. Accept iff AU,true( f )AW,h,true(g1)AW,h,true(g2) = 1.

We need to analyze this test, and it is not difficult to establish a good bound for
the completeness.

LEMMA 5.1. The completeness of Test Lε
2(u) is at least1− ε.

PROOF. Fix a correct SWP(u) obtained from an assignmentx satisfying
ϕ We claim that V accepts unlessµ(x|W)=−1. This follows since for a
correct SWP(u) encoding x, folding over true and conditioning uponh is
of no consequence and henceAU,true( f )= f (x|U ), AW,h,true(g1)= g1(x|W) and
AW,h,true(g2)= g2(x|W)= f (x|U )g1(x|W)µ(x|W) and the claim follows. The prob-
ability thatµ(x|W)=−1 is, by definition,ε and the lemma follows.

The main problem is therefore to establish the soundness and to this end we have.

LEMMA 5.2. For any ε > 0, δ > 0, suppose that the probability that the
verifier of Test Lε2(u) accepts is(1+ δ)/2. Then there is a strategy for P1 and P2 in
the u-parallel two-prover protocol that makes the verifier of that protocol accept
with probability at least4εδ2.

PROOF. Let us first fixU , W, andh and, for notational convenience, we denote
the functionAU,true by A and the functionAW,h,true by B. As in the tests for the
long code, we want to consider

E f,g1,µ[ A( f )B(g1)B(g2)] (9)

since, by the assumption of the lemma,

EU,W,h, f,g1,µ[ AU,true( f )AW,h,true(g1)AW,h,true(g2)] = δ. (10)

We replace each function by its Fourier expansion transforming (9) to

E f,g1,µ

[ ∑
α,β1,β2

Âα B̂β1 B̂β2χα( f )χβ1(g1)χβ2(g2)

]
=

∑
α,β1,β2

Âα B̂β1 B̂β2 E f,g1,µ

[
χα( f )χβ1(g1)χβ2( f g1µ)

]
=

∑
α,β1,β2

Âα B̂β1 B̂β2 E f,g1,µ

[
χα( f )χπ2(β2)( f )χβ1(g1)χβ2(g1)χβ2(µ)

]
=

∑
α,β1,β2

Âα B̂β1 B̂β2 E f
[
χα1π2(β2)( f )

]
Eg1

[
χβ11β2(g1)

]
Eµ
[
χβ2(µ)

]
, (11)
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where we used Lemmas 2.27, 2.28, 2.30, and the fact thatf , g1 andµ are chosen
independently. By Lemma 2.29, unlessβ1 = β2 andα = πU

2 (β) the corresponding
term in (11) equals 0. Finally, since

Eµ[χβ(µ)] = (1− 2ε)|β|

we have reduced (9) to ∑
β

ÂπU
2 (β) B̂

2
β(1− 2ε)|β|. (12)

We want to design strategies forP1 andP2 in the two-prover game. Before doing
this, let’s just summarize the work up to this point by the equality

EU,W,h

[∑
β

Âπ2(β) B̂
2
β(1− 2ε)|β|

]
= δ, (13)

where we for, readability reasons, have dropped the superscript ofπ .
We define randomized strategies forP1 andP2. These can, as discussed earlier,

be converted to optimal deterministic strategies that do at least as well.

—P2, upon receiving the setU , selects a randomα with probability Â2
α and then

returns a randomx ∈ α chosen with the uniform probability.

—P1, upon receivingh andW, selects a randomβ with probability B̂2
β and then

returns a randomy ∈ β.

Note that, by Lemma 2.32, any set selected by either prover is nonempty. Further-
more, by Lemma 2.34, everyy sent byP1 satisfies the selected clauses. Thus, to
analyze the probability that the verifier in the two-prover protocol accepts, we need
only estimate the probability that the answers are consistent, that is, thaty|U = x.

We claim that this probability is at least|β|−1 times the probability that for the
selectedα andβ we haveα = π2(β). This follows since in this case for eachx ∈ α
there is at least oney ∈ β such thaty|U = x. The probability of selecting a specific
pairα andβ is Â2

α B̂2
β and thus the success-rate for a fixed choice ofU , W andh is

at least ∑
β

Â2
π2(β) B̂

2
β |β|−1. (14)

and the overall success-probability is the expected value of this expression with
respect to randomU , W andh. To compare this sum to (13), the following lemma
is useful.

LEMMA 5.3. For x, s> 0, x−s ≥ exp(−sx).

PROOF. Since the inequality for a generals is thesth power of the inequality
for s= 1 we only need to establish the lemma fors = 1. Sincex exp(−x) =
exp(lnx− x), we need to prove that lnx− x ≤ 0 for eachx > 0. This is certainly
true forx ≤ 1 since neither term is positive and, as can be seen from differentiation,
ln x − x is decreasing forx > 1.
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Returning to the main path we see, using Cauchy–Schwartz’ inequality, that

∑
β

Âπ2(β) B̂
2
β |β|−1/2 ≤

(∑
β

Â2
π2(β) B̂

2
β |β|−1

)1/2(∑
β

B̂2
β

)1/2

≤
(∑

β

Â2
π2(β) B̂

2
β |β|−1

)1/2

.

This implies

EU,W,h

[∑
β

Â2
π2(β) B̂

2
β |β|−1

]
≥ EU,W,h

(∑
β

Âπ2(β) B̂
2
β |β|−1/2

)2


≥
(

EU,W,h

[∑
β

ÂπU
2 (β) B̂

2
β |β|−1/2

])2

, (15)

where we have used thatE[X2] ≥ E[X]2.
Now, by Lemma 5.3, withs= 1/2,

(4ε|β|)−1/2 ≥ exp(−2ε|β|) ≥ (1− 2ε)|β|, (16)

where we used exp(−x)≥ 1 − x which is true for allx≥ 0. We conclude that
|β|−1/2 ≥ (4ε)1/2(1− 2ε)|β| and combining this with (15) and (13) we see that

EU,W,h

[∑
β

Â2
πU

2 (β) B̂
2
β |β|−1

]
≥ 4ε

(
EU,W,h

[∑
β

ÂπU
2 (β) B̂

2
β(1− 2ε)|β|

])2

≥ 4εδ2.

As established above this is a lower bound for the probability that the verifier
accepts in theu-parallel two-prover protocol and hence the proof of Lemma 5.2 is
complete.

Armed with the PCP given by TestLε2(u), we can now establish the main theorem
of this section.

THEOREM 5.4. For any ε >0, it is NP-hard to approximate Max-E3-Lin-2
within a factor2− ε. Said equivalently, Max-E3-Lin-2 is nonapproximable be-
yond the random assignment threshold.

PROOF. Setδ to a negative power of two such that

1− δ
(1+ δ)/2 ≥ 2− ε.

Remember also that since we are working of{−1, 1} a linear equation mod 2 has
a left-hand side that is a product of variables and right-hand side that is either
1 or−1.

Let L be an arbitrary language in NP and suppose we are given an inputx and
we are trying to decide whetherx ∈ L. By Theorem 2.24, we can, in polynomial
time, create a E3-CNF formulaϕ with each variable occurring exactly five times
such that ifx ∈ L, thenϕ is satisfiable and ifx 6∈ L, thenϕ is at mostc-satisfiable
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wherec is some definite constant less than 1. Now choose au such that 4δ3 > cu
c

wherecc is the constant from Lemma 3.2 and consider applying testLδ2(u) to ϕ.
For each bitb in a SWP(u) introduce a variablexb. To accept in the test,Lδ2(u)

is equivalent to the condition

bU, f bW,h,g1bW,h,g2 = b′,

wherebU, f , bW,h,g1 andbW,h,g2 are the bits in the proof corresponding toAU,true( f ),
AW,h,true(g1), andAW,h,true(g2), respectively, andb′ is a constant. One might think
that the right-hand side would always be 1, but because of folding over true
the bit corresponding toAU,true( f ) in the proof might actually give the value of
AU,true(− f ). Thus, the value ofb′ depends on our mechanism for folding and, of
course, the identities off , g1, andg2.

Let us now write down a set of linear equations with weights. Write down the
equation

xbU, f xbW,h,g1
xbW,h,g2

= b′,

whereb′ is defined as above. The weight of this equation is the probability that
the verifier in testLδ2(u) chooses the tuple (U,W, h, f, g1, g2). Now each proof
corresponds to an assignment to the variablesxb and the total weight of all satisfied
equations is exactly the probability that this proof is accepted. This implies that if
x ∈ L the maximal weight of simultaneously satisfiable equations is at least 1− δ
while if x 6∈ L, it is in view of Lemma 5.2 and the choice ofu, at most (1+ δ)/2.
The number of different equations is limited by the number of different choices of
the verifierV . There are at mostmu choices forW and onceW is chosen, at most
3u choices forU . GivenU andW the number of choices forf is at most 22

u
and

for g1 andg2 223u
each. Thus, the total number of choices is at most

mu22u+2u+23u+1
,

which is polynomial sinceu is a constant. For each choice it is not difficult to
compute the corresponding weight (given as a rational number). Thus, we can
produce this set of equations in polynomial time.

It follows that any algorithm that can determine the maximal total weight of
simultaneously satisfiable equation within a factor smaller than

1− δ
(1+ δ)/2

can be used to determine whetherx ∈ L and hence this task must be NP-hard. This
proves the theorem if we allow weighted equations.

As is standard, the weights can be eliminated by duplicating each equation a
suitable number of times. We leave the details to the interested reader.

Note that there is a meta reason that we have to introduce the error functionµ
and make our test have nonperfect completeness. If we had perfect completeness,
then the equations produced in the proof of Theorem 5.4 could all be satisfied
simultaneously. However, to decide whether a set of linear equations have a common
solution can be done in polynomial time by Gaussian elimination and thus perfect
completeness would have implied P=NP.

It is not hard to extend the result to more variables in each equation.
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THEOREM 5.5. For anyε > 0, k ≥ 3, it is NP-hard to approximate Max-Ek-
Lin-2 within a factor2− ε. Said equivalently, Max-Ek-Lin-2 is nonapproximable
beyond the random assignment threshold.

PROOF. We have a straightforward reduction from the casek = 3 to arbitrary
k. Given a system of equations with 3 variables in each equation in the variables
(xi )n

i=1. Add the samek−3 new variables (yi )
k−3
i=1 in every equation to make them all

havek variables. Consider any assignment of the variables of this larger system and
consider the same assignment to (xi )n

i=1 in the smaller system. If
∏k−3

i=1 yi = 1, then
it satisfies exactly the same equations while if

∏k−3
i=1 yi = −1 it satisfies exactly

the equations not satisfied in the larger system. Changing everyxi to its negation,
however, now satisfies the equations satisfied in the larger system.

From the above argument, we see that the maximal number of equations satisfied
by the system is preserved and that it is easy to translate a solution of the larger
system to an equally good solution of the smaller system. Thus, we have a correct
reduction from the casek= 3 to the case withk > 3.

Sometimes it is useful to have systems of equations of a special type. Our systems
are very uniform and the only part of the equations we do not control explicitly is the
right-hand side since it is determined by the folding convention. We next establish
that if we have four variables in each equation, then we can have the right-hand
side−1 in all equations. Note that we cannot have right-hand side 1 in all equations
since in this case we can satisfy all equations by giving the value 1 to all variables.
Similarly, we cannot hope to have an odd number of variables in all equations since
in this case giving−1 to all variables satisfies all equations.

THEOREM 5.6. For any ε >0, it is NP-hard to approximate Max-E4-Lin-2
within a factor 2 − ε even in the case when all right-hand sides are equal to
−1. Said equivalently, Max-E4-Lin-2 with right-hand side−1 is nonapproximable
beyond the random assignment threshold.

PROOF. We construct a special purpose PCP. Since we want to control the
right-hand side of the obtained equations,we do not use folding over true.

Test Lε2,−1(u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formulaϕ = C1∧C2∧· · ·∧Cm.
Verifier

1. Chooseu random clauses (Cji )
u
i=1 with uniform probability and for eachi choose, uniformly at

random, a variablexki occurring inCji . SetU = {xk1, xk2, . . . , xku}, W to be the set of all variables
occurring in the chosen clauses, andh = ∧u

i=1Cji .
2. Choosef1 ∈ FU and f2 ∈ FU independently with the uniform probability.
3. Chooseg1 ∈ FW with the uniform probability.
4. Choose a functionµ ∈ FW by settingµ(y) = 1 with probability 1− ε andµ(y) = −1 otherwise,

independently for eachy ∈ {−1, 1}W.
5. Setg2 = − f1 f2g1µ, that is, defineg2 by for eachy ∈ {−1, 1}W, g2(y) = − f1(y|U ) f2(y|U )g1

(y)µ(y).
6. Accept iff AU ( f1)AU ( f2)AW,h(g1)AW,h(g2) = −1.

We have

LEMMA 5.7. The completeness of Test Lε
2,−1(u) is at least1− ε.
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PROOF. It is not difficult to see that the verifier accepts a correct SWP unless
µ(y|W) = −1 wherey is the satisfying assignment defining the proof.

We turn to establishing the soundness ofLε2,−1.

LEMMA 5.8. For anyε > 0, δ > 0, suppose that the probability that the verifier
of Test Lε2,−1(u) accepts is(1+ δ)/2. Then there is a strategy for P1 and P2 in the
u-parallel two-prover protocol that makes the verifier of that protocol accept with
probability at least2εδ.

