A 7/8-Approximation Algorithm for MAX 3SAT?
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Abstract

We describe a randomized approximation algorithm which
takes an instance of MAX 3SAT asinput. If the instance—a
collection of clauses each of length at most three—i s satifi-
able, then the expected weight of the assignment found is at
least 7/8 of optimal. We provide strong evidence (but not a
proof) that the algorithm performs equally well on arbitrary
MAX 3SAT instances.

Our algorithm uses semidefinite programming and may be
seen asa sequel tothe MAX CUT algorithmof Goemansand
W liamson and the MAX 2SAT algorithm of Feige and Goe-
mans. Though the algorithmitself is fairly simple, its anal-
ysis is quite complicated as it involves the computation of
volumes of spherical tetrahedra.

Hastad has recently shown that, assuming P # NP, no
polynomial-time algorithm for MAX 3SAT can achieve a
performance ratio exceeding 7/8, even when restricted to
satisfiableinstances of the problem. Our algorithmisthere-
fore optimal in this sense.

We also describe a method of obtaining direct semidefinite
relaxations of any constraint satisfaction problem of the
form MAX CSP(F), where F is a finite family of Boolean
functions. Our relaxations are the strongest possible within
a natural class of semidefinite relaxations.

1 Introduction

MAX SAT isacentral problem in theoretical computer sci-
ence. AsitisNP-hardand, infact, MAX-SNP complete (Pa-
padimitriou and Yannakakis[30]), much attention has been
devoted to approximating it. The first approximation algo-
rithm for MAX SAT was proposed by Johnson [23]. John-
son showed that the performanceratio of hisalgorithmisat
least 1/2. Chen, Friesen and Zheng [12] recently showed
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that the performance ratio of his algorithm is actually 2/3.
Many years passed before Yannakakis [37] obtained a 3/4-
approximation algorithm for the problem. Goemans and
Williamson [17] then obtained a different and somewhat
simpler 3/4-approximation algorithm. Their algorithm is
based on alinear programming relaxation of the problem.

In a major breakthrough, Goemans and Williamson [18]
obtained a 0.878-approximation algorithm for MAX CUT
and MAX 2SAT, the version of MAX SAT in which each
clause is of size at most two. Goemans and Williamson
used semidefinite relaxations of these problems. Feige and
Goemans [15] then obtained a 0.931-approximation algo-
rithm for MAX 2SAT. Using the MAX 2SAT algorithms of
Goemans and Williamson or of Feige and Goemans, dight
improvements in the performance ratio for general MAX
SAT can be made. Goemans and Williamson [18] obtained
a 0.758 bound for MAX SAT. Asano [4] (following [5])
dightly improved this bound to 0.770.

While semidefinite relaxations yield a huge improvement
for MAX 2SAT (from 0.75to 0.931), they give, so far, only
aminor improvement for MAX SAT (from 0.75 to 0.770).
The reason for this seems to be that the semidefinite relax-
ations used till now do not directly handle clauses of length
three or more.

An attempt to squeeze more from the MAX 2SAT algo-
rithm of Feige and Goemans [15] was made by Trevisan,
Sorkin, Sudan and Williamson [34]. They used an op-
timal gadget, a concept formalized by Bellare, Goldre-
ich and Sudan [7], to reduce MAX 3SAT (the problem
in which each clause has length at most three) to MAX
2SAT, thereby obtaining a 0.801-approximation algorithm
for MAX 3SAT. Trevisan [33] recently obtained a 0.826-
approximation algorithm for satisfiable instances of MAX
3SAT, and a 0.8-approximation algorithm for satisfiable in-
stances of MAX SAT.

In another major breakthrough, following a long line of re-
search by many authors[16, 3, 2, 8, 7], Hastad [20] recently
showed that MAX E3SAT, the version of the MAX SAT
problem in which each clauseis of length exactly three, can-
not be approximated in polynomial time to within a ratio
greater than 7/8, unless P = N P. Hastad shows, in fact,
that no polynomial-time algorithm can have a performance



guarantee of morethan 7/8 even when restricted to just sat-
isfiable instances of the problem. Hastad's result is easily
seen to betight: arandom assignment satisfies, on average,
7/8 of the total weight of aMAX E3SAT instance.

In this paper we present a new approximation algorithm for
MAX 3SAT. The agorithm takes as input an instance of
MAX 3SAT and runs in time bounded by a polynomid in
the length of thisinstance. If the instance is satisfiable, the
expected weight of the assignment thealgorithm returnsisat
least 7/8 of theweight of any assignment to theinstance. We
conjecture (but have only strong evidence, not a proof) that
the same performanceis achieved on arbitrary MAX 3SAT
instances. Our agorithm can possibly be derandomized us-
ing the techniques of Mahajan and Ramesh [28].

The novelty of our algorithmisthat it usesadirect semidef-
inite relaxation of MAX 3SAT. Theagorithmitself is quite
simple. The analysis relies, however, on two inequali-
ties involving the volume function of spherical tetrahedra
(Lemma 4.4 and Conjecture 4.5 below). Proving these two
inequalities seems, at least for now, extremely complicated.
We provide a computer-assisted proof of thefirst inequality.
For the second inequality we are able to present only strong
numerical evidence. We are currently working on asimpler
proof of the first inequality and a complete, and hopefully
simple, proof of the second inequality. The first inequality
aloneimpliesthat the performanceratio of the algorithm for
satisfiable instances of MAX 3SAT is at least 7/8.

