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Introduction Split-Reduce Discussion

Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess
P to answer membership queries:

Given a point q, is q ∈ P?

Assume that dimension d is a constant and P is
given as intersection of n halfspaces

For d ≤ 3, can be solved with storage O(n) and
query time O(logn) [BCKO10]

Dual of halfspace emptiness searching
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Approximate Polytope Membership Queries

Approximate Version

An approximation parameter ε is given
(at preprocessing time)

Assume the polytope has diameter 1

If the query point’s distance from P ’s boundary:

> ε: answer must be correct
≤ ε: either answer is acceptable

Polytope approximation is a well studied topic

We consider the first space-time tradeoffs for the
query problem
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Bentley et al. (Outer) Approximation [BFP82]

ε

P

Create a grid with cells of diameter ε

For each column, store the topmost
and bottommost cells intersecting P

Query processing:

Locate the column that contains q
Compare q with the two extreme
values

Time-Efficient Solution [BFP82]

O(1/εd−1) columns

Storage: O(1/εd−1)

Query time: O(1) (by integer division)
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Dudley’s (Outer) Approximation [Dud74]

P

√

ε

Every unit-diameter polytope can be
ε-approximated as the intersection of
O(1/ε(d−1)/2) halfspaces [Dud74]

Space-Efficient Solution

Check whether q lies within each
Dudley halfspace:

Storage: O(1/ε(d−1)/2)

Query time: O(1/ε(d−1)/2)

Note: Each halfspace is used to
cover a surface patch of size

√
ε
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A Simple Tradeoff

Generate a grid of diameter r ∈ [ε, 1]

Preprocessing: For each cell Q
intersecting P ’s boundary:

Apply Dudley to P ∩ Q

O((r/ε)(d−1)/2) halfspaces per cell

Query Processing:

Find the cell containing q

Check whether q lies within every
halfspace for this cell

Tradeoff

Storage: O(1/(rε)(d−1)/2)

Query time: O((r/ε)(d−1)/2)

r
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Can we do better? Need a little sensitivity

P

√

ε

Dudley tends to oversample regions of
very low and very high curvature

Finding the smallest number of
halfspaces reduces to set cover

A log(1/ε)-approximation can be found
efficiently (Mitchell and Suri [MS95],
Clarkson [Cla93])

Simple Idea: Recursively subdivide
space (quadtree) until the number of
approximating halfspaces is small
enough
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Split-Reduce

t = 2

Preprocess:

Input P , ε, and desired query time t

Q ← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P

If at most t facets, then Q stores them

Otherwise, subdivide Q and recurse

Query time: O(log(1/ε) + t)

Storage: ???
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Why it pays to be sensitive

Easy Analysis

Split-Reduce reduces the query time
from 1/ε(d−1)/2 to 1/ε(d−1)/4 with
the same O(1/ε(d−1)/2) storage

√

ε 1/ε(d−1)/4 halfspaces

By Dudley, if diameter ≤
√
ε, need only 1/ε(d−1)/4 halfspaces

⇒ cells of size ≤
√
ε are not subdivided

Each Dudley halfspace is only needed within a radius of
√
ε

⇒ Each halfspace hits only O(1) cells of size ≥
√
ε

⇒ The total number of halfspaces needed is O(1/ε(d−1)/2)
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General Tradeoff

An inductive application of the
previous argument yields a
space-time tradeoff

Theorem:

Using Split-Reduce we can
answer ε-approximate polytope
membership queries with

Storage: O(1/ε(d−1)/(1−k/2k ))

Query time: O(1/ε(d−1)/2k ) 0
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(a) Tradeoffs for Polytope Membership

Simple algorithm
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Lower bound
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Lower Bound

The above analysis is not
necessarily tight

We establish a lower bound
on Split-Reduce

The input polytope is a
cylinder formed by extruding
a (d − k)-dimensional ball
in k dimensions

k is chosen to maximize the
storage for a given query
time
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Approximate Nearest Neighbor (ANN) Searching
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(b) Tradeoffs for ANN search

Prior upper bound [AMM09]
New upper bound

Lower bound [AMM09]
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ANN: Preprocess n points such
that, given a query point q, can
find a point within at most 1 + ε
times the distance to q’s nearest
neighbor

Arya, et al. [AMM09] gave a
solution that is optimal in the
extremes of the space-time tradeoff
and gave a lower bound

Our new results improve the
tradeoff throughout the middle of
the spectrum
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Approximate Nearest Neighbor (ANN) Searching

Arya et al. show that it is possible to
partition space into cells, each
associated with candidates to be the
ANN for query points in the cell, such
that:

Total number of candidates is Õ(n)
All but 1 candidate is inside a
constant-radius annulus

Using lifting we can reduce the search
to log(1/ε) approximate polytope
membership queries

Q

cBQ
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Concluding Remarks

Improved upper bounds for approximate polytope membership
queries

First space-time tradeoffs

Simple algorithm – Split-Reduce

Significant improvements to ANN searching

Open problem: Tighten the analysis
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Thank you!
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