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Abstract

We describe a randomized approximation algorithm which
takes an instance of MAX 3SAT as input. If the instance—a
collection of clauses each of length at most three—is satisfi-
able, then the expected weight of the assignment found is at
least 7=8 of optimal. We provide strong evidence (but not a
proof) that the algorithm performs equally well on arbitrary
MAX 3SAT instances.

Our algorithm uses semidefinite programming and may be
seen as a sequel to the MAX CUT algorithm of Goemans and
Williamson and the MAX 2SAT algorithm of Feige and Goe-
mans. Though the algorithm itself is fairly simple, its anal-
ysis is quite complicated as it involves the computation of
volumes of spherical tetrahedra.

Håstad has recently shown that, assuming P 6= NP , no
polynomial-time algorithm for MAX 3SAT can achieve a
performance ratio exceeding 7=8, even when restricted to
satisfiable instances of the problem. Our algorithm is there-
fore optimal in this sense.

We also describe a method of obtaining direct semidefinite
relaxations of any constraint satisfaction problem of the
form MAX CSP(F), where F is a finite family of Boolean
functions. Our relaxations are the strongest possible within
a natural class of semidefinite relaxations.

1 Introduction

MAX SAT is a central problem in theoretical computer sci-
ence. As it is NP-hard and, in fact, MAX-SNP complete (Pa-
padimitriou and Yannakakis [30]), much attention has been
devoted to approximating it. The first approximation algo-
rithm for MAX SAT was proposed by Johnson [23]. John-
son showed that the performance ratio of his algorithm is at
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that the performance ratio of his algorithm is actually 2/3.
Many years passed before Yannakakis [37] obtained a 3/4-
approximation algorithm for the problem. Goemans and
Williamson [17] then obtained a different and somewhat
simpler 3/4-approximation algorithm. Their algorithm is
based on a linear programming relaxation of the problem.

In a major breakthrough, Goemans and Williamson [18]
obtained a 0.878-approximation algorithm for MAX CUT
and MAX 2SAT, the version of MAX SAT in which each
clause is of size at most two. Goemans and Williamson
used semidefinite relaxations of these problems. Feige and
Goemans [15] then obtained a 0.931-approximation algo-
rithm for MAX 2SAT. Using the MAX 2SAT algorithms of
Goemans and Williamson or of Feige and Goemans, slight
improvements in the performance ratio for general MAX
SAT can be made. Goemans and Williamson [18] obtained
a 0.758 bound for MAX SAT. Asano [4] (following [5])
slightly improved this bound to 0.770.

While semidefinite relaxations yield a huge improvement
for MAX 2SAT (from 0.75 to 0.931), they give, so far, only
a minor improvement for MAX SAT (from 0.75 to 0.770).
The reason for this seems to be that the semidefinite relax-
ations used till now do not directly handle clauses of length
three or more.

An attempt to squeeze more from the MAX 2SAT algo-
rithm of Feige and Goemans [15] was made by Trevisan,
Sorkin, Sudan and Williamson [34]. They used an op-
timal gadget, a concept formalized by Bellare, Goldre-
ich and Sudan [7], to reduce MAX 3SAT (the problem
in which each clause has length at most three) to MAX
2SAT, thereby obtaining a 0.801-approximation algorithm
for MAX 3SAT. Trevisan [33] recently obtained a 0.826-
approximation algorithm for satisfiable instances of MAX
3SAT, and a 0.8-approximation algorithm for satisfiable in-
stances of MAX SAT.

In another major breakthrough, following a long line of re-
search by many authors [16, 3, 2, 8, 7], Håstad [20] recently
showed that MAX E3SAT, the version of the MAX SAT
problem in which each clause is of length exactly three, can-
not be approximated in polynomial time to within a ratio
greater than 7/8, unless P = NP . Håstad shows, in fact,
that no polynomial-time algorithm can have a performance
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guarantee of more than 7/8 even when restricted to just sat-
isfiable instances of the problem. Håstad’s result is easily
seen to be tight: a random assignment satisfies, on average,
7/8 of the total weight of a MAX E3SAT instance.

In this paper we present a new approximation algorithm for
MAX 3SAT. The algorithm takes as input an instance of
MAX 3SAT and runs in time bounded by a polynomial in
the length of this instance. If the instance is satisfiable, the
expected weight of the assignment the algorithm returns is at
least 7=8of the weight of any assignment to the instance. We
conjecture (but have only strong evidence, not a proof) that
the same performance is achieved on arbitrary MAX 3SAT
instances. Our algorithm can possibly be derandomized us-
ing the techniques of Mahajan and Ramesh [28].

The novelty of our algorithm is that it uses a direct semidef-
inite relaxation of MAX 3SAT. The algorithm itself is quite
simple. The analysis relies, however, on two inequali-
ties involving the volume function of spherical tetrahedra
(Lemma 4.4 and Conjecture 4.5 below). Proving these two
inequalities seems, at least for now, extremely complicated.
We provide a computer-assisted proof of the first inequality.
For the second inequality we are able to present only strong
numerical evidence. We are currently working on a simpler
proof of the first inequality and a complete, and hopefully
simple, proof of the second inequality. The first inequality
alone implies that the performance ratio of the algorithm for
satisfiable instances of MAX 3SAT is at least 7/8.

We also describe a method of obtaining direct semidefi-
nite relaxations of any constraint satisfaction problem of the
form MAX CSP(F) or MIN CSP(F), where F is a finite
family of Boolean functions. Such problems were studied
by Khanna, Sudan and Williamson [27] and by Khanna, Su-
dan and Trevisan [26]. Our relaxations are the strongest pos-
sible within a natural class of semidefinite relaxations. This
class includes almost all the semidefinite relaxations pro-
posed to date for these problems.