We also describe a method of obtaining direct semidefi-
nite rel axations of any constraint satisfaction problem of the
form MAX CSP(F) or MIN CSP(F), where F is afinite
family of Boolean functions. Such problems were studied
by Khanna, Sudan and Williamson [27] and by K hanna, Su-
danand Trevisan[26]. Our relaxationsarethe strongest pos-
siblewithin anatural class of semidefinite relaxations. This
class includes amost all the semidefinite relaxations pro-
posed to date for these problems.

We hopethat the results presented here pavetheway for sim-
ilar improvementsfor MAX SAT.

2 MAX 3SAT

Aninstance of MAX 3SAT inn variablesisan array (w;, )
of nonnegative weights, where 0 < 4,5,k < 2n. A valid
assignment « = (xq, x1, . ..,z2,) iSa0-1 vector such that
zog=0andz,4; = 7, forl <1 <n.Aclause(i,j,k)is
satisfiedby « iff z; vV, Vay, = 1,i.e,if atleast oneof z;, x;
or z;, isassigned thevalue 1. The weight of avalid assign-
ment is the sum of the weights of all the satisfied clauses,
i.e, weight(z) = 3, wijk(z; V x; V zr) . The op-
timal solution to the MAX 3SAT instance is an assignment
of maximum weight. Note that we always require zy = 0.
Thismeansthat some of the clauses are effectively of length

Maximize Z Wijk * Zijk
4,5,k

subject to
Zijr < —47(vo+v2'(v]‘+v"’) V0<i,j,k<2n
Zijk < —47@“%)'(““"’) V0<i,j,k<2n
Zijk < —47('00”2)'(““]‘) V0<i,j,k<2n
Zijk < 1 VOSZ,],]CSQTL
v; € S” V0<i<2n
Unti = —0; Vi<i<n

Figure 1. A direct semidefinite relaxation of a
MAX 3SAT instance.

two or one (or zero).

3 The New Approximation Algorithm for
MAX 3SAT

A direct semidefinite relaxation of ageneric MAX 3SAT in-
stanceis presented in Figure 1. In thisrelaxation, we attach
aunit vector v; to each Boolean variable, 1 < ¢ < n,and a
scalar z;;, to each clause. We also have a specia vector vy
that correspondsto FALSE. The vectors vy, vy, . .., v, ae
vectors on the Euclidean unit sphere S™ in R™+1.

The scalar z;;;, is meant to get the value 1 if the clause is
satisfied and O if it is not satisfied. Define

relax(vo, vi,vj, vp) =

4—(vo+wvi) (vj+vk) 4—(vo+v;)-(vitvk)
min { 4 ’ 4 } .

4—(votvk)-(vitvj) 1
4 )

Theconstraintson z; ;. inthe relaxation are equivalent to the
constraint z;; < relax(vg, vi,vj, vg).

Itisfairly easy to see that program presented in Figure 1 is
equivalent to a semidefinite program. All we haveto do is
replace each inner product v; - v; by a scalar z;;, add the
constraintsz;; = 1, and requirethat the matrix (z;; ) be pos-
itive semidefinite. The constraint v,,,; = —wv; iSequivaent
to v; - vpys = —1. (The z;;;’s can be assumed nonnega-
tive but need not satisfy any semidefiniteness constraints.)
Why isit arelaxation of MAX 3SAT? Let z € {0, 1}***!
be avalid assignment. Let v; = (-1,0,...,0)ifz; = 0
andv; = (1,0,...,0) ifz; = 1. Letvg = (—1,0,...,0).
Itiseasy to check (see Table 1) that relax(vo, v;, v;, vi) =
x; Va; Vay, . Theprogramdescribed in Figure 1istherefore
arelaxation of MAX 3SAT.

It is worthwhile noting that if i = j = Oand k # 0,
i.e., theclause (i, j, k) isin fact aclause of length one, then



| vj | v; | Vg || u; | U | U |

-1 -1] -1 0] O 0
-1 -1 1 1 1 1
-1 1| -1 1 1 1
-1 1 1 2 1 1
1] -1 -1 1 1 1
1| -1 1 1] 2 1
1 1] -1 1 1 2
1 1 1 1 1 1

Table 1. The components of relax(vo, v;, vj, vy )
as a function of v;,v;,vx € {-1,+1}, where
Vg = —1.

the relaxation of the clause (i, j, k) simplifiesto the expres-
sion relax(vg, vy, v, V) = HTO”“ ;andif i = 0 but
j,k # 0andj # k,i.e, theclause (i, 7, k) is of length
two, the relaxation simplifies to relax(vo, vo,vj, vr) =
rnin{ Vot ok vtk 1% For clauses of length

one we get, therefore, exactly the MAX CUT relaxation of
Goemans and Williamson [18]. For clauses of length one
and two we get, almost exactly, the MAX 2SAT relaxation
used by Feige and Goemans[15].

The expression relax (v, v;, v}, vy ) includes 1 as one of its
terms. This is not needed for obtaining a relaxation. It is
used, however, in showing that the relaxation obtained is a
good one. Where does this relaxation comes from? Thisis
explained in Section 5.