PROOF. Fix U , W andh and letA= AU and B= AW,h. Since−A( f1)A( f2)
B(g1)B(g2) is one if the test accepts and negative one if it rejects, we want to
analyze

E f1, f2,g1,µ[−A( f1)A( f2)B(g1)B(g2)]. (17)

We replace each term by its Fourier expansion and using the linearity of expectation
and the definition ofg2 we arrive at

−
∑

α1,α2,β1,β2

Âα1 Âα2 B̂β1 B̂β2 E f1, f2,g1,µ

[
χα1( f1)χα2( f2)χβ1(g1)χβ2(− f1 f2g1µ)

]
. (18)

By Lemmas 2.27, 2.28, and 2.30, we see that

χα1( f1)χα2( f2)χβ1(g1)χβ2(− f1 f2g1µ)
= χα11π2(β2)( f1)χα21π2(β2)( f2)χβ11β2(g1)χβ2(−µ).

Since f1, f2, g1, andµ are chosen independently, we can calculate the expected
value of each factor separately. By Lemma 2.29, we see that unlessβ1 = β2 = β
andα1 = α2 = πU

2 (β) the expected value is 0. Finally, since

Eµ[χβ(µ)] = (1− 2ε)|β|,

we have reduced (17) to∑
β

Â2
π2(β) B̂

2
β(−1)|β|+1(1− 2ε)|β|. (19)

The expected value of (19) over randomU , W, andh is, by the assumption of the
lemma,δ. Since we are not folding over true, it might be that the term corresponding
to β = ∅ is nonzero. It is, however, nonpositive and hence dropping this term only
increases the sum and hence by the assumption of the lemma we conclude that∑

β 6= ∅
EU,W,h

[
Â2
π2(β) B̂

2
β(1− 2ε)|β|

] ≥ δ. (20)

Now we define a strategy forP1 andP2. GivenU , P2 choosesα with probability
Â2
α and returns a randomx ∈α while P1 when askedW andh chooses aβ with

probability B̂2
β and returns a randomy∈β. If either α or β is empty, the corre-

sponding prover gives up. Note that, by Lemma 2.34, anyy returned byP1 satisfies
the chosen clauses and reasoning as in the proof of Lemma 5.2 we see that the
success probability of the strategy of the provers is at least

EU,W,h

[∑
β 6= ∅

Â2
π2(β) B̂

2
β |β|−1

]
. (21)
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By Lemma 5.3 withs= 1,

(2ε|β|)−1 ≥ exp (−2ε|β|) ≥ (1− 2ε)|β|.
Comparing with (20) we conclude that the success probability is at least 2δε and
the proof is complete.

Now, Theorem 5.6 follows from Lemma 5.7 and Lemma 5.8 very much as
Theorem 5.4 followed from Lemma 5.1 and Lemma 5.2. Essentially, the only
difference is that since we are not folding over true-all right-hand sides are−1. We
leave the details to the reader.

Theorem 5.6 extends to the case of having exactly 2k variables in each equation
for anyk ≥ 2. If we allow the same variable twice in the same equation, there is
an obvious reduction. If this is not allowed, one can prove the result by modifying
Test Lε2,−1(u) by choosing 2(k − 1) random functionsfi ∈ FU and then making
the obvious changes.h

We next turn to the question of linear equations in a general Abelian group. Note
that a particularly interesting case is that of linear equations modp, but since the
proof in this special case is essentially identical to the case for general Abelian
groups we only give the general case. It might be constructive to think of0 asZp
at the first reading of the proof below.

THEOREM 5.9. For any ε >0 and any Abelian group0, it is NP-hard to ap-
proximate Max-E3-Lin-0 within a factor|0|−ε. Said equivalently,Max-E3-Lin-0
is nonapproximable beyond the random assignment threshold.

PROOF. We use the notation given in Section 2.6. Remember that0 is written
multiplicatively and each element is ak-tuple of complex numbers. The identity is
denoted by 1k.

Test Lε0(u)

Written proof. An SW0P(u).
Desired property. To check that it is a correct SW0P(u) for a given formulaϕ=C1∧C2,∧ · · ·∧Cm.
Verifier

1. Chooseu random clauses (Cji )
u
i=1 with uniform probability and for eachi choose, uniformly at

random, a variablexki occurring inCji .SetU = {xk1, xk2, . . . , xku}, W to be the set of all variables
occurring in the chosen clauses, andh = ∧u

i=1Cji .
2. Choosef ∈ F0U with the uniform probability.
3. Chooseg1 ∈ F0W with the uniform probability.
4. Choose a functionµ ∈ F0W by settingµ(y) = 1k with probability 1− ε and otherwiseµ(y) = γ

whereγ is chosen randomly and uniformly in0. This is done independently for eachy ∈ {−1, 1}W.
5. Setg2 = ( f g1µ)−1, that is, defineg2 by for eachy ∈ {−1, 1}W, g2(y) = ( f (y|U )g1(y)µ(y))−1.
6. Accept iff AU,0( f )AW,h,0(g1)AW,h,0(g2) = 1k.

We leave to the reader to verify that the verifier accepts a correct SWP whenµ
takes the value 1k on the satisfying assignment. From this, we conclude:

LEMMA 5.10. The completeness of Test Lε
0(u) is at least1− ε.

Lemma 5.11 below analyzes the soundness of TestLε0(u). Theorem 5.9 follows
from Lemma 5.10 and Lemma 5.11 in the same way as Theorem 5.4 followed from
Lemma 5.1 and Lemma 5.2. We omit the details.
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LEMMA 5.11. For any ε > 0, δ > 0, suppose that the probability that the
verifier of Test Lε0(u) accepts is(1+ δ)/|0|. Then there is a strategy for P1 and P2
in the u-parallel two-prover protocol that makes the verifier of that protocol accept
with probability at least2δ2ε|0|−2.

PROOF. The test succeeds ifAU,0( f )AW,h,0(g1)AW,h,0(g2) is 1k and fails oth-
erwise. To evaluate the general performance, we want to convert this to a rational
number and we consider∑

γ∗:γ∗∈0∗,γ∗ 6= 0k

(AU,0( f )AW,h,0(g1)AW,h,0(g2))
γ∗,

where0∗ is the dual group of0 written additively.
The reason to study this number is given by the following lemma.

LEMMA 5.12. Supposeγ ∈ G, and consider∑
γ∗:γ∗∈0∗,γ∗ 6= 0k

γγ
∗
.

This is sum is|0| − 1 if γ = 1k and otherwise it is−1.

PROOF. The statement of the lemma is equivalent to the statement that if we
sum over allγ∗ in 0∗, then the sum is|0| and 0 in the two cases, respectively.

The first part of the lemma follows from the fact that each term is 1 and there are
|0| terms. For the other part, take anyj , 1≤ j ≤ k such thatγ j 6= 1. Then, as we
varyγ∗j over all its possible values,γ

γ∗j
j varies over a complete set of roots of unity.

It follows that
∑
γ∗ γ

γ∗ = 0, which, as observed above, implies the lemma.

By Lemma 5.12 and the assumption of Lemma 5.11, we have

EU,W,h, f,g1,µ

 ∑
γ∗ 6= 0k

(AU,0( f )AW,h,0(g1)AW,h,0(g2))
γ∗

 = δ. (22)

Now, fix U , W, h, andγ∗ and setA = Aγ
∗

U,0 andB = Aγ
∗

W,h,0. Let us analyze the
corresponding term in (22) by replacing each function by the Fourier expansion.

E f,g1,µ

[
AU,0( f )AW,h,0(g1)AW,h,0(g2))

γ∗]
= E f,g1,µ

[ ∑
α,β1,β2

Âα B̂β1 B̂β2χα( f )χβ1(g1)χβ2(g2)

]
=

∑
α,β1,β2

Âα B̂β1 B̂β2 E f,g1,µ

[
χα( f )χβ1(g1)χβ2(( f g1µ)−1)

]
=

∑
α,β1,β2

Âα B̂β1 B̂β2 E f
[
χα−π0(β2)( f )

]
Eg1

[
χβ1−β2(g1)

]
Eµ
[
χβ2((µ)−1)

]
.

The first equality is obtained from the Fourier expansion while the second equality
follows from the definition ofg2 and the linearity of expectation. The third in-
equality follows by Lemmas 2.36, 2.37, and 2.40 and the fact thatf , g1, andµ
are independent.
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By Lemma 2.38, one the first two expected values is 0 unlessα = π0(β2) and
β1 = β2. Finally, if we lets(β) denote the number ofy such thatβ(y) 6= 0k, then

E

[∏
y

µ(y)−β(y)

]
= (1− ε)s(β).

Summing up, the term corresponding toγ∗ in (22) equals

EU,W,h

[∑
β

Âπ0(β) B̂
2
β(1− ε)s(β)

]
. (23)

We conclude that the there is aγ∗0 such that the absolute value of (23) is at least
δ|0|−1. Fix the value of thisγ∗0. We are now ready to define the strategies of
the provers.

On receivingW andh, P1 considers the tableB = A
γ∗0
W,h,0, selects aβ with

probability|B̂β |2 and returns a randomy subject toβ(y) 6= 0k.
On receivingU , P2 considers the tableA = A

γ∗0
U,0 and selects anαwith probability

|Âα|2 and returns a randomx subject toα(x) 6= 0k.
Note that by Lemma 2.44 the set of candidates forx andy are always nonempty

and by Lemma 2.46 anyy returned byP1 always satisfies the selected clauses. Thus,
we need only analyze the probability thaty|U = x. This happens with probability
at least

EU,W,h

[∑
β

∣∣Â2
π0(β) B̂

2
β

∣∣s(β)−1

]
.

Using (15), we see that this is bounded from below by(
EU,W,h

[∑
β

∣∣Âπ0(β) B̂
2
β

∣∣ s(β)−1/2

])2

,

and by Lemma 5.3 withs= 1/2,

(2εs(β))−1/2 ≥ exp(−εs(β)) ≥ (1− ε)s(β). (24)

These facts combine with the fact that (23) is at leastδ|0|−1 to show that the
probability of the verifier accepting the given prover strategy is at least 2εδ2|0|−2

and Lemma 5.11 follows.h

Theorem 5.9 can be extended to more variables in each equation yielding similar
results as Theorem 5.5. We omit the details.

It remains to study the case of two variables in each equation. In the mod 2
case, this problem is a generalization of Max-Cut in that if we only allowed equa-
tions of the formxi x j = −1, then it is exactly Max-Cut. Adding equations of the
form xi x j = 1 makes the problem more general, but it does not prevent the use
of semidefinite programming (as in Goemans and Williamson [1995]) to get an
approximation algorithm that performs as well as for Max-Cut. To get an improved
lower bound, we give a reduction from Max-E3-Lin-2, by a construction usually
referred to as a gadget and we proceed as follows:
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Given an equationxyz= c we construct a constant number of equations in two
variables involving the variablesx, y, z and some new auxiliary variables. These
constraints come with weights. It is anα-gadget, iff for anyx, y, z that satisfies
xyz= c one can adjust the auxiliary variables to satisfy constraints of total weight
α while if xyz6= c then the maximum obtainable is exactlyα − 1. For a more
thorough discussion of gadgets we refer to the paper by Trevisan et al. [2000].

We have the following:

LEMMA 5.13. Suppose there is anα-gadget reducing Max-E3-Lin-2 to an op-
timization problem O. Then, unless NP=P, for anyε, O cannot be approximated
within 2α/(2α − 1)− ε in polynomial time.

PROOF. This is Lemma 2.8 of Trevisan et al. [2000] and we only sketch the
proof.

We use the gadget to construct an instance ofO. If the total weight of the Max-E3-
Lin-2 instance is 1, then for any solution that satisfies equations of total weightw,
the corresponding solution of the transformed problem satisfies constraints of total
weightwα+ (1−w)(α−1). Since it is NP-hard to distinguish the two cases when
w= 1− δ andw= 1

2 + δ, if we could determine the optimum of the transformed
problem to a better accuracy than

(1− δ)α + δ(α − 1)

(1/2+ δ)α + (1/2− δ)(α − 1)
,

we would solve an NP-hard problem. Sinceδ was arbitrary, the lemma follows.

Using this, we have

THEOREM 5.14. For any ε > 0, it is NP-hard to approximate Max-E2-Lin-2
within a factor12/11− ε.

PROOF. This follows from a reduction from Max-E3-Lin-2. We use a gad-
get constructed by G. Sorkin (personal communication) using the techniques of
Trevisan [2000]. We start with an equation of the formx1x2x3 = 1. The set of
equations we construct have variables that are best imagined as sitting at the cor-
ners of a three-dimensional cube. For eachα ∈ {0, 1}3, we have a variableyα. For
each edge (α, α′) of the cube, we have the equation

yαyα′ = −1

and for each main diagonal (α, α′′) we have the equation

yαyα′′ = 1.

Since a cube has twelve edges and four main diagonals we get a total of sixteen
equations each of which we give weight 1/2. We letx1 take the place ofy011, x2 the
place ofy101 andx3 the place ofy110. The variabley000 is replaced byz which is
the same variable for all local reductions, while all the other variables are distinct
in the different gadgets. Since negating all variables does not change a solution to
Max-E2-Lin-2, we can assume thatz takes the value 1.