We hope that the results presented here pave the way for sim-
ilar improvements for MAX SAT.

2 MAX 3SAT

An instance of MAX 3SAT in n variables is an array (wijk)
of nonnegative weights, where 0 � i; j; k � 2n. A valid
assignment x = (x0; x1; : : : ; x2n) is a 0-1 vector such thatx0 = 0 and xn+i = �xi, for 1 � 1 � n. A clause hi; j; ki is
satisfied by x iff xi_xj_xk = 1, i.e., if at least one of xi, xj
or xk is assigned the value 1. The weight of a valid assign-
ment is the sum of the weights of all the satisfied clauses,
i.e., weight(x) = Pi;j;k wijk(xi _ xj _ xk) : The op-
timal solution to the MAX 3SAT instance is an assignment
of maximum weight. Note that we always require x0 = 0.
This means that some of the clauses are effectively of length

Maximize Xi;j;kwijk � zijksubject tozijk � 4�(v0+vi)�(vj+vk)4 8 0 � i; j; k � 2nzijk � 4�(v0+vj)�(vi+vk)4 8 0 � i; j; k � 2nzijk � 4�(v0+vk)�(vi+vj)4 8 0 � i; j; k � 2nzijk � 1 8 0 � i; j; k � 2nvi 2 Sn 8 0 � i � 2nvn+i = �vi 8 1 � i � n
Figure 1. A direct semidefinite relaxation of a
MAX 3SAT instance.

two or one (or zero).

3 The New Approximation Algorithm for
MAX 3SAT

A direct semidefinite relaxation of a generic MAX 3SAT in-
stance is presented in Figure 1. In this relaxation, we attach
a unit vector vi to each Boolean variable, 1 � i � n, and a
scalar zijk to each clause. We also have a special vector v0
that corresponds to FALSE. The vectors v0; v1; : : : ; vn are
vectors on the Euclidean unit sphere Sn in Rn+1.
The scalar zijk is meant to get the value 1 if the clause is
satisfied and 0 if it is not satisfied. Definerelax(v0; vi; vj ; vk) =min( 4�(v0+vi)�(vj+vk)4 ; 4�(v0+vj )�(vi+vk)44�(v0+vk)�(vi+vj)4 ; 1 ) :
The constraints on zijk in the relaxation are equivalent to the
constraint zijk � relax(v0; vi; vj ; vk).
It is fairly easy to see that program presented in Figure 1 is
equivalent to a semidefinite program. All we have to do is
replace each inner product vi � vj by a scalar xij , add the
constraints xii = 1, and require that the matrix (xij) be pos-
itive semidefinite. The constraint vn+i = �vi is equivalent
to vi � vn+i = �1. (The zijk’s can be assumed nonnega-
tive but need not satisfy any semidefiniteness constraints.)
Why is it a relaxation of MAX 3SAT? Let x 2 f0; 1g2n+1
be a valid assignment. Let vi = (�1; 0; : : : ; 0) if xi = 0
and vi = (1; 0; : : : ; 0) if xi = 1. Let v0 = (�1; 0; : : : ; 0).
It is easy to check (see Table 1) that relax(v0; vi; vj ; vk) =xi_xj_xk : The program described in Figure 1 is therefore
a relaxation of MAX 3SAT.
It is worthwhile noting that if i = j = 0 and k 6= 0,
i.e., the clause hi; j; ki is in fact a clause of length one, then
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vi vj vk ui uj uk�1 �1 �1 0 0 0�1 �1 1 1 1 1�1 1 �1 1 1 1�1 1 1 2 1 11 �1 �1 1 1 11 �1 1 1 2 11 1 �1 1 1 21 1 1 1 1 1

Table 1. The components of relax(v0; vi; vj ; vk)
as a function of vi; vj ; vk 2 f�1;+1g, wherev0 = �1.

the relaxation of the clause hi; j; ki simplifies to the expres-
sion relax(v0; v0; v0; vk) = 1�v0�vk2 ; and if i = 0 butj; k 6= 0 and j 6= k, i.e., the clause hi; j; ki is of length
two, the relaxation simplifies to relax(v0; v0; vj ; vk) =minn 3�v0�vj�v0�vk�vj �vk4 ; 1 o : For clauses of length

one we get, therefore, exactly the MAX CUT relaxation of
Goemans and Williamson [18]. For clauses of length one
and two we get, almost exactly, the MAX 2SAT relaxation
used by Feige and Goemans [15].

The expression relax(v0; vi; vj ; vk) includes 1 as one of its
terms. This is not needed for obtaining a relaxation. It is
used, however, in showing that the relaxation obtained is a
good one. Where does this relaxation comes from? This is
explained in Section 5.

The semidefinite program described above can be solved in
polynomial time. To be more precise, an (almost) feasible
point whose cost is within an additive error of � of optimal
can be found in time polynomial in the size of the problem
and log 1� . (See Alizadeh [1], Grötschel et al. [19], Nesterov
and Nemirovskii [29], Pataki [31] and Vaidya [35], and the
survey paper of Vandenberghe and Boyd [36].) It follows
easily that if the value of the optimal solution is opt, then a
feasible solution, i.e., a sequence of unit vectors v0; : : : ; vn
and a set of scalars zijk , that satisfy all the constraints and for
which

Pijk wijkzijk � (1��)opt can also be found in time
polynomial in the size of the problem and log 1� . We need to
“round” the vectors v0; : : : ; vn to truth values. We use the
simple randomized rounding procedure introduced by Goe-
mans and Williamson [18] to round the vectors v0; :::; vn
to truth values. We pick a random hyperplane that passes
through the origin. The Boolean variable xi is assigned the
value 1 if and only if the random hyperplane separates vi
from v0.