The semidefinite program described above can be solved in
polynomial time. To be more precise, an (almost) feasible
point whose cost is within an additive error of e of optimal
can be found in time polynomial in the size of the problem
andlog ]; (SeeAlizadeh[1], Grotschel et al. [19], Nesterov
and Nemirovskii [29], Pataki [31] and Vaidya[35], and the
survey paper of Vandenberghe and Boyd [36].) It follows
easily that if the value of the optimal solution is opt, then a
feasible solution, i.e., a sequence of unit vectors vy, . . ., v,
and aset of scalars z; ., that satisfy all theconstraintsand for
which Zijk wijkzijk > (1—€)opt canalsobefoundintime
polynomial in the size of the problem and log } . Weneed to
“round” the vectors vy, . .., v, to truth values. We use the
simple randomized rounding procedure introduced by Goe-
mans and Williamson [18] to round the vectors vy, ..., v,
to truth values. We pick a random hyperplane that passes
through the origin. The Boolean variable z; is assigned the
value 1 if and only if the random hyperplane separates v;
from vg.

In the next section we analyze the performanceratio of the
new approximation algorithm assuming that the semidefi-
nite relaxation given in Figure 1 can be solved exactly. Un-
fortunately, the semidefinite relaxations cannot always be
solved exactly, at least because the optimal solution is not

always rational. Suppose that the performance ratio of the
algorithm when the semidefinite program is solved exactly
is 3. Let I be an instance of the problem of size m. Let
opt(I) be the value of an optimal solution to the semidef-
inite relaxation of theinstance 1. If for every instance I, the
value of the approximate solution found for therelaxationis
at least (1 — €)opt(I), then the performanceratio of the a-
gorithm that uses approximate solutionsis at least (1 — €) 5.
We can take e to be an arbitrarily small constant, or even
e=1/(W -2™), where W isthe sum of the weightsin the
instance I, and m is the number of clausesin the instance,
and still have a polynomial-time algorithm.

There is, however, a smple way of getting a performance
ratio of at least 3 even when the semidefinite relaxation is
not solved exactly. Let I be an instance of MAX 3SAT in
thevariables x4, .. ., z,,. We may assume, w.l.0.g., that 4
appears both positively and negatively in the instance. Let
I betheinstance obtained from I by assigning x; thevalue
0. Let I; betheinstance obtained from I by assigning z; the
valuel. Solvebothinstances I and I; usingthe approxima-
tion algorithm that achieves a performance ratio of at least
(1—e)B,withe = (1—3)/W, comparethevaluesof thetwo
assignments obtained and return the better one. We claim
that the performanceratio of thisalgorithmisat least 3. To
seethis, assume, w.l.0.g., that thereisan optimal assignment
of I inwhich z; isassigned thevalue 0. Let A bethe tota
weight of the clauses of I in which z; appears negatively.
Then the value of the assignment found by solving I, is at
least A+ (1 —¢)B - (opt(I) — A) > B -opt(I) , where
we have used thefact that A > 1 and opt(I) < W.

4 The Performance Ratio of the Algorithm

All that remains is to analyze the performance ratio of the
algorithm. We do this in two stages. We first analyze the
performance of the algorithm for clauses of size one of two.
Theanalysisin this case isidentical to the analysis of Goe-
mans and Williamson [18]. We describe the analysis here
asa“warmup” for the much more complicated analysis for
clauses of length three.

4.1 Clauses of Length 1 and 2

A clausez; isrelaxedinto (1—wvg-v;)/2. Theprobability that
arandom hyperplane separates vy and v; isé/w, where is
the angle between the two vectors vy and v;, cos 8 = vy - v;.
The performance ratio of the algorithm for clauses of size
oneisthereforeat least oy = ming<g<r 27—y >
0.87856 > 7/8 .

Consider now a clause of length two, eg., 21 V z2. The
clause x; VvV z, is relaxed into relax(vg,v1,v2) =
3*’”0'”‘*”40"”2*’”1'”2 . (We ignore here the minimum with 1




in the definition of relax(vg, v1,v2).) Given three vectors
vg, v1 and v, what isthe probability that the rounded assign-
ment satisfies the clause x; Vv x5? Thisis exactly the prob-
ability that arandom hyperplane separates at least one of v,
and v, from vg, which equals 1 — prob(vg, vy, v2), Where
prob(vy,v1,...,vx)

v, v1,...,0; lieonthesame

= P side of arandom hyperplane

The performanceratio of the algorithm for clauses of length
twoisat least @y = ming, u, pesn gttt
What is 1 — prob(vg,v1,v2)? There is a simple way
of working out this probability: 1 — prob(vy,vy,v2) =
1 - (prob(vg|vy) + prob(wg|vs) + prob(vi|v2)), where
prob(v;|v;) = 1— prob(v;,v;) isthe probability that aran-
dom hyperplane separates v; and v;. We saw already that
prob(v;|v;) = 9;" , Whered,; = arccos(v; - v;) istheangle
between the vectors v; and v;. Thus

1
%(901 + 6oz + 012)

ay = min
2 0<0;;<m 3 — cos by — cosbps — cosbo
4
2 . Bo1 + o2 + 612

iy Ogrgliljngﬂ (1 —cosfpi) + (1 — cosby) +

and it is easy to see, therefore, that ay = a3 > 0.87856.
4.2 Clauses of Length 3

Consider now a clause of length 3, say =1 V x5 V z3. The
performance ratio of the algorithm for clauses of length 3
isatleast oz = Millyg 00 05e5m oozt
The performanceratio of the algorithm for satisfied clauses
of length 3isat least a4 = min [1 — prob(vg,v1,v2,v3)],
where the minimum is over vy, vy, v2,v3 € S™ such that
relax(vg,v1,v2,v3) = 1. The simple way of evauating
1 — prob(vq, v1,v2) cannot be used, unfortunately, for eval-
uating 1 — prob(wvg, v1,v2,v3). We haveto use, therefore, a

differentway that reliesmoreheavily on spherical geometry.
A random hyperplane that passes through the origin is con-
veniently chosen by choosing its normal vector » uniformly
at randomin S™. Note that

prob(vg, v1,ve,v3) =
Pr[ sgn(vg-r) = sgn(vy-r) = sgn(vy-r) = sgn(vs-r) |
=2-Pr[ugr >0, v3:7>0, 037 >0, v3:7 >0].