Let us consider an assignment that satisfiesx1x2x3 = 1. Either the variables all
take the value 1 or exactly two take the value−1. In the former case, we assignyα
the value (−1)α1+α2+α3, while in the second case, assumingx1 = 1 the other cases
being symmetric, we assignyα the value (−1)α2+α3. In the first case, we satisfy all
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the “edge equations” while, in the second case, we satisfy eight “edge equations”
and all “diagonal equations,” and thus, in either case, we satisfy twelve equations.
Whenx1x2x3 = −1 an enumeration establishes that it is only possibly to satisfy 10
equations. Thus, we have constructed a 6-gadget and Theorem 5.14 follows from
Lemma 5.13.

5.1. EXTENSIONS TOOTHERCSPS. In this section, we prove that any CSP where
the predicateP is implied by the predicate of linearity inherits non-approximability.
Note that negating one of the inputs toP does not change the corresponding CSP
and hence exchangingxyz= 1 to xyz= −1 below gives an equivalent theorem.

THEOREM 5.15. Let P be a predicate on3 bits such that P(x, y, z) = −1 for
any x, y, z satisfying xyz= 1, then the CSP given by P is nonapproximable beyond
the random assignment threshold.

PROOF. We establish this by using a slight modification ofLε2(u), in that
we change the acceptance criteria to requiring that (AU,true( f ), AW,h,true(g1),
AW,h,true(g2)) satisfiesP. This condition is strictly more generous than that of
Lε2(u) and thus completeness does not decrease and remains at least 1− ε.

Let us look at the soundness. Consider the special case whenP is the predicate
“not one”, that is, it accepts unless exactly one input is true. We later show how to
extend the result to other predicates. The multilinear expression

5− x − y− z+ xy+ xz+ yz+ 3xyz

8
(25)

is one if P(x, y, z) is true and 0 otherwise. Thus, we analyze the expected value
of (25) with x = AU,true( f ), y = AW,h,true(g1) andz= AW,h,true(g2). Folding over
true implies thatE[ AU,true( f )] = 0 for a random functionf and similarly the other
terms of degree one in (25) have expected value 0. The pairs (f, g1) and (f, g2) are
pairs of independent functions and thus

E[ AU,true( f )AW,h,true(gi )] = 0

for i = 1, 2. Finally, since the triplets (f, g1, g2) and (− f, g1,−g2) are equally
likely to be selected by the test

E[ AW,h,true(g1)AW,h,true(g2)] = 0.

This implies that if the test accepts with probability (5+ δ)/8 then

E[ AU,true( f )AW,h,true(g1)AW,h,true(g2)] = δ

3

and we have obtained the basic relation (10) that we, in the proof of Lemma 5.2,
proved implied the existence of successful strategies forP1 and P2. Since any
predicateP can be written as a multilinear function the same analysis applies to all
the predicates mentioned in the lemma.

In our definition of CSP negating an input toP or permuting the inputs does
not change the problem. Thus, in fact, Theorem 5.15 only applies to three essen-
tially different predicates accepting 5, 6, and 7 inputs, respectively. For these three
predicates, Zwick [1998] established Theorem 5.15 by giving reductions from the
inapproximability result for linear equations given in Theorem 5.4. It is curious to
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note that Zwick proved that these are the only predicates on three variables that
give CSPs that are nonapproximable beyond the random assignment threshold.

Theorem 5.15 extends to predicates on an arbitrary number of bits.

THEOREM 5.16. Let P be a predicate on k bits where k≥ 3 such that
P(x1, x2, . . . , xk)=−1 for any(xi )k

i=1 satisfying
∏k

i=1 xi =, 1, then the CSP given
by P is nonapproximable beyond the random assignment threshold.

PROOF. The proof is very similar to the proof given above but since we proved
the inapproximability of linear equations withk variables in each equation by a
reduction we have to design a new PCP. In view of Theorem 5.15, we can clearly
assume thatk ≥ 4. The PCP is as follows.

Test L P,k,ε
2 (u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formulaϕ = C1∧C2∧· · ·∧Cm.
Verifier

1. Chooseu random clauses (Cji )
u
i=1 with uniform probability and for eachi choose, uniformly at

random, a variablexki occurring inCji . SetU = {xk1, xk2, . . . , xku}, W to be the set of all variables
occurring in the chosen clauses, andh = ∧u

i=1Cji .

2. Choose (fi )
k−2
i=1 ∈ FU independently each with the uniform probability.

3. Chooseg1 ∈ FW with the uniform probability.
4. Choose a functionµ ∈ FW by settingµ(y) = 1 with probability 1− ε andµ(y) = −1 otherwise,

independently for eachy ∈ {−1, 1}W.
5. Setg2 = g1µ

∏k−2
i=1 fi .

6. Accept iff the vector (AU,true( fi ))
k−2
i=1 concatenated with (AW,h,true(g1), AW,h,true(g2)) satisfies

P.

Since P is true whenever the product of the input bits is 1, we conclude that
the verifier always accepts the proof whenµ(y|W) = 1 wherey is the assignment
coding a correct SWP(u). Thus the completeness ofL P,k,ε

2 (u) is at least 1− ε.
To analyze the soundness we writeP as a multilinear function. Using an argument

similar to that used in the proof of Theorem 5.15, we see that the only term of a
multilinear expansion that does not have expected value 0 is

E

[
B(g1)B(g2)

k−2∏
i=1

A( fi )

]
.

This is analyzed as in the proof of Lemma 5.2 by the Fourier expansion and the
result is

EU,W,h

[∑
β

Âk−2
π (β) B̂

2
β(1− 2ε)|β|

]
.

The same strategy ofP1 andP2 as in the proof of Lemma 5.2 can now be seen to
make the verifier in the two-prover protocol accept with probability at least 2δε.
We omit the details.

6. Satisfiability Problems

We start with a direct consequence of Theorem 5.4.



Some Optimal Inapproximability Results 831

THEOREM 6.1. For anyε > 0, it is NP-hard to approximate Max-E3-Sat within
a factor8/7− ε. Said equivalently, Max-E3-Sat is nonapproximable beyond the
random assignment threshold.

PROOF. This is a special case of Theorem 5.15, but let us also give the immedi-
ate reduction from Max-E3-Lin-2. An equationxyz= 1 for three literalsx, y, and
z is replaced by the clauses (x∨ y∨ z̄), (x∨ ȳ∨ z), (x̄∨ y∨ z), and (̄x∨ ȳ∨ z̄). An
assignment that satisfies the linear equation satisfies all the clauses while an assign-
ment that does not satisfy the linear equation satisfies three of the four equations.
Thus, we have constructed a 4-gadget and the result follows by Lemma 5.13.

We want to extend Theorem 6.1 to prove that Max-E3-Sat is nonapproximable
beyond the random assignment threshold on satisfiable instances. The proof of this
is rather complicated. To establish that Max-E4-Sat has the same property is more
straightforward and since it presents most of the ideas involved, we present this
theorem first.

THEOREM 6.2. For anyε > 0, it is NP-hard to distinguish satisfiable E4-Sat
formulas from(15/16+ ε)-satisfiable E4-Sat formulas. Said equivalently, Max-
4-Sat is nonapproximable beyond the random assignment threshold on satisfiable
instances.

PROOF. We first define the test.

Test 4S(u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formulaϕ = C1∧C2∧ · · · ∧Cm.
Verifier

1. Chooseu random clauses (Cji )
u
i=1 with uniform probability and for eachi choose, uniformly at

random, a variablexki occurring inCji . SetU = {xk1, xk2, . . . , xku}, W to be the set of all variables
occurring in the chosen clauses, andh = ∧u

i=1Cji .

2. Choosef ∈ FU with the uniform probability.

3. Chooseg1, g2 ∈ FW independently with the uniform probability.

4. Choose functiong3 ∈ FW by for eachy ∈ {−1, 1}W independently doing the following. If
g1(y) = −1, then setg3(y) randomly, while ifg1(y) = 1, setg3(y) = − f (y|U )g2(y).

5. Accept unlessAU,true( f ) = AW,h,true(g1) = AW,h,true(g2) = AW,h,true(g3) = 1.

Before analyzing the test, let’s intuitively discuss its design. Since we want to
obtain a result for E4-Sat, we want to read four bits. The first choice is how to divide
these betweenAU and AW. How to do this is far from obvious and is difficult to
motivate at this point. It turns out that the complications in the proof come from
the correlation that appears among the chosen functions inFW and to make this as
small as possible we choose to read three bits inAW. To get a reduction to Max-
E4-Sat, we need that the acceptance criteria should beAU,true( f )∨ AW,h,true(g1)∨
AW,h,true(g2)∨ AW,h,true(g3). Since we want perfect completeness, we need to make
sure thatf (y|U )∨ g1(y)∨ g2(y)∨ g3(y) is true for anyy. Furthermore, to make a
successful analysis by Fourier transforms, it is important that each function is chosen
with the uniform distribution. The reason for this is that the Fourier coefficients are
averages and thus are most informative when inputs are chosen with the uniform
probability. Giving these considerations, the goal of the design was to make the
functions as independent as possible.
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It is not hard to see that we get perfect completeness and we omit the proof of
the lemma below.

LEMMA 6.3. The completeness of test4S(u) is 1.

The lemma analyzing the soundness is given below. Theorem 6.2 follows from
Lemma 6.3 and Lemma 6.4 in the same way as Theorem 5.4 followed from
Lemma 5.1 and Lemma 5.2. We omit the details.

LEMMA 6.4. If Test4S(u) accepts with probability(15+ ε)/16, then there is a
strategy for P1 and P2 in the u-parallel two-prover protocol that makes the verifier
of that protocol accept with probability at leastε2/4.

PROOF. We have that

1− 1

16
(1+ AU,true( f ))(1+ AW,h,true(g1))

× (1+ AW,h,true(g2))(1+ AW,h,true(g3)) (26)

is 1 if the test accepts and 0 otherwise. This follows since each ofAU,true( f ),
AW,h,true(g1), AW,h,true(g2) andAW,h,true(g3) is either 1 or−1 and unless they are all
1, one factor in the product is 0 and the expression evaluates to 1. If all numbers
are 1, the expression evaluates to 0.

We need to estimate the expected value of (26) which gives the probability of
success. FixU, W, andh and letA = AU,true and B = AW,h,true. We expand the
product in (26) and estimate the expected value of each term separately. The only
terms that can have a nonzero expected value are terms containing bothB(g2) and
B(g3). This follows since the collections (f, g1, g2) and (f, g1, g3) form independent
random variables and, because of folding over true, the expected value of each single
factor is 0. Thus, the expected value of (26) equals

15

16
− 1

16
(E[B(g2)B(g3)] + E[ A( f )B(g2)B(g3)]

+ E[B(g1)B(g2)B(g3)] + E[ A( f )B(g1)B(g2)B(g3)]). (27)

Test 4S(u) is equally likely to produce the set (f, g1, g2, g3) and (− f, g1, g2,−g3)
and since bothA andB are folded over true this implies thatE[B(g2)B(g3)] = 0
and E[B(g1)B(g2)B(g3)] = 0. Of the two remaining terms, let us first consider
E[ A( f )B(g1)B(g2)B(g3)], which is the most difficult to estimate. We substitute
the Fourier expansion and use linearity of expectation to obtain∑

α,β1,β2β3

Âα B̂β1 B̂β2 B̂β3 E f,g1,g2,g3

[
χα( f )χβ1(g1)χβ2(g2)χβ3(g3)

]
. (28)

Any term withβ2 6= β3 has expected value 0. This follows, by Lemma 2.29, since
if y ∈ β21β3, theng2(y) (or g3(y) if y ∈ β3) fulfills the conditions of that lemma.
Thus, we can assume thatβ2 = β3 = β when studying the remaining terms.

If y ∈ β1\β, then g1(y) is independent of all other factors and thus we can
again apply Lemma 2.29. Since elements with different projections ontoU are
independent, we need to estimate

E f,g1,g2,g3

[∏
y∈β1

g1(y)
∏
y∈β

g2(y)g3(y)

]
(29)
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and

E f,g1,g2,g3

[
f (x)

∏
y∈β1

g1(y)
∏
y∈β

g2(y)g3(y)

]
, (30)

whereβ1 ⊆ β and all elements ofβ project onto a fixed element,x, of U . We
consider different cases depending ong1. If g1(y) = −1 for somey ∈ β, the
expected value over the rest is 0 and thus we can concentrate on the case when
g1(y) = 1 for all y ∈ β. This happens with probability 2−|β| and then (29) is equal
to (− f (x))|β| while (30) equalsf (x)(− f (x))|β|. This means that (29) equals 2−|β|
when|β| is even and 0 otherwise while (30) equals−2−|β| when|β| is odd and 0
otherwise. Repeating this argument for allx in U, we see that the terms are nonzero
only whenπ2(β) = α, and hence (28) equals∑

β

Aπ2(β) B̂
2
β(−1)|β|2−|β|

∑
β1⊆β

B̂β1. (31)

The inner sum is, using Cauchy–Schwartz inequality, bounded by∣∣∣∣∣∑
β1⊆β

B̂β1

∣∣∣∣∣ ≤
(∑
β1⊆β

1

)1/2(∑
β1⊆β

B̂2
β1

)1/2

≤ 2|β|/2,

and substituting this into (31), we get the upper bound∑
β

∣∣Aπ2(β)

∣∣B̂2
β2−|β|/2

for the absolute value of (28).
Before continuing, let us considerE[ A( f )B(g2)B(g3)]. We can repeat the cal-

culations performed above with the only difference that there is no sum ofβ1. We
get the equality

EU,W,h[ A( f )B(g2)B(g3)] =
∑
β

Aπ2(β) B̂
2
β(−1)|β|2−|β|.