In the next section we analyze the performance ratio of the
new approximation algorithm assuming that the semidefi-
nite relaxation given in Figure 1 can be solved exactly. Un-
fortunately, the semidefinite relaxations cannot always be
solved exactly, at least because the optimal solution is not

always rational. Suppose that the performance ratio of the
algorithm when the semidefinite program is solved exactly
is �. Let I be an instance of the problem of size m. Letopt(I) be the value of an optimal solution to the semidef-
inite relaxation of the instance I . If for every instance I , the
value of the approximate solution found for the relaxation is
at least (1� �)opt(I), then the performance ratio of the al-
gorithm that uses approximate solutions is at least (1� �)�.
We can take � to be an arbitrarily small constant, or even� = 1=(W � 2m), where W is the sum of the weights in the
instance I , and m is the number of clauses in the instance,
and still have a polynomial-time algorithm.
There is, however, a simple way of getting a performance
ratio of at least � even when the semidefinite relaxation is
not solved exactly. Let I be an instance of MAX 3SAT in
the variables x1; : : : ; xn. We may assume, w.l.o.g., that x1
appears both positively and negatively in the instance. LetI0 be the instance obtained from I by assigning x1 the value
0. Let I1 be the instance obtained from I by assigning x1 the
value 1. Solve both instances I0 and I1 using the approxima-
tion algorithm that achieves a performance ratio of at least(1��)�, with � = (1��)=W , compare the values of the two
assignments obtained and return the better one. We claim
that the performance ratio of this algorithm is at least �. To
see this, assume, w.l.o.g., that there is an optimal assignment
of I in which x1 is assigned the value 0. Let A be the total
weight of the clauses of I in which x1 appears negatively.
Then the value of the assignment found by solving I0 is at
least A + (1 � �)� � (opt(I) � A) � � � opt(I) ; where
we have used the fact that A � 1 and opt(I) �W .

4 The Performance Ratio of the Algorithm

All that remains is to analyze the performance ratio of the
algorithm. We do this in two stages. We first analyze the
performance of the algorithm for clauses of size one of two.
The analysis in this case is identical to the analysis of Goe-
mans and Williamson [18]. We describe the analysis here
as a “warm up” for the much more complicated analysis for
clauses of length three.4.1 Clauses of Length 1 and 2
A clausexi is relaxed into (1�v0�vi)=2. The probability that
a random hyperplane separates v0 and vi is �=�, where � is
the angle between the two vectors v0 and vi, cos � = v0 � vi.
The performance ratio of the algorithm for clauses of size
one is therefore at least �1 = min0���� 2� �1�cos � >0:87856 > 7=8 :
Consider now a clause of length two, e.g., x1 _ x2. The
clause x1 _ x2 is relaxed into relax(v0; v1; v2) =3�v0�v1�v0�v2�v1�v24 : (We ignore here the minimum with 1
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in the definition of relax(v0; v1; v2).) Given three vectorsv0; v1 and v2, what is the probability that the rounded assign-
ment satisfies the clause x1 _ x2? This is exactly the prob-
ability that a random hyperplane separates at least one of v1
and v2 from v0, which equals 1 � prob(v0; v1; v2), whereprob(v0; v1; : : : ; vk)= Pr� v0; v1; : : : ; vk lie on the same

side of a random hyperplane

� :
The performance ratio of the algorithm for clauses of length
two is at least �2 = minv0;v1;v22Sn 1�prob(v0;v1;v2)relax(v0;v1;v2) :
What is 1 � prob(v0; v1; v2)? There is a simple way
of working out this probability: 1 � prob(v0; v1; v2) =12 � (prob(v0jv1) + prob(v0jv2) + prob(v1jv2)), whereprob(vijvj) = 1�prob(vi; vj) is the probability that a ran-
dom hyperplane separates vi and vj . We saw already thatprob(vijvj) = �ij� , where �ij = arccos(vi � vj) is the angle
between the vectors vi and vj . Thus�2 = min0��ij�� 12� (�01 + �02 + �12)3� cos �01 � cos �02 � cos �124= 2� min0��ij�� �01 + �02 + �12(1� cos �01) + (1� cos �02) + (1� cos �12) ;
and it is easy to see, therefore, that �2 = �1 > 0:87856.4.2 Clauses of Length 3
Consider now a clause of length 3, say x1 _ x2 _ x3. The
performance ratio of the algorithm for clauses of length 3
is at least �3 = minv0;v1;v2;v32Sn 1�prob(v0;v1;v2;v3)relax(v0;v1;v2;v3) :
The performance ratio of the algorithm for satisfied clauses
of length 3 is at least �03 = min [1� prob(v0; v1; v2; v3)];
where the minimum is over v0; v1; v2; v3 2 Sn such thatrelax(v0; v1; v2; v3) = 1. The simple way of evaluating1�prob(v0; v1; v2) cannot be used, unfortunately, for eval-
uating 1�prob(v0; v1; v2; v3). We have to use, therefore, a
different way that relies more heavily on spherical geometry.