Asweareonly interestedin theinner productsvg -r, vy -r, va-
r and vz -, we areonly interested in the projection of r into
the 4-space spanned by v, v1, v2 and vs. Itisnot difficult to
seethat ', the normalized projection of r into this 4-space,
is uniformly distributed on the unit sphere of this 4-space.

(1 —cosbya)’

We may assume, therefore, that vy, v1,v2,v3,7 € S3, the
unit spherein R*.

Let vg,vi,v2,v3 € S3. The spherical tetrahedron
tetra(vg, v1,v2, v3) isdefined as follows: tetra(vg, vi,va,
v) = {AXigawi | o > 0,3 au €
S33}. A spherical tetrahedron is said to be nondegen-
erate if vy, vy, v9,v3 are linearly independent. In this
case, the vectors vg, v1,v2,v3 are said to be the vertices
of tetra(vg,v1,ve,v3). If tetra(vg,v:,ve,v3) iS a non-
degenerate spherical tetrahedron, then its polar tetrahe-
dron, denoted by tetra'(vg,v1,v2,v3), is defined to be
tetra(ug, uy, us, uz), Where ug,uy,us,uz € S° satisfy
w; vy > 0,for0 < 4 < 3,andwu; -v; = 0, for
0 <i,57 < 3,1 # j. Aswg,v1,vs,v3 are linearly inde-
pendent, this determines wg, u1, us, us uniquely. It is easy
to see that the polar tetrahedron can be defined alternatively
as tetra' (v, vy, v2,v3) = {r e 83| wv;-r >0} .Thus,
prob(vg, v1,v9,v3) is SmMply twice the probability that a
random unit vector » € S? fallsinto the polar tetrahedron
tetra' (vg, v1,v2,v3). Thisprobability isproportional to the
volume of the tetrahedron. Asthe volumeof S2 is27? (see
Berger [9], p. 261), we get

prob(vg, v1,vs,v3) = volume(tetra' (vg, vy, ve,v3)) /7>

While computing areas of spherical trianglesin S? isarela-
tively simplematter, Girard’ sformula(see[10, p. 278]) stat-
ing that the area of a spherical triangle with angles «, 8 and
v (on S?)isa + 3+~ — w, computing volumes of spherical
tetrahedrais a much more complicated matter. This subject
wasinvestigated in the previouscentury by Schi&fli [32] and
in the present one by Coxeter [13], Bohm and Hertel [11]
and Hsiang [21]. Unfortunately, no closed-form formulafor
the volume is known. As the volume function is related to
the dilogarithm function (see Kellerhals [25]), possibly no
closed-form formulaexists.

A spherical tetrahedron can be characterized by either
the six angles 6;; = arccos(v; - v;) between the
unit vectors that correspond to its vertices—note that 6;;
is aso the distance between v; and v; on the sphere—
or by its six dihedral angles. The dihedral angle along
an edge of the tetrahedron is the angle between the two
“faces’ that meet at the edge; see Hsiang [22] for a for-
mal definition. Let VOI()\(H, )\02, )\12, )\03, Alg, A2‘3) be the
volume of a spherical tetrahedron with dihedral angles
Aots A2, A2, Aoz, A13, Aog. While the volume itself may
be nonelementary, its partial derivativeshave a surprisingly
simple form (see Appendix A). We need the following re-
lation between the lengths of the sides of a spherical tetra-
hedron and the dihedral angles of the corresponding polar
tetrahedron.

Lemmad.l |If Agi, ..., \23 are the dihedral angles and
0o1, -.., 023 are the side lengths of a spherical tetrahedron



T,and Ay, ..., Ay3 and 6, ..., 054 are the dihedral angles
and side lengths of the spherical tetrahedron 7" polar to T,
then A\j; = m — 63 and By, = ™ — Aa3. (Other equalities
suchas A}y = 7 — 62 follow by symmetry.)

Thisisaclassical result in spherical geometry. For a proof,
see Hsiang [22, egn. (41)]. We now have

Theorem4.2 o} = 7/8.
Conjecture4.3 a3 = 7/8.

Itiseasy toseethat as < af < % Theupper boundon a4 is
obtained by considering the case in which vg, vy, v2 and v
areal perpendicular (thisis possibleaswe arein RY). Itis
easy to verify that in that case relax(vg, vy, v2,v3) = 1 and
that prob(vg, v1, v, v3) = 1/8.