Summing up, for fixedU , W, andh the probability of acceptance is at most

15

16
+ 1

8

∑
β

∣∣Aπ2(β)

∣∣B̂2
β2−|β|/2.

By the assumption of Lemma 6.4, we conclude that

EU,W,h

[∑
β

∣∣Aπ2(β)

∣∣B̂2
β2−|β|/2

]
≥ ε/2. (32)

We are ready to define the strategy of the provers.
On receivingW andh, P1 selects a randomβ with probability proportional to

B̂2
β and then a randomy ∈ β. Similarly P2 selects a randomα with probability Â2

α

and then a randomx ∈ α.
By Lemma 2.32, bothα andβ are always nonempty, and by Lemma 2.34,y

always satisfies the selected clauses and thus we need only estimate the probability
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that y|U = x. This is true with probability at least

EU,W,h

[∑
β

Â2
π2(β) B̂

2
β |β|−1

]
.

By (15), this is at least(
EU,W,h

[∑
β

∣∣Âπ0(β)

∣∣B2
β |β|−1/2

])2

,

and sincex−1/2 ≥ 2−x/2 is true for all integersx we conclude, by (32), that the
verifier in two-prover game accepts with probability at least (ε/2)2 and Lemma 6.4
follows.

We turn to the more difficult problem of establishing that Max-E3-Sat is nonap-
proximable beyond the random assignment threshold on satisfiable instances.

THEOREM 6.5. For anyε > 0, it is NP-hard to distinguish satisfiable E3-CNF
formulas from(7/8 + ε)-satisfiable E3-CNF formulas. Said equivalently, Max-
E3-Sat is nonapproximable beyond the random assignment threshold on satisfiable
instances.

PROOF. While the overall structure of the proof is similar to the previous cases
a number of complications arise. We first describe a test with a parameterε < 1/2.

Test 3Sε(u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formulaϕ = C1∧C2∧· · ·∧Cm.
Verifier.

1. Chooseu random clauses (Cji )
u
i=1 with uniform probability and for eachi choose, uniformly at

random, a variablexki occurring inCji . SetU = {xk1, xk2, . . . , xku}, W to be the set of all variables
occurring in the chosen clauses, andh = ∧u

i=1Cji .
2. Choosef ∈ FU with the uniform probability.
3. Chooseg1 ∈ FW with the uniform probability.
4. Choose functiong2 ∈ FW by for eachy ∈ {−1, 1}W independently doing the following. If

f (y|U ) = 1, then setg2(y) = −g1(y) while if f (y|U ) = −1 setg2(y) = g1(y) with probability
1− ε and otherwiseg2(y) = −g1(y).

5. Accept unlessAU,true( f ) = AW,h,true(g1) = AW,h,true(g2) = 1.

The intuition of the construction is similar to the intuition for Test 4S.
It is easy to see that we get perfect completeness and we omit the proof of the

below lemma.

LEMMA 6.6. The completeness of Test3Sε(u) is 1.

To estimate the soundness, we first write the acceptance criteria as

1− 1

8
(1+ AU,true( f ))(1+ AW,h,true(g1))(1+ AW,h,true(g2)). (33)

Fix U, W, andh and defineA = AU,true andB = AW,h,true. We expand the product
and estimate the expected value of each term separately. Since both pairs (f, g1)
and (f, g2) are pairs of random independent functions and the tables are folded over
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true, the only expected values that might be nonzero are the ones containing both
B(g1) andB(g2). Thus, the expected value of (33) equals

7

8
− 1

8
(E[B(g1)B(g2)] + E[ A( f )B(g1)B(g2)]). (34)

We consider each term separately. ExpandingE[B(g1)B(g2)] by the Fourier ex-
pansion yields ∑

β1,β2

B̂β1 B̂β2 E

[∏
y∈β1

χβ1(g1)χβ2(g2)

]
. (35)

By Lemma 2.29, any term withβ1 6= β2 has expected value 0. Furthermore, the
parts of the product with different projections ontoU are independent. Thus, we
need to study ∏

y

g1(y)g2(y),

where ally project onto the same elementx. It is not hard to calculate this expected
value to be

1

2
((−1)s+ (1− 2ε)s),

wheres is the number of elements the product. For evens, this is a number between
1/2 and 1 and decreasing as a function ofs. Fors small, it is roughly 1− sε while
if s isÄ(ε−1), it is a constant tending to 1/2. For odds, it is always between−1/2
and 0 and also here decreasing withs and taking a value around−sε for smalls.

For x ∈ π (β), let sx denote the number of elements ofβ that project ontox.
Then, by the above reasoning, (35) equals∑

β

B̂2
β

∏
x∈π (β)

(
1

2

(
(−1)sx + (1− 2ε)sx

))
. (36)

One could have hoped to estimate this sum as a function ofε tending to 0 with
ε, but unfortunately this is not true in general. To help the reader’s intuition at this
point, let’s sketch an example illustrating the problems.

Given anyε > 0, we defineW andβ such that there is a constantc > 0,
independent ofε such that∣∣∣∣∣EU

[ ∏
x∈π (β)

(
1

2

(
(−1)sx + (1− 2ε)sx

))]∣∣∣∣∣ ≥ c, (37)

where the expectation is over a randomU ⊂ W selected with the induced proba-
bility, i.e., each element in each clause is selected with probability 1/3.

Let W be defined by the triplets (3i −2, 3i −1, 3i ) for i = 1, 2, . . . , k+1 where
k = dε−1e and let

β = 13k+3 ∪k+1
i=2 {e1,3i , e2,3i },

whereei, j is the assignment giving the value−1 toxi andxj while giving the value
1 to all other variables. Let us analyze (37).
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If U contains 1 or 2, then there will be many (aboutk/3) x such thatsx = 1 and
thus the contribution to (37) is very small from theseU .

On the other hand, ifU chooses 3 from the first triplet, the elements pair up since
πU (e1,3i ) = πU (e2,3i ) for all i . We expect that around 2k/3 of these pairs project
onto the all 1 assignment while the other, roughlyk/3, pairs project onto distinct
elements due to 3i being placed intoU . Thus, in this case∏

x∈π (β)

(
1

2

(
(−1)sx + (1− 2ε)sx

))
is about

1

2
(−1+ (1− 2ε)1+4k/3)(1− 2ε + 2ε2)k/3,

which is a negative value with absolute value bounded from below by an absolute
constant, and this completes our example.

The setβ in the above example is of size aroundε−1 and it turns out that much
larger and much smaller setsβ are easy to control. This is useful since we can later
vary ε.

LEMMA 6.7. There is a constant c> 0 such that when g1 and g2 are chosen as
in Test3Sε(u) we have

|EU, f,g1,g2 [(B(g1)B(g2)] | ≤ 3δ +
∑

β | δε−1≤|β|≤(2δ−2)1/cε−1

B̂2
β.

The constant c is the constant from Lemma6.9below.

PROOF. We split the sum (36) into three pieces depending on in which of the
intervals [1, δε−1], [δε−1, (2δ−2)1/cε−1], and [(2δ−2)1/cε−1,∞], |β| belongs. The
sum over the middle interval need not be estimated since it appears on the right
hand of the estimate in the lemma. For the small sets, we have

LEMMA 6.8.∣∣∣∣∣∣
∑

β | |β|≤δε−1

B̂2
βE

[ ∏
x∈π (β)

(
1

2

(
(−1)sx + (1− 2ε)sx

))]∣∣∣∣∣∣ ≤ δ.
PROOF. As B is folded over true, we can assume that|β| is odd and hence some

x ∈ π (β) must have an odd value ofsx. For thisx

0≥ 1

2

(
(−1)sx + (1− 2ε)sx

) ≥ 1

2
(−1+ (1− 2sxε)) = −sxε ≥ −δ.

The absolute value of the other factors is bounded from above by one and since
6β B̂2

β ≤ 1, the lemma follows.

The part ∑
β | |β|≥(2δ−2)1/cε−1

B̂2
βE

( ∏
x∈π (β)

(
1

2

(
(−1)sx + (1− 2ε)sx

)))
(38)
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requires some more work to estimate. In order to study this quantity let us define
SU
ε (β) by

SU
ε (β) = ε

∑
x

min(sx, ε
−1).

One may viewSU
ε (β) as a generalization of|π (β)| and the key connection to the

product above is given by (40) below. It is important to us to prove thatSU
ε (β) is

likely to be large whenβ is large. The key lemma is given below. We postpone the
proof of this lemma to an appendix.

LEMMA 6.9. Suppose|β| ≥ ε−1. There is a constant c> 0 such that, if the
clauses defining W are disjoint,

EU

[
1

SU
ε (β)

]
≤ (ε|β|)−c.

where the expected value is taken over a random set U constructed by selecting
one variable from each of the clauses of W. One acceptable value for c is1/35.

Since the clauses definingW are disjoint with probability 1− O( 1
n ), we will

when applying Lemma 6.9, for notational simplicity, ignore this condition. The
way we use Lemma 6.9 is to apply Markov’s inequality to it. Let’s state this variant
for easy reference.

COROLLARY 6.10. Let c be the constant of Lemma6.9. For a, b > 1 suppose
|β| = (ab)1/cε−1. If the clauses defining W are disjoint, then except with probability
a−1 it is true that SUε (β) ≥ b. The probility is taken over a random U.

Next we claim that∣∣∣∣12((−1)s+ (1− 2ε)s)

∣∣∣∣ ≤ exp

(−min(1, sε)

2

)
. (39)

To establish this, we can assume 0≤ s ≤ ε−1 and thats is even since other
cases follow from this. We have (1− 2ε)s ≤ exp(−2εs) and setting f (x) =
2 exp(−x/2)− (1+ exp(−2x)) we need to prove thatf (x) ≥ 0 for x ∈ [0, 1].
We havef ′′(x) = 1

2 exp(−x/2)− 4 exp(−2x) and hencef ′′(x) ≤ 0 in the interval
in question and we only have to check the inequality at the end points. We have
f (0)= 0 and f (1)= 2 exp(−1/2)− (1+ exp(−2))> 0.

From (39), it follows that∏
x∈π (β)

(
1

2
((−1)sx + (1− 2ε)sx )

)
≤ exp

(−SU
ε (β)

2

)
. (40)

Thus, (38) is bounded from above by∑
β | |β|≥(2δ−2)1/cε−1

B̂2
βE

[
exp

(−SU
ε (β)

2

)]
.
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From Corollary 6.10, it follows that except with probability at mostδ, it is true that
SU
ε (β) ≥ 2δ−1. This implies that the expected value of the term corresponding to
β in (38) is at most (δ + exp(−δ−1))B̂2

β ≤ 2δ B̂2
β , where we used Lemma 5.3 with

s= 1 andx= δ−1. Summing overβ finishes the proof of Lemma 6.7.

Let’s now consider

EU,W,h, f,g1,g2[ A( f )B(g1)B(g2)] (41)

in more detail.

LEMMA 6.11. If

|EU,W,h, f,g1,g2[ A( f )B(g1)B(g2)]| ≥ δ,
then there is a strategy for P1 and P2 in the u-parallel two-prover protocol that
makes the verifier of that protocol accept with probability at leastε(δ2/64)1+1/c.
Here, c is the constant from Lemma 6.9.

PROOF. Fix U, W, andh. We use the Fourier expansion to obtain

E f,g1,g2[ A( f )B(g1)B(g2)] =
∑
α,β1,β2

Âα B̂β1 B̂β2 E f,g1,g2

[
χα( f )χβ1(g1)χβ2(g2)

]
.