A random hyperplane that passes through the origin is con-
veniently chosen by choosing its normal vector r uniformly
at random in Sn. Note thatprob(v0; v1; v2; v3) =Pr[ sgn(v0 �r) = sgn(v1 �r) = sgn(v2 �r) = sgn(v3 �r) ]= 2 � Pr[ v0 �r � 0 ; v1 �r � 0 ; v2 �r � 0 ; v3 �r � 0 ] :
As we are only interested in the inner products v0�r, v1�r, v2�r and v3 �r, we are only interested in the projection of r into
the 4-space spanned by v0; v1; v2 and v3. It is not difficult to
see that r0, the normalized projection of r into this 4-space,
is uniformly distributed on the unit sphere of this 4-space.

We may assume, therefore, that v0; v1; v2; v3; r 2 S3, the
unit sphere in R4.
Let v0; v1; v2; v3 2 S3. The spherical tetrahedrontetra(v0; v1; v2; v3) is defined as follows: tetra(v0; v1; v2;v3) = fP3i=0 �ivi j �i � 0 ; P3i=0 �ivi 2S3 g: A spherical tetrahedron is said to be nondegen-
erate if v0; v1; v2; v3 are linearly independent. In this
case, the vectors v0; v1; v2; v3 are said to be the vertices
of tetra(v0; v1; v2; v3). If tetra(v0; v1; v2; v3) is a non-
degenerate spherical tetrahedron, then its polar tetrahe-
dron, denoted by tetra0(v0; v1; v2; v3), is defined to betetra(u0; u1; u2; u3), where u0; u1; u2; u3 2 S3 satisfyui � vi > 0, for 0 � i � 3, and ui � vj = 0, for0 � i; j � 3, i 6= j. As v0; v1; v2; v3 are linearly inde-
pendent, this determines u0; u1; u2; u3 uniquely. It is easy
to see that the polar tetrahedron can be defined alternatively
as tetra0(v0; v1; v2; v3) = f r 2 S3 j vi � r � 0g : Thus,prob(v0; v1; v2; v3) is simply twice the probability that a
random unit vector r 2 S3 falls into the polar tetrahedrontetra0(v0; v1; v2; v3). This probability is proportional to the
volume of the tetrahedron. As the volume of S3 is 2�2 (see
Berger [9], p. 261), we getprob(v0; v1; v2; v3) = volume(tetra0(v0; v1; v2; v3))=�2 :
While computing areas of spherical triangles in S2 is a rela-
tively simple matter, Girard’s formula (see [10, p. 278]) stat-
ing that the area of a spherical triangle with angles �; � and (on S2) is �+�+��, computing volumes of spherical
tetrahedra is a much more complicated matter. This subject
was investigated in the previous century by Schläfli [32] and
in the present one by Coxeter [13], Böhm and Hertel [11]
and Hsiang [21]. Unfortunately, no closed-form formula for
the volume is known. As the volume function is related to
the dilogarithm function (see Kellerhals [25]), possibly no
closed-form formula exists.

A spherical tetrahedron can be characterized by either
the six angles �ij = arccos(vi � vj) between the
unit vectors that correspond to its vertices—note that �ij
is also the distance between vi and vj on the sphere—
or by its six dihedral angles. The dihedral angle along
an edge of the tetrahedron is the angle between the two
“faces” that meet at the edge; see Hsiang [22] for a for-
mal definition. Let Vol(�01; �02; �12; �03; �13; �23) be the
volume of a spherical tetrahedron with dihedral angles�01; �02; �12; �03; �13; �23. While the volume itself may
be nonelementary, its partial derivatives have a surprisingly
simple form (see Appendix A). We need the following re-
lation between the lengths of the sides of a spherical tetra-
hedron and the dihedral angles of the corresponding polar
tetrahedron.

Lemma 4.1 If �01; :::; �23 are the dihedral angles and�01; :::; �23 are the side lengths of a spherical tetrahedron
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T , and �001; :::; �023 and �001; :::; �023 are the dihedral angles
and side lengths of the spherical tetrahedron T 0 polar to T ,
then �001 = � � �23 and �001 = � � �23. (Other equalities
such as �013 = � � �02 follow by symmetry.)

This is a classical result in spherical geometry. For a proof,
see Hsiang [22, eqn. (41)]. We now have

Theorem 4.2 �03 = 7=8:
Conjecture 4.3 �3 = 7=8:
It is easy to see that�3 � �03 � 78 . The upper bound on�03 is
obtained by considering the case in which v0; v1; v2 and v3
are all perpendicular (this is possible as we are in R4). It is
easy to verify that in that case relax(v0; v1; v2; v3) = 1 and
that prob(v0; v1; v2; v3) = 1=8.

Proof of Theorem 4.2: We have to show that for every v0;v1; v2; v3 2 S3 with relax(v0; v1; v2; v3) = 1, 1�prob(v0;v1; v2; v3) � 78 , or equivalently prob(v0; v1; v2; v3) � 18 :
Note that relax(v0; v1; v2; v3) = 1 implies that (v0 + v1) �(v2+v3) � 0, (v0+v2)�(v1+v3) � 0, (v1+v2)�(v0+v3) �0. Let �0ij = arccos(vi � vj). Let �ij be the dihedral angles
of the polar spherical tetrahedron. Nowprob(v0; v1; v2; v3) = Vol(�01; �02; �12; �03; �13; �23)=�2:
Thus, using the relation between the �0ij’s (in the primal) and�ij ’s (in the polar) given by Lemma 4.1, we infer that it is
enough to prove the following:

Lemma 4.4 Let �01; �02; �12; �03; �13; �23 be the six dihe-
dral angles of a spherical tetrahedron. Ifcos�02 + cos�13 + cos�03 + cos�12 � 0 ;cos�01 + cos�23 + cos�03 + cos�12 � 0 ;cos�01 + cos�23 + cos�02 + cos�13 � 0 ;
then Vol(�01; �02; �12; �03; �13; �23) � �28 :
A sketch of the computer-assisted proof of Lemma 4.4 ap-
pears in Appendix B. 2
Beginning of a possible proof of Conjecture 4.3: As
we have proved Theorem 4.2, we may assume here thatrelax(v0; v1; v2; v3) < 1. By symmetry, we may assume
w.l.o.g. that relax(v0; v1; v2; v3) = 4�(v0+v2)�(v1+v3)4 :
Simple algebra and the fact that relax(v0; v1; v2; v3) < 1
imply that to prove Conjecture 4.3, it suffices to prove

Conjecture 4.5 Let �01; �02; �12; �03; �13; �23 be the six
dihedral angles of a spherical tetrahedron. Ifcos�01 + cos�23 + cos�03 + cos�12 � 0 ;cos�03 + cos�12 � cos�02 � cos�13 � 0 ;cos�01 + cos�23 � cos�02 � cos�13 � 0 ;

then Vol(�01; �02; �12; �03; �13; �23)+ 7�232 � (cos�01 + cos�12 + cos�23 + cos�03) � �28 :
The evidence that we have in support of Conjecture 4.5 ap-
pears in Appendix C. 2
5 Semidefinite Relaxations of Constraint Sat-

isfaction Problems

Let f : f�1; 1gk ! f0; 1g be a Boolean function. For con-
venience we use different encodings of the truth values at the
input and the output of f . At the input, we use �1 to repre-
sent FALSE and 1 to represent TRUE. At the output, we use
0 to represent FALSE and 1 to represent TRUE.
An instance of the problem MAX CSP(f) is a collec-
tion f ( f(yi1; : : : ; yik) ; wi ) gmi=1 of weighted constraints,
where yij 2 f0; 1; x1; : : : ; xn;�x1; : : : ;�xng. The goal
is to find an assignment of �1 values to the variablesx1; : : : ; xn that maximizes the total weight of the clauses
that evaluate to 1. The MAX CSP(f) problem is therefore
similar to the MAX SAT problem except that the constraints
are now of the form f(yi1; : : : ; yik) and not of the formyi1 _ � � � _ yik. The problem MAX CSP(F), where F is
a finite collection of Boolean functions, can also be defined.
There is no precise definition of the term “relaxation.” Here
we propose a definition of a class of semidefinite relaxations
which we call “standard semidefinite relaxations.”

Definition 5.1 (standard semidefinite relaxations)
A standard semidefinite relaxation of an instance I of
MAX CSP(f) is a semidefinite program that has the follow-
ing properties:

1. The variables of the program are: a unit vector vi cor-
responding to each variable xi, and a scalar zj corre-
sponding to each clause, and a unit vector v0 (repre-
senting FALSE).

2. The objective function to be maximized is
Pmj=1 wjzj .

3. For every clause f(yi1; : : : ; yik) of I , the program con-
tains a set of linear inequalities involving inner prod-
ucts vi � vj of the vectors that correspond to the vari-
ables yi1; : : : ; yik, and the scalar z that corresponds to
the clause. All the constraints of the program are of this
form.

4. For every (x1; : : : ; xn) 2 f�1; 1gn, assign vi the vec-
tor (xi; 0; : : : ; 0), assign v0 the vector (�1; 0; : : : ; 0),
and assign zj the value 1 if the jth clause is satisfied by
this assignment and the value 0, otherwise. Then this
assignment is a feasible point of the program.
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Condition (4) insures that the program is indeed a relaxation
and that the value of the program is at least the value of the
instance I . Condition (3) says, in effect, that the program
“considers” the Boolean constraints one at a time. (Note the
similarity of this to the gadgets of Bellare et al. [7] and Tre-
visan et al. [34].) Almost all semidefinite relaxations of
constraint satisfaction problems proposed to date are stan-
dard, or can be made standard with only minor modification.
Exceptions are the relaxations of MAX CUT proposed by
Feige and Goemans (See Section 5 of [15]), that impose con-
straints involving up to k vertices, for varying values of k.
The definition of standard relaxations may be generalized
appropriately.

Consider the Boolean functions OR2(x1; x2) = x1 _ x2,AND2(x1; x2) = x1 ^ x2, XOR2(x1; x2) = x1 � x2, andNAE3(x1; x2; x3) = (x1�x2)_ (x1�x3). With our input
and output conventions,OR2 = 3+x1+x2�x1x24 ; AND2 = 1+x1+x2+x1x24XOR2 = 1�x1x22 ; NAE3 = 3�x1x2�x1x3�x2x34
All these functions can be represented as degree-2 polyno-
mials over the real numbers. Obtaining (standard) semidef-
inite relaxations for these functions is therefore relatively
straightforward. To each variable xi, we attach a unit vectorvi. Every product xixj is now replaced by the inner prod-
uct vi � vj . To handle linear terms, we introduce another
unit vector, v0, that represents FALSE. A linear term xi is
now replaced by the inner product�v0 �vi. By doing so, we
obtain the semidefinite relaxations of MAX CUT and MAX
2SAT used by Goemans and Williamson [18]. Are these the
best standard relaxations that we can obtain? We answer this
question shortly.

To obtain a semidefinite relaxation of MAX 3SAT, we need
a semidefinite relaxation of the function OR3(x1; x2; x3).
Unfortunately, this function cannot be represented as a
degree-2 polynomial and the simple approach described
above cannot be used.