Proof of Theorem 4.2: We haveto show that for every vy,
v1, 02,03 € S? with relax(vg, vy, v2,v3) = 1,1 — prob(vy,
V1, Va2, V3) > %, or equivalently prob(vg, vi,va, v3) < % .
Note that relax(vg, v1,v2,v3) = 1 impliesthat (vg + vy) -
(va4wv3) <0, (vo+w2)-(v1+wv3) <0, (v14v2)-(vg+v3) <
0. Let#;; = arccos(v; - vj). Let A;; bethe dihedral angles
of the polar spherical tetrahedron. Now

prob(vg, v1, v, v3) = VO]()\U'M)\UQ:A]Q:A031A137)\23)/7r2'

Thus, using therelation between the §;,'s (in the primal) and
Aij's (in the polar) given by Lemma4.1, we infer that it is
enough to prove the following:

Lemmad.4 Let A\g1, Aoz, A2, Aoz, A13, Aog bethesix dihe-
dral angles of a spherical tetrahedron. If

€OS A\g2 + €cos A13 + cos Agg + cos A1 >
cOS Ag1 + €COS Aoz + cos Ag3 +cosAia > 0,
>

€OS Ag1 + €OS Aa3 + cos Aga + cos A\i3

then Vol(Ao1, Aoz, A1, Aoz, A1z, Adzz) < %2-

A sketch of the computer-assisted proof of Lemma 4.4 ap-
pearsin Appendix B. |

Beginning of a possible proof of Conjecture 4.3: As
we have proved Theorem 4.2, we may assume here that
relax(vg, v1,v2,v3) < 1. By symmetry, we may assume
w.l.0.g. that relax(vg,v1,vs,v3) = Ww .
Simple algebra and the fact that relax(vg, vy, v2,v3) < 1
imply that to prove Conjecture 4.3, it sufficesto prove

Conj ecture4.5 Let Ao s A[]Q, )\12, )\03, )\13, 23 be the six
dihedral angles of a spherical tetrahedron. If

€OS Ag1 + €OS Aa3 + cos A\g3 + cos A12

€OS Ag3 + €COS A3 — €OS A\ga — COS A13

IAN N IA

COS Ag1 + €OS Aa3 — COS A\ga — COS A13

then

Vol(Ao1, Aoz, A12; Aes, A1s, Aag) .

+753T—22 - (cos Ag1 + oS A1z + cos Aoz + cos Agz) < & .

The evidence that we have in support of Conjecture 4.5 ap-
pearsin Appendix C. m|

5 Semidefinite Relaxations of Constraint Sat-
isfaction Problems

Let f:{-1,1}* — {0, 1} be aBoolean function. For con-
veniencewe use different encodingsof thetruth valuesat the
input and the output of f. At the input, we use —1 to repre-
sent FAL SE and 1 to represent TRUE. At the output, we use
0 to represent FAL SE and 1 to represent TRUE.

An ingtance of the problem MAX CSP(f) is a collec-

wherey;; € {0,1,z1,...,2n,—21,...,—Z,}. Thegod
is to find an assignment of +1 values to the variables
x1,..., T, that maximizes the total weight of the clauses
that evaluate to 1. The MAX CSP(f) problem is therefore
similar totheMAX SAT problem except that the constraints
are now of the form f(yi1,...,y:x) and not of the form
yi1 V -+ V yix. The problem MAX CSP(F), where F is
afinite collection of Boolean functions, can also be defined.
Thereisno precise definition of the term “relaxation.” Here
we propose adefinition of aclass of semidefiniterelaxations
which we call “standard semidefinite relaxations.”

Definition 5.1 (standard semidefinite relaxations)

A standard semidefinite relaxation of an instance I of
MAX CSP(f) is a semidefinite program that has the follow-
ing properties:

1. Thevariablesof the programare: a unit vector v; cor-
responding to each variable z;, and a scalar z; corre-
sponding to each clause, and a unit vector v, (repre-
senting FALSE).

2. The objective function to be maximized is 3~ | w;z;.

3. Foreveryclause f(y;1,- - ., yix) Of I, theprogramcon-
tains a set of linear inequalities involving inner prod-
ucts v; - v; of the vectors that correspond to the vari-
ablesy;1, - - ., v, andthescalar z that correspondsto
theclause. All the congtraintsof the programare of this
form.

4. For every (z1,...,z,) € {—1,1}", assign v; the vec-
tor (z;,0,...,0), assign vy the vector (—1,0,...,0),
and assign z; thevalue 1if the jth clauseis satisfied by
this assignment and the value 0, otherwise. Then this
assignment is a feasible point of the program.



Condition (4) insuresthat the programisindeed arelaxation
and that the value of the programis at least the value of the
instance I. Condition (3) says, in effect, that the program
“considers’ the Boolean constraintsone at atime. (Notethe
similarity of thisto the gadgetsof Bellareet al. [7] and Tre-
visan et al. [34].) Almost all semidefinite relaxations of
constraint satisfaction problems proposed to date are stan-
dard, or can be made standard with only minor modification.
Exceptions are the relaxations of MAX CUT proposed by
Feigeand Goemans(See Section 5 of [ 15]), that impose con-
straints involving up to & vertices, for varying values of k.
The definition of standard relaxations may be generalized
appropriately.

Consider the Boolean functions ORa (1, 22) = @1 V x2,
ANDQ(.T,‘l,.T,‘Q) =1z N T3, XORQ(.TIl,.TIQ) = x1 ® 9, and
NAEg(.’IJl,.’IJQ, ng) = (.731 @TQ) V (.731 EB’I'g) With our input
and output conventions,

OR, = 3+z1+ﬁ27w1w2 , AND, = 1+11+ﬁ2+z112

XOR, = =gz

_ 3—T1T5—T1T3—ToT3
1122 NAE; = :

All these functions can be represented as degree-2 polyno-
mials over the real numbers. Obtaining (standard) semidef-
inite relaxations for these functions is therefore relatively
gtraightforward. To each variable x;, we attach aunit vector
v;. Every product z;x; is now replaced by the inner prod-
uct »; - v;. To handle linear terms, we introduce another
unit vector, vy, that represents FALSE. A linear term z; is
now replaced by theinner product — vy - v;. By doing so, we
obtain the semidefinite relaxationsof MAX CUT and MAX
2SAT used by Goemans and Williamson [18]. Arethesethe
best standard rel axationsthat we can obtain? We answer this
guestion shortly.