If β1 6= β2, then we can apply Lemma 2.29 withy ∈ β11β2 to see that the expected
value is 0 and thus we can assumeβ1 = β2 = β. Lemma 2.29 also applies to the
caseα 6⊆ π (β) and thus we assumeα ⊆ π (β). A calculation shows that

E f,g1,g2

[
χα( f )χβ(g1g2)

]
=

∏
x∈α∩π (β)

(
1

2

(
(−1)sx − (1− 2ε)sx

)) ∏
x∈π (β)\α

(
1

2

(
(−1)sx + (1− 2ε)sx

))
,

wheresx = |π−1(x) ∩ β|. Let us denote this value byp(α, β). The assumption of
the lemma implies ∣∣∣∣∣EU,W,h

∑
β,α⊆π (β)

Âα B̂2
β p(α, β)

∣∣∣∣∣ ≥ δ. (42)

Before we continue, let us just point out that the strategies of the two provers are
the standard strategies, that is,P2 chooses anα with probability Â2

α and returns a
randomx ∈ α. Similarly, P1 chooses a randomβ with probability B̂2

β and returns
a randomy ∈ β. By Lemma 2.32, bothα andβ are always nonempty and by
Lemma 2.34,y always satisfies the selected clauses and thus we need only estimate
the probability thaty|U = x. This happens with probability at least

EU,W,h

[ ∑
β,α⊆π (β)

Â2
α B̂2

β |β|−1

]
. (43)

We need to prove that this is large based on (42) and we proceed to establish the
connection.
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The quantity that multiplieŝB2
β in (42) is

∑
α⊆π (β)

Âα p(α, β) ≤
( ∑
α⊆π (β)

Â2
α

)1/2( ∑
α⊆π (β)

p2(β, α)

)1/2

≤
( ∑
α⊆π (β)

p2(β, α)

)1/2

≤ exp

(−SU
ε (β)

4

)
. (44)

To see the last inequality in (44), note that the sum equals

∏
x∈π (β)

((
1

2

(
(−1)sx − (1− 2ε)sx

))2

+
(

1

2

(
(−1)sx + (1− 2ε)sx

))2
)
. (45)

The factor corresponding tox in (45) is of the forma2+ b2 where|a| + |b| = 1
and, by (39), max(|a|, |b|) ≤ exp(−min(1, sxε)/2), and hence it is bounded by
exp(−min(1, sxε)/2). Multiplying overx gives the last inequality in (44).

Define S to be (64δ−2)1/cε−1 and consider any term with|β| ≥ S. By Corol-
lary 6.10, except with probabilityδ/4 we haveSU

ε (β) ≥ 16δ−1. We conclude that
such terms in (42) are bounded from above by

Eh,W

[
B̂2
βEU

[
exp

(−SU
ε (β)

4

)]]
≤ Eh,W

[
B̂2
β

(
δ

4
+ exp(−4δ−1)

)]
≤ Eh,W

[
B̂2
βδ

2

]
.

This implies that if we discard all terms in (42) with|β| ≥ S, the remaining expected
value is at leastδ/2. Returning to the analysis of (43), we see that it is at least

S−1EU,W,h

[ ∑
β,α⊆π (β),|β|≤S

B̂2
β Â2

α

]
.

Now by the above reasoning we have(
δ

2

)2

≤
(

EU,W,h

[ ∑
β,α⊆π (β),|β|<S

B̂2
β Âα p(α, β)

])2

≤ EU,W,h

( ∑
β,α⊆π (β),|β|<S

B̂2
β Âα p(α, β)

)2


≤ EU,W,h

[( ∑
β,α⊆π (β),|β|<S

B̂2
β Â2

α

)( ∑
β,α⊆π (β),|β|<S

B̂2
β p2(α, β)

)]

≤ EU,W,h

[ ∑
β,α⊆π (β),|β|<S

B̂2
β Â2

α

]
,
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where the last inequality follows from∑
β

∑
α⊆β

B̂2
β p2(α, β) ≤

∑
β

B̂2
β ≤ 1,

where we again used the last inequality of (44). We conclude that the verifier in the
two-prover protocol accepts with the given strategies with probability at least

S−1

(
δ

2

)2

≥ ε
(
δ2

64

)1+1/c

,

and the proof is complete.

We are now in position to prove Theorem 6.5. We describe the appropriate test.
Given a positiveδ < 1/2, we proceed as follows, wherec is the constant of
Lemma 6.9.

Test F3Sδ(u)

1. Sett = dδ−1e, ε1 = δ andεi = δ1+2/c2−1/cεi−1 for i = 2, 3, . . . , t .
2. Choose a randomj , 1≤ j ≤ t with uniform distribution. Run test 3Sε j (u).

From Lemma 6.6, we conclude that we have perfect completeness.

LEMMA 6.12. The completeness of Test F3Sδ(u) is 1.

On the soundness side, we have the crucial lemma below. Using Lemma 6.12 and
Lemma 6.13, we complete the proof of Theorem 6.5 the same way that Theorem 5.4
followed from Lemma 5.1 and Lemma 5.2. We omit the details.

LEMMA 6.13. If the test F3Sδ(u) accepts with probability(7+5δ)/8, then there
is a strategy for P1 and P2 in the u-parallel two-prover protocol that makes the
verifier of that protocol accept with probability2−O(δ−1 logδ−1).

PROOF. As given by (34), the probability that the verifier accepts is

7

8
− 1

8
EU,W,h, f,g1,g2[ AW,h,true(g1)AW,h,true(g2)]

− 1

8
EU,W,h, f,g1,g2[ AU,true( f )AW,h,true(g1)AW,h,true(g2)],

where f , g1 andg2 are chosen as described in the test. By Lemma 6.7, we have for
fixed W andh,

|EU, f,g1,g2[ AW,h,true(g1)AW,h,true(g2))|

≤ 1

t

t∑
i=1

(
3δ +

∑
β | δε−1

i ≤|β|≤(2δ−2)1/cε−1
i

B̂2
β

)

≤ 3δ + 1

t
≤ 4δ,

since the intervals of summations are disjoint. Thus, from the assumption of the
lemma, there must be somej such that

EU,W,h, f,g1,g2[ AU,true( f )AW,h,true(g1)AW,h,true(g2)] ≥ δ,
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when f , g1, andg2 are chosen as in test 3Sε j (u). For this j , we get, by Lemma 6.11,
a strategy forP1 and P2 with success probabilityεO(1)

j δO(1). Now ε j = δO( j ) and
since j ≤ t = dδ−1e, the lemma follows.

It is not hard to extend Theorem 6.5 to longer clauses.

THEOREM 6.14. For any ε > 0 and any k≥ 4, it is NP-hard to distinguish
satisfiable Ek-CNF formulas from at most1−2−k+ ε satisfiable Ek-CNF formulas.
Said equivalently,Max-Ek-Sat is nonapproximable beyond the random assignment
threshold on satisfiable instances.

PROOF. Follows by induction overk. Change a clauseCi to the two clauses
Ci ∨z andCi ∨ z̄ for a new variablez. If the number of clauses isN and the optimal
number of clauses that can be satisfied isO for the original formula, this creates
an instance with 2N clauses and optimal valueN + O. A small calculation yields
the desired result.

In fact, we can do a little bit better. By transforming clauses of length 3 to clauses
of different sizes, we get a slight extension stated below. We omit the straight-
forward proof.

THEOREM 6.15. Consider the CSP where each constraint is a disjunction of
literals of size at least3. This problem is nonapproximable beyond the random
assignment threshold on satisfiable instances.

We also get a result for Max-E2-Sat, but we only know how to do this through
a reduction.

THEOREM 6.16. For any ε > 0, it is NP-hard to approximate Max-E2-Sat
within a factor22/21− ε.

PROOF. This follows by a reduction from Max-E3-Lin-2. Just use the 11-gadget
of Bellare et al. [1998] and Trevisan et al. [2000] and Lemma 5.13.

6.1. IMPLIED RESULTS FOROTHER CSPS. As in the case of Theorem 5.4, the
constructed PCPs can be used, with only minor modifications, to obtain results
for other CSPs. This time we look at constraints that are more restrictive than
the originally intended constraints. First, we derive a consequence of the proof of
Theorem 6.2.

THEOREM 6.17. Let P be a predicate on4 variables such that

P−1(1)⊆ {(1, 1, 1, 1), (1, 1,−1,−1), (−1, 1, 1,−1), (−1, 1,−1, 1)}.
Then, the CSP given by P on4 variables is nonapproximable beyond the random
assignment threshold on satisfiable instances.

PROOF. The test is given by 4S(u) except that the final test is replaced by requir-
ing that (AU,true( f ), AW,h,true(g1), AW,h,true(g2), AW,h,true(g3)) satisfies the predicate
P. From the definition ofg3, it follows that (f (y|U ), g1(y), g2(y), g3(y)) never takes
any of the values that falsifiesP and thus this modification does not cause the verifier
to reject a correct proof and we still have perfect completeness.

To analyze the soundness, we write the acceptance criteria as a multilinear ex-
pression inAU,true( f ) and AW,h,true(gi ). We have already established that each
multilinear term has small expected value unless there is a good strategy forP1 and
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P2 in the two prover multiprover game. This is sufficient to prove Theorem 6.17.
We omit the details.

In the test 3Sε(u) (and hence F3Sδ), we constructed functionsf , g1 andg2 such
that the triples (f (y|U ), g1(y), g2(y)) never take the values (1, 1, 1) or (1,−1,−1).
In our original application to Max-E3-Sat, we just needed that (1, 1, 1) was avoided.
If we replace the acceptance criteria by the predicate

OXR(x1, x2, x3) = x1 ∨ (x2⊕ x3),

we get, by a very similar proof, the following theorem. We omit the details.

THEOREM 6.18. The CSP on3variables problem given by the predicate OXR is
nonapproximable beyond the random assignment threshold on satisfiable instances.

7. Set Splitting

The verifier that gives a result for set splitting must be a bit different from previous
verifiers for some basic reasons. First, there is no negation present in set splitting
and hence we cannot fold over true. Second, we cannot have the bipartite situation
when we ask some questions inAU and then some questions inAW,h. If this was
the case, a cheating prover could fool the verifier by settingAU ( f ) = 1 for all f
and AW(g) = −1 for all g. We remedy this situation by taking two different sets
of typeW. We first give the simpler version just establishing that E4-Set splitting
is nonapproximable beyond the random assignment threshold. As in the case for
Max-E3-Sat, it is more complicated to get the result for satisfiable instances. This
is established in Theorem 7.6 below.

THEOREM 7.1. For any ε > 0, it is NP-hard to approximate E4-Set splitting
within a factor 8/7− ε. Said equivalently, E4-Set splitting is nonapproximable
beyond the random assignment threshold.

PROOF. We first give the test. Assumeε < 1/2.

Test SSε(u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formulaϕ = C1∧C2∧ · · · ∧Cm.
Verifier

1. Chooseu variablesxki , uniformly at random and setU = {xk1, xk2, . . . , xku}. Form W1 by, for
eachxki choosing a random clauseCj 1

i
that containsxki and then lettingW1 be the set of variables

appearing in these clauses andh1 = ∧u
i=1Cj 1

i
. By a similar and independent procedure produce

W2 andh2 by choosing clausesCj 2
i
.

2. Choosef ∈ FU with the uniform probability.
3. Chooseg1

1 ∈ FW1 andg2
1 ∈ FW2 independently with the uniform probability.

4. For i = 1, 2, choose a functionµi ∈ FWi by settingµi (y) = 1 with probability 1− ε and
µi (y) = −1 otherwise, independently for eachy ∈ {−1, 1}Wi

and fori = 1 andi = 2.

5. Setg1
2 = f g1

1µ
1, that is, defineg1

2 by for eachy ∈ {−1, 1}W1
, g1

2(y) = f (y|U )g1
1(y)µ1(y).

6. Setg2
2 = − f g2

1µ
2, that is, defineg2

2 by for eachy ∈ {−1, 1}W2
, g2

2(y) = − f (y|U )g2
1(y)µ2(y).

7. Accept iff AW1,h1(g1
1), AW1,h1(g1

2), AW2,h2(g2
1), andAW2,h2(g2

2) are not all equal.

We have the standard completeness lemma that we, since the situation has
changed somewhat, even prove.
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LEMMA 7.2. The completeness of Test SSε(u) is at least1− ε.
PROOF. Assume we have a correct SWP(u). Then we have a global satisfying

assignmentx and all subtables are long codes of restrictions ofx. Assume that
f (x|U ) = 1, then unlessµ2(x|W2) = −1, we have thatg2

1(x|W2) 6= g2
2(x|W2) that

is equivalent to saying thatAW2,h2(g2
1) 6= AW2,h2(g2

2). Similarly, if f (x|U ) = −1,
unlessµ1(x|W1) = −1, we haveAW1,h1(g1

1) 6= AW1,h1(g1
2). Thus, in either case, we

accept with probability 1− ε.
For the soundness, we have the corresponding lemma below. Theorem 7.1 follows

from Lemma 7.2 and Lemma 7.3 in similar way to which Theorem 5.4 followed
from Lemma 5.1 and Lemma 5.2. We omit the details.

LEMMA 7.3. If Test SSε(u) accepts with probability(7+ δ)/8, then there is a
strategy for P1 and P2 in the u-parallel two-prover protocol that makes the verifier
of that protocol accept with probability2δε.

PROOF. Fix U , W1, h1, W2, andh2 and setA = AW1,h1 andB = AW2,h2. The
expression

1 − 1

16

((
1+ A

(
g1

1

))(
1+ A

(
g1

2

))(
1+ B

(
g2

1

))(
1+ B

(
g2

2

)))
− 1

16

((
1− A

(
g1

1

))(
1− A

(
g1

2

))(
1− B

(
g2

1

))(
1− B

(
g2

2

)))
(46)

is 1 if the test accepts and 0 otherwise. Expanding (46), we get

7

8
− A

(
g1

1

)
B
(
g2

1

)+ A
(
g1

2

)
B
(
g2

1

)+ A
(
g1

1

)
B
(
g2

2

)+ A
(
g1

2

)
B
(
g2

2

)
8

− A
(
g1

1

)
A
(
g1

2

)+ B
(
g2

1

)
B
(
g2

2

)+ A
(
g1

1

)
A
(
g1

2

)
B
(
g2

1

)
B
(
g2

2

)
8

. (47)

The expectation of (47) gives the probability that the verifier accepts the proof and
we estimate the expectation of each term separately. All expected values will not
necessarily be small in absolute value, but we only have to worry about each term
taking a negative value of large magnitude and thus we bound the terms from below.
First, we have

LEMMA 7.4. For 1≤ i, j ≤ 2, we have

EW1,W2,h1,h2,g1
1,g

2
1,µ

1,µ2

[
A
(
g1

i

)
B
(
g2

j

)] ≥ 0.