Let f : f�1; 1gk ! f0; 1g be any Boolean function.
We now describe a way of obtaining the strongest standard
semidefinite relaxations for instances of MAX CSP(f).
Given a vector x = (x1; : : : ; xk) 2 f�1; 1gk, we letprod(x) = (x0x1; x0x2; : : : ; xk�1xk) 2 f�1; 1g k(k+1)2 ,
where x0 = �1. Definepolytope(f) = conv(f(prod(x); f(x)) j x 2 f�1; 1gk g);
where (prod(x); f(x)) denotes a vector of length k(k+1)2 +1
obtained by appending f(x) to prod(x), andconv( fv1; : : : ; v`g ) = fX̀i=1 �ivi j �i � 0 ; X̀i=1 �i = 1 g

Note that polytope(f) is a polytope in IR k(k+1)2 +1. We de-
fined polytope(f) by giving its 2k vertices. Alternatively,polytope(f), like any other polytope, can be defined as the
intersection of a finite number of halfspaces. In other words,
there exists an m � (k(k + 1)=2 + 1) matrix A and a vec-

tor b such that polytope(f) = fx 2 R k(k+1)2 +1 jAx � b g : Let (A; b) be such a pair with m minimal. (Ifpolytope(f) is full-dimensional, we can take the rows of A
and entries of b to correspond to the facets of the polytope.)
We refer to the pair (A; b) as a set of defining hyperplanes
of polytope(f). Each defining hyperplane is an inequality
of the form

Pi<j �ijxij + �z � , where xij is a vari-
able corresponding to the position occupied by the productxixj , and z is a variable that corresponds to the last position
in (prod(x); f(x)).
As an example, the eight facets of polytope(OR3) are given
in Figure 2. The last four facets are exactly the four con-
straints we used in the relaxation of MAX 3SAT given in
Figure 1. The first four facets give lower bounds, rather than
upper bounds, on z and they can therefore be ignored. The
facets that give lower bounds on z can be eliminated by con-
sidering the polytopepolytope0(OR3) =� (x01; : : : ; x23; z0) �� (x01; : : : ; x23; z) 2 polytope(OR3)z0 � z 	
whose 20 facets are given in Figure 3. The first 16 facets
are just the “triangle inequalities” used in the MAX 2SAT
algorithm Feige and Goemans [15]. They are in fact facets
of the cut polytope (see [6]).

We now define canonical semidefinite relaxations for all in-
stances of MAX CSP(f). We later show that they are the
strongest standard semidefinite relaxations possible.

Definition 5.2 (Canonical semidefinite relaxations)
A canonical semidefinite relaxation of an instance I of
MAX CSP(f) is a semidefinite program obtained in the fol-
lowing way.

1. The variables of the program are: a unit vector vi cor-
responding to each variablexi, a scalar zj correspond-
ing to each clause, and a unit vector v0 representing
FALSE.

2. The objective function to be maximized is
Pmj=1 wjzj .

3. For every clause f(y1; : : : ; yk) of I , and for every
defining hyperplane

Pi<j �ijxij + �z �  ofpolytope(f), from a fixed family of defining hyper-
planes, the program contains the inequalityXi<j �ij (ui � uj) + � z �  :
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�x01 �x02 �x12 �4z � �3�x01 �x03 �x13 �4z � �3�x02 �x03 �x23 �4z � �3�x12 �x13 �x23 �4z � �3+z � 1+x01 +x02 +x13 +x23 +4z � 4+x01 +x12 +x03 +x23 +4z � 4+x02 +x12 +x03 +x13 +4z � 4
Figure 2. The facets of polytope(OR3).�x01 +x02 +x12 � 1+x01 �x02 +x12 � 1+x01 +x02 �x12 � 1�x01 �x02 �x12 � 1�x01 +x03 +x13 � 1+x01 �x03 +x13 � 1+x01 +x03 �x13 � 1�x01 �x03 �x13 � 1�x02 +x03 +x23 � 1+x02 �x03 +x23 � 1+x02 +x03 �x23 � 1�x02 �x03 �x23 � 1�x12 +x13 +x23 � 1+x12 �x13 +x23 � 1+x12 +x13 �x23 � 1�x12 �x13 �x23 � 1+z � 1+x01 +x02 +x13 +x23 +4z � 4+x01 +x12 +x03 +x23 +4z � 4+x02 +x12 +x03 +x13 +4z � 4
Figure 3. The facets of polytope0(OR3).

Here u0 = v0, ui is the vector that corresponds to the
literal yi (if yi = xj , then ui = vj , if yi = �xj , thenui = �vj , if yi = 0, then ui = v0, and ui = �v0 ifyi = 1, and z is the scalar corresponding to the clause.
All the constraints of the program are of this form.

The simple proof of the following lemma is omitted.

Lemma 5.3 A canonical semidefinite relaxation of an in-
stance I of MAX CSP(f) is a standard semidefinite relax-
ation.

The number of vertices of polytope(f) is exponential in k,
the number of variables of f . The number of facets, or
defining hyperplanes, of polytope(f) may be even larger.
However, for every fixed constraint satisfaction problem
MAX CSP(f), k is fixed, and therefore the size of a canon-
ical semidefinite relaxation of an instance I is linear in the

size of the instance.
We now show that canonical semidefinite relaxations are the
strongest standard semidefinite relaxations possible. Given
an instance I , we let opt(I) be the value of an optimal so-
lution of I . Given a semidefinite program P , we let opt(P )
be the value of an optimal solution of P .