To obtain a semidefinite relaxation of MAX 3SAT, we need
a semidefinite relaxation of the function OR;3(z1, 22, z3).
Unfortunately, this function cannot be represented as a
degree-2 polynomial and the simple approach described
above cannot be used.

Let f : {-1,1}* — {0,1} be any Boolean function.
We now describe a way of obtaining the strongest standard
semidefinite relaxations for instances of MAX CSP( f).

Given avector z = (z1,...,z;) € {-1,1}*, welet
prod(z) = (moz1,Tex2,...,Tp_1T)) € {—1,1}@,

where zy = —1. Define

polytope(f) = conv({(prod(x), f(=)) | = € {~1,1}"}),

where (prod(z), f(z)) denotesavector of length @ +1

obtained by appending f(x) to prod(z), and

k(k+1)
2

Note that polytope(f) isapolytopein R 1, We de-
fined polytope(f) by giving its 2% vertices. Alternatively,
polytope(f), like any other polytope, can be defined as the
intersection of afinite number of halfspaces. In other words,
thereexistsan m x (k(k + 1)/2 + 1) matrix A and a vec-
tor b such that polytope(f) = {z € R+ |
Az < b} . Let(A,Db) besuchapar with m minimal. (If
polytope( f) isfull-dimensional, we can take therows of A
and entries of b to correspond to the facets of the polytope.)
We refer to the pair (A, b) as a set of defining hyperplanes
of polytope(f). Each defining hyperplaneis an inequality
of the form ZK]. ai;ri; + Bz < vy, where z;; is avari-
able corresponding to the position occupied by the product
x;x;, and z isavariablethat correspondsto the last position
in (prod(z), f(z)).

Asanexample, theeight facetsof polytope(OR3) aregiven
in Figure 2. The last four facets are exactly the four con-
gtraints we used in the relaxation of MAX 3SAT given in
Figure 1. Thefirst four facets givelower bounds, rather than
upper bounds, on z and they can therefore be ignored. The
facetsthat givelower boundson z can be eliminated by con-
sidering the polytope

polytope'(OR3z) =
TOLy -« vy T Iytope(OR.

{ (w1, ..., w23, 2") | (@or, ’”3"2 zgoy ope( 3)}
whose 20 facets are given in Figure 3. The first 16 facets
are just the “triangle inequalities’ used in the MAX 2SAT
algorithm Feige and Goemans [15]. They arein fact facets
of the cut polytope (see[6]).
We now define canonical semidefinite relaxationsfor al in-
stances of MAX CSP(f). We later show that they are the
strongest standard semidefinite relaxations possible.

Definition 5.2 (Canonical semidefinite relaxations)

A canonical semidefinite relaxation of an instance I of
MAX CSP(f) is a semidefinite program obtained in the fol-
lowing way.

1. Thevariablesof the programare: a unit vector v; cor-
respondingto each variablex;, ascalar z; correspond-
ing to each clause, and a unit vector v, representing
FALSE.

2. The objective function to be maximized is 3~ | w;z;.

3. For every clause f(y1,...,yx) of I, and for every
defining hyperplane »,_ ajjz;; + Bz < 7 of
polytope(f), from a fixed family of defining hyper-
planes, the program contains the inequality

Zaij(ui-uj)—i-ﬁzg'y.

i<j
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Figure 2. The facets of polytope(OR3).
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Figure 3. The facets of polytope’ (OR3).

Hereug = vy, u; isthe vector that correspondsto the
literal y; (if y; = z;, thenw; = v, ify; = —x;, then
u; = —vj, ify; = 0,thenu; = vo, and u; = —wy if
y; = 1,and z isthescalar corresponding to the clause.
All the congtraints of the program are of this form.

The simple proof of the following lemmais omitted.

Lemmab5.3 A canonical semidefinite relaxation of an in-
stance I of MAX CSP(f) is a standard semidefinite relax-
ation.

The number of vertices of polytope(f) isexponentia in k,
the number of variables of f. The number of facets, or
defining hyperplanes, of polytope(f) may be even larger.
However, for every fixed constraint satisfaction problem
MAX CSP(f), k isfixed, and therefore the size of a canon-
ical semidefinite relaxation of an instance I is linear in the

size of the instance.

We now show that canonical semidefiniterelaxationsarethe
strongest standard semidefinite relaxations possible. Given
an instance I, we let opt(I) be the value of an optimal so-
[ution of I. Given asemidefinite program P, welet opt(P)
be the value of an optimal solution of P.

Theorem 5.4 Let I be aninstance of MAX CSP(f). Let P
be a canonical semidefinite relaxation of I and let () be
any standard semidefinite relaxation of 1. Then, any feasi-
ble point of P is also a feasible point of ). In particular,

opt(I) < opt(P) < opt(Q).