This is true for any fixed choices of U and f .

PROOF. First, note thatgk
1 and gk

2 have the same distribution and hence we
only need to consider the casei = j = 1. OnceU is fixed,g1

1 andg2
1 are selected

independently with the same distribution and hence the two numbersA(g1
1) and

B(g2
1) are also independent and selected with the same distribution. It follows that

EW1,h1,g1
1,W

2,h2,g2
1

[
A
(
g1

1

)
B
(
g2

1

)] = EW1,h1,g1
1

[
A
(
g1

1

)]2 ≥ 0. h

We proceed to handle two more terms.
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LEMMA 7.5. We have Ef,g1
1,µ

1[ A(g1
1)A(g1

2)] ≥ 0 This is true for any fixed
choice of U, W1, and h1. The similar statement is true for B(g2

1)B(g2
2).

PROOF. We replaceA(g1
1) by the Fourier expansion and then using the lin-

earity of expectation, Lemma 2.27, 2.28, 2.30, and the fact thatf , g1
1 andµ1 are

independent to obtain

E f,gi
1,µ

i

[
A
(
g1

1

)
A
(
g1

2

)]
=
∑
α1,α2

Âα1 Âα2 E f,g1
1,µ

1

[
χα1

(
g1

1

)
χα2

(
g1

2

)]
=
∑
α1,α2

Âα1 Âα2 E f,g1
1,µ

1

[
χα1

(
g1

1

)
χα2

(
f g1

1µ
1
)]

=
∑
α1,α2

Âα1 Âα2 Eg1
1

[
χα11α2

(
g1

1

)]
E f
[
χπ2(α2)( f )

]
Eµ
[
χα2(µ

1)
]
. (48)

By Lemma 2.29, ifα1 6= α2, the first expected value is 0 and unlessπ2(α2) = 0 so
is the second. The third expected value is easily seen to be equal to (1− 2ε)|α| and
thus we get the total result ∑

α|π2(α)=0

Â2
α(1− 2ε)|α|, (49)

which is clearly positive. The proof of the other part of the lemma is identical except
for notation.

All that remains is to analyze the “interesting term,” that is,

E f,g1
1,µ

1,g2
1,µ

2

[
A
(
g1

1

)
A
(
g1

2

)
B
(
g2

1

)
B
(
g2

2

)]
.

We replace each factor by its Fourier expansion and use linearity of expectation,
Lemmas 2.27, 2.28, and 2.30 to arrive at∑

Âα1 Âα2 B̂β1 B̂β2 E
[
χα1

(
g1

1

)
χα2

(
g1

2

)
χβ1

(
g2

1

)
χβ2

(
g2

2

)]
=
∑

Âα1 Âα2 B̂β1 B̂β2

E
[
χα11α2

(
g1

1

)
χπ2(α2)1π2(β2)( f )χα2(µ

1)χβ11β2

(
g2

1

)
χβ2(−µ2)

]
, (50)

where the sums are overα1,α2,β1, andβ2 and the expectations are taken overf , g1
1,

µ1, g2
1, andµ2. Using that f , g1

1, andg1
2 are independent, we see, by Lemma 2.29,

that unlessα1 = α2, β1 = β2 andπ2(α2) = π2(β2) the expected value is 0. Using
this, and the fact thatEµ[χα(µ)] = (1− 2ε)|α|, we see that (50) equals∑

α,β|π2(β)=π2(α)

Â2
α B̂2

β(−1)|β|(1− 2ε)|α|+|β|. (51)

Note thatπ2(β) = π2(α) ensures that (−1)|β| = (−1)|α| and thus the result is, as
expected, symmetric inA andB. Since the terms corresponding toπ (β) = ∅ are
positive, we have established that, based on the hypothesis of the lemma,

EU,W1,h1,W2,h2

[∣∣∣∣∣ ∑
α,β:π2(β)=π2(α),π (β)6=∅

Â2
α B̂2

β(1− 2ε)|α|+|β|
∣∣∣∣∣
]
≥ δ. (52)
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The strategies ofP1 andP2 in the two prover game are now as follows:
P1 on inputW andh looks at AW,h and chooses aα with probability Â2

α and
returns a randomx ∈ α. The strategy forP2 is, givenU , to choose a random set
of clauses givingW andh. This gives a random tableB andP2 chooses a random
β with probability B̂2

β and then returns a randomx ∈ π2(β). If either of the two
sets is empty, the corresponding prover gives up. Note that, by Lemma 2.34, each
y satisfies the selected clauses and thus we only have to estimate the probability
that y|U = x. The probability of this is at least

EU,W1,h1,W2,h2

[ ∑
α,β|π2(α)=π2(β),π2(β)6=∅

Â2
α B̂2

β |α|−1

]
.

By Lemma 5.3, withs = 1, |α|−1 ≥ 2ε(1− 2ε)|α| and thus comparing the last
sum to (52), we get that the probability of accepting is at least 2δε. The proof of
Lemma 7.3 is complete.h

We now turn to the case of satisfiable instances for Set splitting and we want to
establish.

THEOREM 7.6. For anyε > 0, it is NP-hard to distinguish instances for E4-Set
splitting where all sets can be split from instances where the best partition splits only
a fraction7/8+ ε of the sets. Said equivalently, E4-Set splitting is nonapproximable
beyond the random assignment threshold on satisfiable instances.

PROOF. The proof is, in many respects, very similar to the proof of the cor-
responding result for Max-E3-Sat and in particular we need a parameterized test.
Assumeε < 1/2.

TestPSSε(u)

Written proof. An SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formulaϕ = C1∧C2∧ · · · ∧Cm.
Verifier

1. Chooseu variablesxki , uniformly at random and setU = {xk1, xk2, . . . , xku}. Form W1 by for
eachxki choosing a random clauseCj 1

i
that containsxki and then lettingW1 be the set of variables

appearing in these clauses, andh1 = ∧u
i=1Cj 1

i
. By a similar and independent procedure, produce

W2 andh2 by choosing clausesCj 2
i
.

2. Choosef ∈ FU with the uniform probability.
3. Chooseg1

1 ∈ FW1 andg2
1 ∈ FW2 independently with the uniform probability.

4. Defineg1
2 by the following procedure. Iff (y|U ) = −1, then setg1

2(y) = −g1
1(y) and otherwise

setg1
2(y) = g1

1(y) with probability 1− ε and otherwiseg1
2(y) = −g1

1(y).
5. Defineg2

2 by the following procedure. Iff (y|U ) = 1, then setg2
2(y) = −g2

1(y) and otherwise set
g2

2(y) = g2
1(y) with probability 1− ε and otherwiseg2

2(y) = −g2
1(y).

6. Accept iff AW1,h1(g1
1), AW1,h1(g1

2), AW2,h2(g2
1), andAW2,h2(g2

2) are not all equal.

Completeness is straightforward.

LEMMA 7.7. The completeness of Test PSSε(u) is 1.

PROOF. Assume we have a correct SWP(u). Then we have a global satisfying
assignmentx and all subtables are long codes of restrictions ofx. If f (x|U ) = 1,
thenAW2,h2(g2

1) 6= AW2,h2(g2
2) and otherwiseAW1,h1(g1

1) 6= AW1,h1(g1
2).

Next we need to analyze the soundness and hence estimate (47).
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LEMMA 7.8. For 1≤ i, j ≤ 2, we have

EW1,W2,h1,h2,g1
1,g

1
2,g

2
1,g

2
2

[
A
(
g1

i

)
B
(
g2

j

)] ≥ 0.

This is true for any fixed choices of U and f .

The proof is the same as that of Lemma 7.4 that depended on the fact thatA(g1
i )

andB(g2
j ) are identically distributed and independent. We omit it.

Next observe thatg1
1 and g1

2 in test PSSε(u) are taken with exactly the same
distribution asg1 andg2 in test 3Sε(u). The lemma below should hence not come
as a surprise.

LEMMA 7.9. When g11 and g1
2 are chosen as in test PSSε(u), we have

EU, f,g1
1,g

1
2

[
A
(
g1

1

)
A
(
g1

2

)] ≥ −3δ −
∑

α | δε−1≤|α|≤(2δ−2)1/cε−1

Â2
α,

where c is the constant of Lemma6.9. The similar statement is true for B(g2
1)B(g2

2).

PROOF. We again prove the statement about theA(g1
1)A(g1

2), the other part
having an almost identical proof. As observed above, (U,W1, f, g1

1, g
1
2) have the

same distribution as the corresponding objects in test 3Sε(u) and the only reason
we cannot simply appeal to Lemma 6.7 is that we are not assuming thatA is folded
over true. The only place in the proof of Lemma 6.7 this fact is used is in the proof
of Lemma 6.8 where we conclude thatsx is odd for somex. However, we need
only observe that the terms in the expansion (36) with allsx even are positive and
hence can safely be disregarded with the present statement of the lemma.

It remains to estimate the most complicated term

EU,W1,h1,W2,h2, f,g1
1,g

1
2,g

2
1,g

2
2

[
A
(
g1

1

)
A
(
g1

2

)
B
(
g2

1

)
B
(
g2

2

)]
.

The expansion in the first half of (50) is still valid and terms whereα1 6= α2 or
β1 6= β2 evaluate to 0 also in this case. Thus, we need to study

E f,g1
1,g

1
2,g

2
1,g

2
2

[
χα
(
g1

1g1
2

)
χβ
(
g2

1g2
2

)]
. (53)

The pairs (g1
1, g

1
2) and (g2

1, g
2
2) are dependent throughf . For eachx, let sx be the

number ofy ∈ α with y|U = x and tx the number ofz ∈ β with z|U = x. A
straightforward calculations shows that (53) equals∏

x

(
1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

))
. (54)

Thus, we want to estimate

EU,W1,h1,W2,h2

[∑
α,β

Â2
α B̂2

β

∏
x

(
1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

))]
.(55)

To estimate this, we divide the sum into three pieces, depending on the sizes ofα
andβ.
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LEMMA 7.10. If we restrict summation to terms where eitherα or β is of size
at least(2δ−2)1/cε−1, where c> 0 is the constant from Lemma6.9, then∣∣∣∣∣EU,W1,h1,W2,h2

[∑
α,β

Â2
α B̂2

β

∏
x

(
1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

))]∣∣∣∣∣ ≤ 4δ.

(56)

PROOF. Let us analyze the terms with|β| ≥ (2δ−2)1/cε−1. Note that, by (39),∣∣∣∣(1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

))∣∣∣∣
≤
(

1

2

(
(1− 2ε)tx + 1

) ) ≤ exp

(−min(1, εtx)

2

)
and thus∣∣∣∣∣∏

x

(
1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

))∣∣∣∣∣ ≤ exp

(−SU
ε (β)

2

)
.

By Corollary 6.10, we know that the probability (over the choice ofU ) thatSU
ε (β)

is smaller than 2δ−1 is bounded byδ. This implies that the total contribution of all
terms includingβ is

EU
[
B̂2
β exp

(−SU
ε (β)

)] ≤ (δ + exp(−δ−1))B̂2
β ≤ 2δ B̂2

β

and the lemma follows by the linearity of expectation, that
∑

α,β Â2
α B̂2

β = 1, and a
similar estimate whenα is large.

Next, we have

LEMMA 7.11. If we restrict summation to terms where bothα andβ is of size
at mostδε−1, then∑

α,β

Â2
α B̂2

β

∏
x

(
1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

))

≥ −
(
δ +

∑
α,β|π (α)∩π (β)6=∅

Â2
α B̂2

β

)
, (57)

where the sum on the right-hand side is also overα andβ of size at mostδε−1.

PROOF. Any term with allsx andtx even is positive and any term withsx andtx
both nonzero contributes to the sum on the right-hand side of the inequality. Hence,
we only have to bound terms not satisfying either of these properties. Assume
without loss of generality thatsx is odd andtx is 0. Then

1

2

(
(−1)sx (1− 2ε)tx + (1− 2ε)sx (−1)tx

) = 1

2

(
(1− 2ε)sx − 1

)
,

which, since (1−2ε)sx ≥ 1−2sxε, is a number between 0 and−δ. Thus, the terms
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we are interested in gets multiplied by a number of absolute value at mostδ. Since∑
α,β Â2

α B̂2
β = 1, the lemma follows.