Theorem 5.4 Let I be an instance of MAX CSP(f). Let P
be a canonical semidefinite relaxation of I and let Q be
any standard semidefinite relaxation of I . Then, any feasi-
ble point of P is also a feasible point of Q. In particular,opt(I) � opt(P ) � opt(Q).
Proof: Let p = (v0; : : : ; vn; z1; : : : ; zm) be a feasible point
of P . Suppose, for the sake of contradiction, that the point p
is not a feasible point of Q, so p violates an inequality of Q.
Assume w.l.o.g. that this inequality is one of the inequali-
ties attached to the Boolean constraint f(x1; : : : ; xk). Letp0 = (v0; : : : ; vk; z) be the restriction of p to the vectors
and the scalar that appear in the inequalities attached to this
constraint. Let p00 = (x0;1; : : : ; xk�1;k; z) = (v0 �v1; v0 �v2; : : : ; vk�1 �vk; z). As p is a feasible point of P , we infer
that p00 2 polytope(f). Thus p00 is a convex combination
of the vertices of polytope(f). On the other hand, p00 vio-
lates at least one of the constraints of Q. Thus at least one
of the vertices of polytope(f) violates this constraint of Q
and this contradicts condition 4 of the definition of standard
semidefinite relaxations. 2
By computing polytope(XOR2) and polytope(OR2), we
can infer that the semidefinite relaxation of MAX CUT
given by Goemans and Williams [18] is a canonical semidef-
inite relaxation of MAX CUT. Their relaxation of MAX
2SAT, however, is not canonical, as it does not include the
triangle inequalities. Feige and Goemans [15] include these
inequalities in their relaxation and obtain a canonical re-
laxation. It is interesting to note that while the triangle in-
equalities help for MAX 2SAT, it seems that they are not re-
quired for getting an optimal 7/8 approximation algorithm
for MAX 3SAT.
The facets of polytope(MAJ3) can apparently
be used to obtain a 2/3-approximation algorithm for MAX
CSP(MAJ3). For this and some other results, see [38].

6 Concluding Remarks

While we described a way of getting the strongest semidefi-
nite relaxations—at least in some natural sense—for all con-
straint satisfaction problems of the form MAX CSP(f), we
do not automatically get good approximation algorithms for
all of them. Rounding the optimal solutions of the semidef-
inite programs using a random hyperplane does not work
well for all problems.
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A Volumes of Spherical Tetrahedra

Let v0; v1; v2; v3 2 S3 be the vertices of a nondegenerate
spherical tetrahedron. Let �ij = arccos(vi �vj) be the angle
between vi and vj , or, equivalently, the length of the edge ij,
as measured on the sphere. The dihedral angle �ij is the an-
gle between the two “faces” that meet at the edge ij.

Definition A.1 (high-dimensional inner prod-
uct; see Hsiang [22, eqn. (1)]) Let a1; : : : ; ak and b1; : : : ;bk be two sequences of vectors all of the same length. De-
fine h a1 ^ � � � ^ ak ; b1 ^ � � � ^ bk i = det(fai � bjg) , andja1 ^ � � � ^ akj = h a1 ^ � � � ^ ak ; a1 ^ � � � ^ ak i1=2 :
Lemma A.2 Let v0; v1; v2; v3 2 S3 be the vertices of a
nondegenerate spherical tetrahedron with dihedral angles�01; : : : ; �23. Let (i; j; k; `) be a permutation of (0; 1; 2; 3).
Then cos�ij = h vi ^ vj ^ vk ; vi ^ vj ^ v` ijvi ^ vj ^ vkj jvi ^ vj ^ v`j :
Although the function Vol(�01; �02; �12; �03; �13; �23),
giving the volume of a spherical tetrahedron as a function
of its six dihedral angles, is complicated, we have

Theorem A.3 (Schläfli (1858) [32])
@Vol@�ij = �ij2 :

B Proof of Lemma 4.4

Here we provide a computer-assisted proof of Lemma 4.4.
We have to prove that Vol(�01; �02; �12; �03; �13; �23) ��2=8 subject tocos�01 + cos�23 + cos�03 + cos�12 � 0;cos�01 + cos�23 + cos�02 + cos�13 � 0;cos�02 + cos�13 + cos�03 + cos�12 � 0;
and subject to the condition that �01; : : : ; �23 is a valid
sequence of dihedral angles. It is easy to verify that�01; : : : ; �23 is a valid sequence if and only if the following
matrix is positive semidefinite:2664 1 � cos�23 � cos�13 � cos�12� cos�23 1 � cos�03 � cos�02� cos�13 � cos�03 1 � cos�01� cos�12 � cos�02 � cos�01 1 3775 :
If the minimal eigenvalue of this 4 � 4 matrix is 0, then
the matrix is singular, and the vectors v0; v1; v2 and v3 are
linearly dependent. They may assumed therefore to lie inR3. Instead of computing volumes in S3, we then have to
compute areas in S2. In this case, which is much easier
than the general case, it is not difficult to show that Vol �(1 � �1)�2, where �1 ' 0:87856 is the performance ra-
tio of the Goemans-Williamson MAX CUT algorithm. We
will henceforth assume that the 4 � 4 matrix is positive-
definite. By Theorem A.3, the volume is an increasing func-
tion of the dihedral angles. Simple perturbation arguments
allow us, w.l.o.g., to reduce to the problem of proving thatVol(�01; :::; �23) � �2=8 ifcos�01 + cos�23 + cos�03 + cos�12 = 0 ;cos�01 + cos�23 + cos�02 + cos�13 = 0 ;cos�02 + cos�13 + cos�03 + cos�12 � 0 :
Symmetry arguments allow us to assume w.l.o.g. that �02 ��12 � �03 � �13.