Proof: Letp = (vg,...,vn,21,...,2m) beafeasiblepoint
of P. Suppose, for the sake of contradiction, that the point p
isnot afeasible point of (), so p violates an inequality of Q.
Assume w.l.0.g. that thisinequality is one of the inequali-
ties attached to the Boolean constraint f(z1,...,zy). Let
p' = (vo,...,vg, 2) betherestriction of p to the vectors
and the scalar that appear in the inequalities attached to this
constraint. Let p"” = (zo1,...,Tk—1,2) = (Vo-v1,v0"
va, ..., Uk_1 Vg, z). Aspisafeasible point of P, weinfer
that p"' € polytope(f). Thusp" is aconvex combination
of the vertices of polytope(f). On the other hand, p" vio-
lates at least one of the constraints of (). Thus at least one
of the vertices of polytope(f) violates this constraint of @
and this contradicts condition 4 of the definition of standard
semidefinite relaxations. ]

By computing polytope(XORs) and polytope(OR,), we
can infer that the semidefinite relaxation of MAX CUT
given by Goemansand Williams[ 18] isacanonical semidef-
inite relaxation of MAX CUT. Their relaxation of MAX
2SAT, however, is not canonical, as it does not include the
triangleinequalities. Feige and Goemans|[15] include these
inequalities in their relaxation and obtain a canonical re-
laxation. It isinteresting to note that while the triangle in-
equalitieshelp for MAX 2SAT, it seemsthat they are not re-
quired for getting an optimal 7/8 approximation algorithm
for MAX 3SAT.

The facets of polytope(MAJ3) can apparently
be used to obtain a 2/3-approximation algorithm for MAX
CSP(MAJ3). For this and some other results, see[38].

6 Concluding Remarks

While we described away of getting the strongest semidefi-
nite rel axations—at | east in some natural sense—for al con-
straint satisfaction problems of the form MAX CSP(f), we
do not automatically get good approximation algorithmsfor
all of them. Rounding the optimal solutions of the semidef-
inite programs using a random hyperplane does not work
well for al problems.
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A Volumesof Spherical Tetrahedra

Let vg,v1,v2,v3 € S® be the vertices of a nondegenerate
spherical tetrahedron. Let 6;; = arccos(v; - v;) betheangle
between v; andv;, or, equivalently, thelength of theedge:,
as measured on the sphere. Thedihedral angle )\;; isthean-
ole between the two “faces’ that meet at the edgeij.

Definition A.1 (high-dimensional inner prod-
uct; see Hsiang [22, egn. (1)]) Let aq,...,a; and by, . ..,
by, be two sequences of vectors all of the same length. De-
fine(ai A---ANag, bt A--- ANby) = det({a; - b;}) , and

lag A~ ANagl=(ar A Nag, ay A Nag )72

LemmaA.2 Let v, v1,v2,v3 € S® be the vertices of a
nondegenerate spherical tetrahedron with dihedral angles
Aot, .- -5 Aoz. Let (4,7, k, ¢) bea permutation of (0,1, 2, 3).
(vi Nvj Aok, vi ANvj ANog)

[v; Avj Aog| [vi Avj Aog|

cos;j =

AlthOUgh the function VO](A(H y A[]Q, Alg, )\037 )\137 )\23),
giving the volume of a spherical tetrahedron as a function
of its six dihedral angles, is complicated, we have

B Proof of Lemma4.4

Here we provide a computer-assisted proof of Lemma 4.4.
We have to prove that VOl(Agl y A[]Q, )\12, )\037 )\13, A2‘3) <
7% /8 subject to

€OS Ag1 + €OS Aa3 + coS A\g3 + coS A\12

>
€OS A\g1 + €OS Aoz + €cOs A\ga + cOS A3 >
>

€OS A\g2 + €0S A\13 + €08 A\g3 + €OS A1

and subject to the condition that A\gq,..., A3 is a valid
sequence of dihedral angles. It is easy to verify that
o1, - - - A2z isavalid sequenceif and only if the following
matrix is positive semidefinite:

1 —COSA23 —COSA13 — COSAi2
— COS A23 1 —COSAg3 — COS Ag2
—COSA;3  — COS g3 1 — oS Ag1
—COSA12 —COSAga — COS Ag1 1

If the minimal eigenvalue of this 4 x 4 matrix is O, then
the matrix is singular, and the vectors vy, v1,v2 and vs are
linearly dependent. They may assumed therefore to lie in
R3. Instead of computing volumesin S3, we then have to
compute areas in S2. In this case, which is much easier
than the general case, it is not difficult to show that Vol <
(1 — ay)7?, where a; ~ 0.87856 is the performance ra-
tio of the Goemans-Williamson MAX CUT algorithm. We
will henceforth assume that the 4 x 4 matrix is positive-
definite. By Theorem A.3, thevolumeisanincreasing func-
tion of the dihedral angles. Simple perturbation arguments
allow us, w.l.0.g., to reduce to the problem of proving that
VO]()\[)] g reey )\23) S 7T2/8 |f

coS Ag1 + cos Aoz + cos Agz3 +cosAis = 0,

oS A\g1 + cos Agg + cos Age +cos A3 = 0,

€OS A\g2 + cos A13 + coS Agg + cos A1 >

Symmetry argumentsallow usto assumew.l.0.g. that Ay <
A2 < Aoz < Ais.
We define the following sequence of three points:

AU = (A017A027A127)‘037A137A23)7
Ar = (o1, Az, A2, Aos, Aos, Azs),
A2 - ()\017)\:A7)‘:)‘7)\23):
where cosA = (cosAp2 + cosAiz)/2 = (cosAip +

cos Ag3)/2 = —(cos Ag1 + cos Aa3)/2 > 0. One can show
that A; and A, are valid sequences of dihedral angles and
that they both satisfy the hypotheses of Lemma4.4.