Now consider the following strategies forP1 and P2. P2 chooses a randomα
with probability Â2

α and answers with a randomy ∈ α. P1 chooses a random
W and h and then a randomβ with probability B̂2

β and then responds with a
randomx ∈ π (β). If either of the two sets is empty, the corresponding prover gives
up. Note that, by Lemma 2.34, eachy satisfies the selected clauses and thus we
only have to estimate the probability thaty|U = x. This happens with probability
at least

δ−2ε2E

[ ∑
α,β|π (α)∩π (β)6=∅

Â2
α B̂2

β

]
,

where the sum is over setsα andβ of size at mostδε−1. The work done so far can
be summarized as follows:

LEMMA 7.12. Let Acc be the accept probability of V in the u-parallel two-
prover interactive proof with optimal P1 and P2 then

EU,W1,W2,h1,h2, f,g1
1,g

1
2,g

2
1,g

2
2

[
A
(
g1

1

)
A
(
g1

2

)
B
(
g2

1

)
B
(
g2

2

)]
≥ −

(
5δ + δ2ε−2Acc+ 2EW1,h1

[ ∑
α|δε−1≤|α|≤(2δ−2)1/cε−1

Â2
α

])
. (58)

PROOF. We have seen that the left-hand side equals (55). The terms when the
size of both sets are boundedδε−1 is bounded, by Lemma 7.11, and the prover
strategy given after the lemma, from below by−(δ + δ2ε−2Acc). The case when
either set is of size at least (2δ−2)1/cε−1 is bounded, by Lemma 7.10, in absolute
value by 4δ. Finally, terms withδε−1≤ |α| ≤ (2δ−2)1/cε−1, are bounded in absolute
value, using

∑
β B̂2

β = 1, by the sum on the right-hand side of (58), and the same
bound applies to terms withδε−1 ≤ |β| ≤ (2δ−2)1/cε−1.

We are now ready to give the test to prove Theorem 7.6.

Test FSSδ(u)

1. Sett = dδ−1e, ε1 = δ andεi = δ1+2/c2−1/cεi−1 for i = 2, 3, . . . t .

2. Choose a randomj , 1≤ j ≤ t with uniform distribution. Run test PSSε j (u).

We note that we have perfect completeness.

LEMMA 7.13. The completeness of test FSSδ(u) is 1.

For the soundness, we have the crucial lemma below and this proves Theorem 7.6
by the standard argument. We omit the details.

LEMMA 7.14. If the test FSSδ(u) accepts with probability(7+ 112δ)/8, then
there is a strategy for P1 and P2 in the u-parallel two-prover protocol that makes
the verifier of that protocol accept with probability2−O(δ−1 logδ−1).
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PROOF. We have by Lemma 7.9 that wheng1 andg2 are taken as in test FSSδ

then

E
[
AW,h

(
g1

1

)
AW,h

(
g1

2

)] ≥ −1

t

t∑
i=1

3δ +
∑

α | δε−1
i ≤|α|≤(2δ−2)1/cε−1

i

Â2
α


≥ −

(
3δ + 1

t

)
≥ −4δ

since the summation intervals are disjoint. Using Lemma 7.12 and doing a similar
calculation, we conclude thatE[ A(g1

1)A(g1
2)B(g2

1)B(g2
2)] is at least

−
(

5δ + δ2ε−2
t Acc+ 2

t

)
≥ −(7δ + δ2ε−2

t Acc
)
.

Since the probability of accept is given by the expectation of (47) and the four
remaining terms can be ignored due to Lemma 7.8, we conclude that

7+ 12δ

8
≤ 7+ 4δ + 7δ + δ2ε−2

t Acc

8
,

from which we conclude thatAcc ≥ ε2
t δ
−1 and the lemma follows fromε j ≥

δ−O(δ−1).

7.1. IMPLIED RESULTS FOROTHER CSPS. We first derive some consequences
from the proof of Theorem 7.1.

THEOREM 7.15. Let P be a predicate on{−1, 1}4 such that

{(1, 1, 1, 1), (−1,−1,−1,−1)} ⊆ P−1(1)

and such that P(x, y, z,w) = −1 for any x, y, z,w satisfying xyzw= −1. Then
the monotone CSP defined by P is nonapproximable beyond the random assign-
ment threshold.

PROOF. By Theorem 7.1, we can assume thatP is not the set-splitting predicate,
and we can, since reordering the inputs does not disturb the theorem, assume that
(1, 1,−1,−1) belongs toP−1(1). If P rejects at least six inputs, it is easy to check
that we can reorder the inputs so that also (−1,−1, 1, 1) belongs toP−1(1).

Now consider Test SSε(u) with the change that the acceptance criteria is given
by P. Then since

AW1,h1

(
g1

1

)
AW1,h1

(
g1

2

)
AW2,h2

(
g2

1

)
AW2,h2

(
g2

2

) = −1

unlessµ1 or µ2 takes the value−1 on the satisfying assignment we see that the
completeness of the test is at least 1− 2ε. We need to analyze the soundness.

As usual, we write the acceptance criteria as a multilinear function. We need some
properties of the multilinear expansion ofP summarized in the lemma below. Let
Q = (1− P)/2, which is 1 if P accepts and 0 ifP rejects.

LEMMA 7.16. The multilinear expansion of Q(x, y, z,w) has the following
properties:

(1) The sum of the coefficients of all degree1 terms is0.
(2) The sum of the coefficients of the terms xz, xw, yz, and yw is nonpositive.
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(3) The sum of the coefficients of the terms xy and zw is nonpositive.
(4) The sum of the coefficients of all degree3 terms is0.
(5) The coefficient of xyzw is negative.

PROOF. We have

Q(x, y, z,w) = 1− 1

16

∑
α∈P−1(1)

(1+ α1x)(1+ α2y)(1+ α3z)(1+ α4w).

Now (1) follows from the fact that∑
α∈P−1(1)

4∑
i=1

αi = 0

and similarly (4) the sum of all products of triples also is 0. For (2), we need to
study the quadratic form

−(α1+ α2)(α3+ α4),

which takes the value−4 on (1, 1, 1, 1) and (−1,−1,−1,−1), 4 on (1, 1,−1,−1)
and (−1,−1, 1, 1) and 0 on the rest of the possible elements ofP−1(1). Clearly,
the sum over the actual elements ofP−1(1) is nonpositive and (2) follows.

To address (3), we need to study

−(α1α2+ α3α4),

which takes the value−2 on (1, 1, 1, 1), (−1,−1,−1,−1), (1, 1,−1,−1),
and (−1,−1, 1, 1) and 2 on (1,−1, 1,−1), (1,−1,−1, 1), (−1, 1, 1,−1), and
(−1, 1,−1, 1). By our assumption onP we have at least as many elements in
P−1(1) of the former kind as of the latter and hence this sum of coefficients
is nonpositive.

Finally, (5) follows from the fact thatα1α2α3α4= 1 for any element in
P−1(1).

Let us now return to the analysis of the soundness of the test SSε whenP is used
as the acceptance predicate. As discussed above, we use the multilinear expansion
of Q and we analyze terms collected into terms of the same types. Since each
AWi ,hi (gi

j ) has the same distribution independent ofi and j , by (1) of Lemma 7.16,
we see that the expected value of all degree one terms ofQ give a total contribution
of 0. Similarly, from (4) of the same lemma, we see that the same is true for
degree 3 terms.

From (2) of Lemma 7.16, and Lemma 7.4, we see that the mixed terms have a total
contribution that is nonpositive and finally by (3) of Lemma 7.16 and Lemma 7.5
the same can be said about the other terms of degree 2.

To finish the proof of Theorem 7.15, we just have to prove that a negative expected
value of large magnitude of the product of all four factors imply a good strategy
for P1 andP2 in the two-prover protocol, but this was already done in the proof of
Lemma 7.3. h

Note that Theorem 5.6 is a special case of Theorem 7.15 and that the constructed
PCPs are in fact different and thus we have an alternative proof for this theorem.
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Note also that the condition that both (−1,−1,−1,−1) and (1, 1, 1, 1) belong
to P−1(1) is necessary since a monotone CSP that does not reject both (1, 1, 1, 1)
and (−1,−1,−1,−1) can trivially be satisfied by a constant assignment.

Next we turn to studying inapproximability for satisfiable instances. Let’s first
discuss monotone CSPs.

THEOREM 7.17. Let P be a predicate on{−1, 1}4 such that

{(1, 1, 1, 1), (−1,−1,−1,−1)} ⊆ P−1(1)
⊆ {(1, 1, 1, 1), (1, 1,−1,−1), (−1,−1, 1, 1), (−1,−1,−1,−1)}.

Then the monotone CSP defined by P is nonapproximable beyond the random
assignment threshold on satisfiable instances.

PROOF. The test we apply is FSSδ(u) with the acceptance criteria thatP should
hold for the quadruple (AW1,h1(g1

1), AW1,h1(g1
2), AW2,h2(g2

1), AW2,h2(g2
2)). It is not

difficult to see that the verifier always accepts a correct proof.
For the soundness, note that anyP we study is covered by Lemma 7.16. The

analysis of each set of terms is done as in the proof of Theorem 7.15.

If we allow negation, we can fold the tables over true and we obtain

THEOREM 7.18. Let P be a predicate on{−1, 1}4 such that

P−1(1)⊆ {(1, 1, 1, 1), (1, 1,−1,−1), (−1,−1, 1, 1), (−1,−1,−1,−1)}.
Then the CSP defined by P is nonapproximable beyond the random assignment
threshold on satisfiable instances.

PROOF. Apply test FSSδ(u) except that tables are folded over true and that the
final acceptance criteria is given byP. It is not difficult to check that we have perfect
completeness.

For the soundness, we again study the multilinear expression evaluatingP. Fold-
ing over true lets us conclude that all terms exceptA(g1

1)A(g1
2), B(g2

1)B(g2
2) and

A(g1
1)A(g1

2)B(g2
1)B(g2

2) have expected value 0. We need just observe that these
three terms appear with negative sign for any of the aboveP and the rest of the
proof follows similarly to the proof of Theorem 7.6.

8. Results for Other Problems

We use a general method for converting efficient PCPs for NP-problems to lower
bounds for vertex cover and we get

THEOREM 8.1. For anyδ > 0, it is NP-hard to approximate vertex cover within
7/6− δ.

PROOF. This follows from Proposition 11.6 of Bellare et al. [1998] withf = 2,
c = 1− ε, ands= 1/2+ ε and the fact that our PCP that gave the result for Max-
E3-Lin-2 used two free bits, had completeness 1− ε and soundness 1/2+ ε. For
completeness, we sketch the proof.

Start with test Lε2(u). We create a graph (as first done in Feige et al. [1996])
whose nodes are given by accepting views of the verifier. A view is determined by
the random coins flipped byV and the bits read in the proof. IfV flips r coins, the
total number of nodes is 2r+2, since the third bit read in the proof is determined
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by the previous two and the fact that the verifier should accept. Draw an edge
between two nodes if they are conflicting in that the two views examine the same
bit but this bit takes different values in the two nodes. An independent set in this
graph corresponds to a written proof and the size of this independent set is 2r

times the probability that the verifier accepts this proof. Thus, when the formula
ϕ is satisfiable, there is an independent set of size 2r (1− ε) while, when it is not
satisfiable, the size of any independent set is at most 2r (1/2+ ε). Since a set of
nodes is a vertex cover iff its complement is an independent set we have vertex
covers of sizes 2r (3+ ε) and 2r (7/2− ε) in the two cases respectively. This implies
that a ((7/6)− δ)-approximation algorithm can, by choosingε sufficiently small,
be used to decide an NP-hard question.

By using the gadgets of Trevisan et al. [2000], the optimal result for Max-E3-
Lin-2 also give improved inapproximability results for a number of other problems.

THEOREM 8.2. For any ε >0, it is NP-hard to approximate undirected Max-
Cut within a factor17/16− ε.

PROOF. Use the 8-gadget forabc= 1 and the 9-gadget forabc= −1. If there
are more equations of the second type, we complement all the variables. The result
follows from a minor extension of Lemma 5.13.

THEOREM 8.3. For anyε >0, it is NP-hard to approximate Max-di-Cut within
13/12− ε.

PROOF. There is a 6.5-gadget [Trevisan et al. 2000] and we can apply
Lemma 5.13.

9. Getting Nonconstantε

There is nothing that prevents us from usingε andδ that are decreasing as functions
of n in our proofs. The acceptance probability of the constructed strategy in the
two-prover protocol would then also decrease withn. This, in its turn, implies that,
to get a contradiction, we would need a value ofu that is increasing withn and
then the PCP would no longer be of polynomial size. If we are willing to assume a
stronger hypothesis than NP6= P, something can still be achieved.

THEOREM 9.1. Assume NP6⊆ DTIME(2O(log n log log n)). Then, there is a con-
stant c> 0 such forε = (log n)−c, Max-E3-Lin-2 cannot be approximated within
2− ε in polynomial time.

PROOF. Let c′ be a constant to be determined. We apply the proof of Theo-
rem 5.4 withε = δ = (logn)−c′ andu = dc′ log logn for some absolute constant
d chosen such thatcu

c < 2δ3, wherecc is the constant from Lemma 3.2. We get that
unlessϕ is satisfiable, the maximal acceptance probability in the PCP is (1+ δ)/2
while if ϕ is satisfiable this acceptance probability of a correct proof is (1− ε).

Translating this to a linear system of equations, we get a system in

mu223u + nu22u

variables with at most

mu223u+1
nu22u
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equations such that determining the number of simultaneously satisfiable equations
within a factor

2(1− ε)
1+ δ = 2− O((logn)c′)

is NP-hard. Note that size of the system is, for a suitably small constantc′, bounded
by 2O(logn log logn).