We define the following sequence of three points:�0 = (�01; �02; �12; �03; �13; �23);�1 = (�01; �12; �12; �03; �03; �23);�2 = (�01; �; �; �; �; �23);
where cos� = (cos�02 + cos�13)=2 = (cos�12 +cos�03)=2 = �(cos�01 + cos�23)=2 � 0: One can show
that �1 and �2 are valid sequences of dihedral angles and
that they both satisfy the hypotheses of Lemma 4.4.
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We next show that Vol(�0) � Vol(�1) � Vol(�2) by
definingf�0;�00(t) = Vol(arccos(cos�0 + t(cos�00 � cos�0)))
for two feasible points �0 and �00, by showing that forfi(t) = f�i�1;�i(t), f 0i(t) � 0 for 0 � t � 1 and i = 1; 2.
In fact, it is enough to prove that f 0i(0) � 0 for i = 1; 2,
as �i�1 is just like any other point on the path from �i�1
to �i. (This part of the proof does not rely on a computer.)
We calculate the derivative of fi(t) explicitly using Theo-
rem A.3 and Lemma A.2. Some calculus and lots of ugly
computations eventually lead us to f 0i(0) � 0 for i = 1; 2.
This completes the proof that Vol(�0) � Vol(�2).
Now let Vol2(�01; �23) = Vol(�01; �; �; �; �; �23) where� = arccos(� cos�01+cos�232 ) : It is easy to see that ifcos�01 + cos�23 � 0 then (�01; �; �; �; �; �23) is a valid
sequence of dihedral angles. It is hence enough to prove

Lemma B.1 For every �01; �23 such thatcos�01 + cos�23 � 0, Vol2(�01; �23) � �2=8.

Proof: Let �� = arccos(1�2 cos �8 ) ' 2:58254. We break
the proof into the following three cases:

Case 1 cos�01 + cos�23 = 0. This one is easy and the
proof is omitted.

Case 2 cos�01+cos�23 < 0 and �01; �23 � ��. The hard
case. Sketch below.

Case 3 �01 � �� or �23 � ��. Easy, based on the fact thatVol2(�01; �23)=�2 is just prob(v0; v1; v2; v3), the probabil-
ity that v0; v1; v2 and v3 lie on the same side of a random hy-
perplane, and the probability that v0; v1; v2; v3 are not sep-
arated is at most the probability that v1; v2; v3 are not sepa-
rated. We then assume that �01 � �� or �23 � ��. Let us
assume, w.l.o.g., that �01 � ��. It turns out to be enough
to prove that if �01 � �� and cos�01 + cos�23 � 0, then2�+ �23 � 5�=4, which is proved by simple calculus.

We return to Case 2. Here it is sufficient to prove thatVol2(�01; �23) has no critical point with �01; �23 � ��. It
is enough to prove

Claim B.2 For every �23 � �01 � �� such that cos�01 +cos�23 � 0, @Vol2@�01 = 12 �01 � sin�01sin� � < 0.

Note that �01 = �12 = �03 = �13 implies that �01 = �12 =�03 = �13. In the statement of the claim, � refers to this
common value.

To prove Claim B.2, we partition the feasible region into
small squares, explicitly bound the derivative and, using
Mathematica with 50 digits of precision, show that the
derivative is bounded above by �0:11. 2

C Evidence in Support of Conjecture 4.5

A tuple (�01; :::; �23) satisfying the hypotheses of
Lemma 4.4 is said to belong to case a. A tuple satisfying
the hypotheses of Conjecture 4.5 is said to belong to caseb. The evidence for Conjecture 4.5 is a sequence of com-
puter runs testing whether 1�prob(v0;v1;v2;v3)relax(v0;v1;v2;v3) � 78 : The
conclusion of Conjecture 4.5 is equivalent to the statement1�Vol(�01;:::;�23)=�21+(cos�01+cos�12+cos �23+cos�03)=4 � 78 :

1. A systematic search over the space of case-b possibili-
ties with each of five variables running from 0 to �, the
sixth determined by the other five, with a step size of�100 , yielded no ratio less that 7=8. (A simple perturba-
tion argument shows that w.l.o.g. the minimum value
of the ratio is attained at a point with cos�03+cos�12�cos�02 � cos�13 = 0.) The only point in which 7=8
was attained was (�2 ; �2 ; �2 ; �2 ; �2 ; �2 ).

2. A systematic search of the space of 6-tuples(�01; :::; �23) of both case a and case b using Matlab,
with each �ij running from 0 to � in steps of �56 , found
no ratio less than 7=8 and the only point in which a ratio
of 7=8 was attained was (�2 ; �2 ; �2 ; �2 ; �2 ; �2 ).

3. A systematic search using Mathematica over all 6-
tuples and with a step size of �32 found no counterex-
ample.

Both the Matlab and Mathematica runs pruned the search
space by considering only tuples (�01; :::; �23) satisfying the
triangle inequality constraints (the first 16 in Figure 2).
Each of the three runs numerically integrated Hsiang’s for-
mula for the volume of a spherical tetrahedron. While Math-
ematica and Matlab have built-in numerical integration, the
first run, written in C, used 20-point Gaussian quadrature.
As the first systematic search suggests that the worst ratio
is obtained only near the point (�2 ; �2 ; �2 ; �2 ; �2 ; �2 ), we per-
formed another systematic search in the neighborhood of
this point. We enumerated again on five angles, ranging
from �2 � 0:1 to �2 + 0:1 in steps of 1=300. Again, no ra-
tio less than 7/8 was found.
We also tried to find the minimal ratio numerically using
Matlab’s constrained minimization function constr. No
counterexample was found.
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