We next show that Vol(Ay) < Vol(A;) < Vol(Ay) by
defining

faran(t) = Vol(arccos(cos A" + t(cos A" — cos A")))

for two feasible points A’ and A", by showing that for
filt) = fa, ,a(8), fl(t) > 0for0 <t < landi=1,2.
In fact, it is enough to prove that f/(0) > 0 for ¢ 1,2,
as A;_; isjust like any other point on the path from A; ;
to A;. (This part of the proof does not rely on a computer.)
We calculate the derivative of f;(t) explicitly using Theo-
rem A.3 and Lemma A.2. Some calculus and lots of ugly
computations eventually lead usto f;(0) > 0 fori = 1,2.
This completes the proof that Vol(Agy) < Vol(As).

Now let VO]Q()\(]] , )\23) = VO]()\[)] AN, )\23) where
A= arccos(—%) . It is easy to see that if
cos Ag1 + cos Aa3 < 0 then ()\0] SA AN A, /\23) isavalid
sequence of dihedral angles. It is hence enough to prove

LemmaB.1 For every Ao1, A23 such that

COs )\0] + cos )\23 S 0, VO]Q()\(]] , )\23) S 7T2/8.

Proof: Let \* = arccos(1 —2cos ) ~ 2.58254. We break
the proof into the following three cases:

Casel cosAg1 + cos a3 = 0. Thisoneis easy and the
proof is omitted.

Case2 cos Ag1 +cos Aoz < 0 and o1, Az < A% Thehard
case. Sketch below.

Case3 \g1 > A* or Ay3 > A*. Easy, based on the fact that
VO]Q()\(]] , )\23)/7T2 iSjUSI pTOb(Ug, V1, V2, ’Ug), the prObabil'
ity that vg, v1, vo @and v3 lie onthe same side of arandom hy-
perplane, and the probability that vg, vy, v2, v3 are not sep-
arated is at most the probability that v, vy, v3 are not sepa-
rated. We then assumethat A\g; > A* or A\y3 > \*. Letus
assume, w.l.o.g., that A\g; > A*. It turns out to be enough
to provethat if Ag; > A* and cos Ag; + cos a3 < 0, then
2X 4+ Ao3 < 57/4, whichis proved by simple calculus.

We return to Case 2. Here it is sufficient to prove that
Vola(Ag1, Aag) has no critical point with App, Aag < A*. It
is enough to prove

Claim B.2 For every A3 < A1 < A* suchthat cos Ag; +

dVol sin A
cos Aoz < 0, 8)\‘;12 6 <0,

=1 _
- 2001

Note that Aol = A2 = Aoz = A3 ImpllesthaI 901 =0y =
603 = 615. Inthe statement of the claim, 8 refers to this
common value.

To prove Claim B.2, we partition the feasible region into
small squares, explicitly bound the derivative and, using
Mathematica with 50 digits of precision, show that the
derivativeis bounded above by —0.11. |
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C Evidencein Support of Conjecture 4.5

A tuple (Agi,...,\»3) satisfying the hypotheses of
Lemma 4.4 is said to belong to case a. A tuple satisfying
the hypotheses of Conjecture 4.5 is said to belong to case
b. The evidence for Conjecture 4.5 is a sequence of com-
puter runs testing whether % > 1 .The
conclusion of Conjecture 4.5 is equivalent to the statement
1—Vol(Ag1,..-,Aa23) /7> > 1
14 (cos Ag1 +co8 A\1a+cos Aaz+cos Ag3)/4 = 8 °

1. A systematic search over the space of case-b possibili-
tieswith each of five variablesrunning from 0 to =, the
sixth determined by the other five, with a step size of
o5 Yielded noratio lessthat 7/8. (A simple perturba-
tion argument shows that w.l.0.g. the minimum value
of theratioisattained at apoint with cos Ag3+cos Ao —
cos A\g2 — cos A3 = 0.) Theonly point in which 7/8

i T T W™ T W T
was attainedwas (3, 5, 5, 5, 5, 5 )-

2. A systematic search of the space of 6-tuples
(o1, ---, Aoz ) Of both case a and case b using Matlab,
with each A;; running from 0 to 7 in steps of %, found

noratiolessthan 7/8 and theonly pointinwhicharatio

of 7/8 wasattainedwas (%, 5,5, 5, 5, 5)-

3. A systematic search using Mathematica over all 6-
tuples and with a step size of 3 found no counterex-
ample.

Both the Matlab and Mathematica runs pruned the search
spaceby consideringonly tuples(Ag1, ..., A23) satisfying the
triangleinequality constraints (thefirst 16 in Figure 2).
Each of the three runs numerically integrated Hsiang's for-
mulafor thevolumeof aspherical tetrahedron. While Math-
ematica and Matlab have built-in numerical integration, the
first run, written in C, used 20-point Gaussian quadrature.

As the first systematic search suggests that the worst ratio
is obtained only near the point (5, 5,5, 5, 5. ), we per-
formed another systematic search in the neighborhood of
this point. We enumerated again on five angles, ranging
fromZ —0.1to  + 0.1 in stepsof 1/300. Again, no ra-
tio less than 7/8 was found.

We also tried to find the minimal ratio numerically using
Matlab’s constrained minimization function const r. No

counterexample was found.