Assume that there is an approximation algorithm running in polynomial time
and having performance ratio 2− (logn)c′/2. Note that both performance ratio
and running time are with respect to the size of the linear system constructed and
not the originaln used above. IfN is the size of the system of linear equations
described above, logN ∈ o(logn)2 the hence assumed approximation algorithm
would be able to tell whether the original formula is satisfiable. The running time
would be

NO(1) = 2O(logn log logn).

The theorem follows.

The proof of Theorem 6.2 has as good constants at that of Theorem 5.4 and hence
we have

THEOREM 9.2. Assume NP6⊆DTIME(2O(log n log log n)). Then, there is a con-
stant c> 0 such forε = (logn)−c, satisfiable E4-Sat formulas cannot be distin-
guished from those where only a fraction(15+ε)/16of the clauses can be satisfied
in polynomial time.

We omit the proof since the modifications needed over previous proofs are the
same as those described in the proof of Theorem 9.1.

The situation for Theorem 6.5 is different in that the obtained acceptance prob-
ability in the two-prover game is much smaller as a function ofδ.

THEOREM 9.3. Assume NP6⊆ DTIME(2O(log n log log n)). There is a constant
c > 0 such for

ε = clog log log n

log log n
,

satisfiable E3-CNF formulas cannot be distinguished from E3-CNF formulas where
only a fraction7/8+ ε of the clauses can be satisfied in polynomial time.

PROOF. Chooseu = c log logn and

δ = c′ log log logn

log logn
,

in FSSδ(u) for constantsc andc′ to be determined. By Lemma 6.13, the success
probability of P1 andP2 by the defined strategy is 2−O(δ−1 logδ−1). The soundness of
the two-prover protocol iscu

c and hence for anyc there is a large enoughc′, that
makes this smaller than the success-rate of the obtained strategy. Since the size of
the obtained 3SAT formula is, for small enoughc, 2O(logn log logn) a similar argument
to that given in the proof of Theorem 9.1 establishes the theorem.
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Clearly, we can study the extension to nonconstantε for all the problems we
have encountered. Since the proofs are very similar, this is a rather tedious exercise
and we only state the result.

Theorems 5.5, 5.6, 5.9, 5.14, 5.15, 5.16, 6.1, 6.2, 6.14, 6.16, 6.17, 7.1, 8.1, 8.2, and
8.3. extend along the lines of Theorem 9.1 withε = (logn)−c′ and the assumption
that NP6⊆ DTIME(2O(logn log logn)).

Theorems 6.15, 6.18, 7.6, 7.17, and 7.18 extend along the lines of Theorem 9.3
with ε = (c′ log log logn)(log logn)−1 and the same assumption.

10. Concluding Remarks

The technique of using Fourier transforms to analyze PCPs based on the long code
seems very strong (see also H˚astad [1999]). It does not, however, seem universal
even limited to CSPs. In particular, an open question that remains is to the decide
whether the predicate “not two” is nonapproximable beyond the random assignment
threshold on satisfiable instances. This question is a special case of the more general
program of trying to understand exactly which CSPs are nonapproximable beyond
the random assignment threshold. For predicates on three variables the situation is
completely resolved by the paper of Zwick [1998]. The result is that all predicates
implied by a linear constraint are non-approximable beyond the random assignment
threshold (as also proved in Theorem 5.15).

For predicates on four variables, the situation is less clear and apart from the
information in this paper we refer to the paper by Guruswami et al. [1998]. We
have, at this stage, not made an attempt to systematize the information, but this
would clearly be a worthwhile effort.

It seems like predicates on two variables are not nonapproximable beyond the
random assignment threshold. In the Boolean case, this follows from the approx-
imation results obtained by semidefinite programming [Goemans and Williamson
1995]. Over other ranges, less is known, but in the case of linear constrains, non-
trivial approximation is obtained by Andersson et al. [1999].

Appendix

A. Proof of Lemma6.9

Assume without loss of generality thatW is generated by clauses (Ci )u
i=1 whereCi

contains the variablesx3i−2, x3i−1, andx3i . We think of selectingU as a process
where at stagej we decide which variable fromCj to include intoU . We denote
the j th chosen bykj and thuskj ∈ {3 j − 2, 3 j − 1, 3 j }.

The elements ofβ are during this process divided into groups defined by their
values on the variables put intoU at a given point. More formally, we letG j

x, where
x ∈ {−1, 1} j , be the set of elementsy ∈ β such thatyki = xi for i = 1, 2, . . . j .
Two elements in the same groupG j

x might eventually turn out to have different
projections ontoU due to the fact that they take different values on later coordinates
being put intoU .

For eachG j
x, we have a weightW(G j

x) defined as follows: As long asG j
x contains

at leastε−1 elements with different projections onto the coordinates that has not
yet been decided whether they will be put intoU , we setW(G j

x)= (εd j
x )c whered j

x
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is the number of such different projections. If the number of different projections is
smaller thanε−1, we defineW(G j

x) to be the minimum of 1 andεsj
x wheresj

x is the
total number of elements (with or without different projections) inG j

x. At times in
our calculations, when we are uncertain if a certain group hasε−1 distinct projec-
tions, we use the latter definition ofW(G). This results in a lower weight since the
first definition gives a value that is at least 1 and the second a value that is at most 1.

We study the quantity

F j =
( ∑

x∈{−1,1} j
W
(
G j

x

))−1

and we prove that

E[F j+1|F j ] ≤ F j (59)

for eachj . SinceF0 = (ε|β|)−c andFu = SU
ε (β)−1, the lemma follows from (59).

Let X j = (F j )−1. Our method to prove (59) is to introduce a random variable
Y j that is coupled withX j , such thatY j ≤ X j is always true and furthermore we
establish thatE[(Y j+1)−1|F j ] ≤ F j .

For a stringx of length j let x+ andx− be the two strings of lengthj +1 obtained
from concatenatingx with 1 and−1, respectively. We want to analyzeW(G j+1

x+ )
andW(G j+1

x− ) in terms ofW(G j
x).

The elements ofG j
x naturally fall into eight classes,D j

x,α, whereα ∈ {−1, 1}3
gives the values of a particular element on the variables (x3 j+1, x3 j+2, x3 j+3). Once
kj+1 is chosen it determines which classes formG j+1

x+ and which formG j+1
x− . As

an example ifx3 j+2 is chosen thenG j+1
x+ is the union ofD j

x,111,D
j
x,11−1,D

j
x,−111,

andD j
x,−11−1, while G j+1

x− is G j
x\G j+1

x+ . Let d j
x,α be the number distinct projections

in D j
x,α. We have

d j
x =

∑
α

d j
x,α.

Obviously

d j+1
x+ ≥ max

α
d j

x,α,

where the maximum ranges over allα used to formG j+1
x+ and a similar inequality

holds ford j+1
x− .

The interesting case is whenG j
x has at leastε−1 different projections since

otherwise

W
(
G j

x

) ≤ W
(
G j+1

x+
)+W

(
G j+1

x−
)

and such groups add at least as much toX j+1 as to X j . Since, by convexity,
E[1/X] ≤ 1/a implies E[1/(X + b)] ≤ 1/(a+ b) for a positive random variable
X and positive numbersa andb, we can simply ignore these terms.

Suppose, without loss of generality, thatD j
x,111 is the largest of the eight groups.

We have two cases depending on whetherd j
x,111≥ ε−1. Suppose first thatd j

x,111≥
ε−1. For notational simplicity, letd denoteεd j

x and letd′ be the size of the second
largest group multiplied byε.
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We analyze what happens to the two largest groups. We say that these two classes
are separated iff one becomes part ofG j+1

x+ and the other becomes part ofG j+1
x− .

Define a random variableY j+1
x by

— If the two largest classes are not separated, thenY j+1
x equals max(1, (d− 7d′)c)

if d′ ≤ d/8 and max(1, (d/8)c), otherwise.

— If the two largest classes are separated, thenY j+1
x equals max(1, (d − 7d′)c)+

W(d′) if d′ ≤ d/8, max(1, (d/8)c)+W(d/8), otherwise. HereW(d′) = d′c for
d′ ≥ 1 andW(d′) = d′, otherwise.

In the case whend j
x,111<ε

−1, we defined′′ = min(d− 1, d′, 1) and defineY j+1
x

as follows:

— If the two largest classes are not separated, thenY j+1
x equals 1.

— If the two largest classes are separated, thenY j+1
x equals 1+ d′′.

Finally, we setY j+1 =∑x Y j+1
x . We claim thatX j+1 ≥ Y j+1 and this follows

from

Y j+1
x ≤ W

(
G j+1

x+
)+W

(
G j+1

x−
)
. (60)

To see (60) whend j
x,111≥ ε−1 note that the group to whichD j

x,111 joins has a num-
ber of distinct elements which is at least the maximum ofε−1, ε−1(d − 7d′) and
ε−1d′. Furthermore, in the case the two largest classes are separated, the number
of distinct element (and hence also the number of elements) in the group in which
the second largest class ends up is of size at leastε−1d′.

Whend j
x,111 < ε−1, then sincesj+1

x+ + sj+1
x− = dε−1, if min(sj+1

x+ , s
j+1
x− ) = δε−1

thenW(G j+1
x+ )+W(G j+1

x− ) ≥ 1+min(δ, d− 1). Both cases follow from this fact.
In the first case, we haveδ = 0 and in the second we useδ ≥ d′.

We now establish thatE[1/Y j+1|Fj ] ≤ F j . Let wx be the value ofY j+1
x if the

two large groups are not separated and letwx+bx be the value if they are separated.
We have ∑

x

wx ≤ Y j+1 ≤
∑

x

(wx + bx), (61)

and since any two classes are separated with probability at least 1/3 we also have

E[Y j+1] ≥
∑

x

(
wx + 1

3
bx

)
. (62)

Since the functionf (z) = 1/z is concave and decreasing the random variableZ
that satisfies (61) and (62) and which gives the largest value ofE[1/Z] is the one
which takes the value

∑
x wx which probability 2/3 and the value

∑
x(wx + bx)

with probability 1/3. We conclude that

E

[
1

Y j+1

∣∣∣∣Fj

]
≤ 2

3

(∑
x

wx

)−1

+ 1

3

(∑
x

(wx + bx)

)−1

.
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Since
∑

x bx ≤
∑

x wx (in fact,bx ≤ wx for everyx) and

2

3

1

w
+ 1

3

1

w + b
≤ 1

w + b/5

for any 0≤ b ≤ w we conclude that

E

[
1

Y j+1

∣∣∣∣Fj

]
≤
(∑

x

wx + bx

5

)−1

. (63)

Finally, we claim thatwx + bx/5 ≥ W(G j
x), for anyx. To establish this, let us go

over all possible cases.
If d j

111,x ≥ ε−1 andd′ < 1, then we need to establish

max(1− (d − 7d′)c)+ d′

5
≥ dc.

Since the derivative ofwc is bounded byc when w > 1, this is true provided
c ≤ 1/35.

If d j
111,x ≥ ε−1 andd′ ≥ 1, then we can assume thatd′ ≤ d/8 sinced′ > d/8 is

equivalent tod′ = d/8. We need to establish

max(1, (d − 7d′)c)+ d′c

5
≥ dc.

To see this note that iff (x) = (d − 7x)c + xc/5− dc then, assuming 0< c < 1,
f
′′
(t) ≤ 0 in the entire interval and hence to check thatf is nonnegative in the

interval we only have to check this property at the end-points. Clearly,f (0) = 0
and

f

(
d

8

)
= 6

5

(
d

8

)c

− dc = dc

(
6

5
2−3c − 1

)
.

This last number is nonnegative for 0< c ≤ 1
3 log2(6/5) and hence forc ≤ 1/35.

Finally, whend j
111,x < ε−1, then we need to establish that

1+ d′′

5
≥ dc.

Now d′ ≥ (d−1)/7 and since the derivative ofdc is bounded byc whend ≥ 1 the
inequality is true as long asc ≤ 1/35.

We conclude that (63) is bounded from above by(∑
x

W
(
G j

x

))−1

= Fj ,

and the proof of the lemma is complete.
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ANDERSSON, G., ENGEBRETSEN, L., AND HÅSTAD, J. 1999. A new way to use semidefinite programming
with applications to linear equations mod p. InProceedings of the 10th Annual ACM–SIAM Symposium
on Discrete AlgorithmsBaltimore, Md., Jan. 17–19. ACM New York, pp. 41–50.

ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1998. Proof verification and in-
tractability of approximation problems.J. ACM 45, 3 (May), 501–555.

ARORA, S.,AND SAFRA, S. 1998. Probabilistic checking of proofs: a new characterization of NP.J. ACM
45, 1 (Jan.) 70–122.

BABAI , L., FORTNOW, L., LEVIN, L., AND SZEGEDY, M. 1991b Checking computations in polylogarithmic
time. InProceedings of the 23rd Annual Symposium on the Theory of Computation(New Orleans, La.,
May 6–8). ACM, New York, pp. 21–31.

BABAI , L., FORTNOW, L., AND LUND, C. 1991a Non-deterministic exponential time has two-prover
interactive protocols.Computat. Compl. 1, 3–40.

BAR-YEHUDA, R., AND EVEN, S. 1981. A linear time approximation algorithm for the weighted vertex
cover algorithm.J. Algorithms2, 198–210.
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