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1 .  I n t r o d u c t i o n .  Many different types of inter- 
process communication have been examined from a 
complexity pbint of view [SP, Y]. We study a new 
model, in which a collection of processes 

e o ,  " ' ' ,  e~:~l  

tha t  share information about  a set of integers 

{ a 0 , . . . ,  a k - i  }, 

communicate  to determine a 0-1 predicate of the 
numbers.  

For example, suppose k poker players are sitting 
around a table, and each one is holding a number to 
his forehead for the others to see. This si tuation fits 
our model and we can determine how many bits the 
players need to communicate in order for all of them 
to know if the sum of the numbers is greater than n. 

In this new model, t remendous sharing of informa- 
tion is allowed, while no single par ty  is given enough 
information to determine the predicate on its own. 
Formally, each Pi has access to every aj  except for ai. 
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For simplicity, we only allow the parties to communicate  
as follows. At t ime t ---- 0, process P0, examining the 
numbers it knows, broadcasts  one bit. At t ime t -~ 1, 
process/91, examining the numbers it knows, and the 
bit sent by /90, broadcasts one bit. This ' cont inues  
in a cyclic fashion until, at  a prearranged t ime , the 
processes are required to halt,  with either all accepting 
or all rejecting. 

The novelty of this shared-information model is 
apparent  once three or more processes are involved. 
With three processes and three integers, each input 
can be known by two parties, without  any one knowing 
all three. In this paper  we prove both upper  and 
lower bounds on the complexity of mult i-party,  shared- 
information protocols (MPP's)  for determining certain 
basic predicates of sets of integers. Our proofs appeal  
to geometry and Ramsey-like counting arguments.  The 
bounds we prove are unusual in the sense tha t  they 
are stronger than might  naively be expected, and 
t igh t - -even  though we don ' t  know exactly what  they 
are .  

Multi-party protocols are a basic and impor tan t  
model of communication in any system, practical  or 
theoretical, where there is shared information. We 
show tha t  MPP ' s  arise in the study of lower bounds-  
for branching programs. For this model, the s tandard 
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approach to proving lower bounds- -demons t ra t ing  that  
a certain amount  of progress must  be made, and tha t  
no step makes more than 5 progress, for some small 
5 - -doesn ' t  seem to work. The branching program 
model is too complicated and there doesn ' t  seem to 
be a way to define progress appropriately.  To prove 
non-trivial lower bounds a new insight is needed. Our 
definition of MPP ' s  is motivated by the search for 
such a new technique. In the last section we make the 
connection between MPP ' s  and branching programs,  
and show how the MPP lower bounds can be applied 
to obtain new lower bounds on time-space trade-offs. 

2. P r e l i m i n a r i e s .  From now on we assume tha t  
there are k-processes P0, . . . ,  Pk-~,  and k variables 
ao, . . . ,  a k that  range over the integers from 1 to n. 
Each process has access to the aj ,  except tha t  Pi is 

denied access to ai. We study what  happens when k 
is fixed and n grows. 

DEFINITION. A broadcast history b E (0 + 1)* is a 
record of all the bits t ransmit ted by the processes up 
to a certain point in time. 

DEFINITION. A k-party protocol, or just  a protocol 
when k is known, is a deterministic algorithm that ,  
for each process Pi, determines from the numbers Pi 
knows and the broadcast  history, what  bit Pi should 
t ransmit  at times i, i + k, . . . .  

DEFINITION. L e t H n  -~ { 1 , . . . ,  n} k be ak-dimensional  
hypercube. Each point (v0, v t , . . . ,  vk-1) E H~ describes 
a situation, or assignment to the variables ao, . . . ,  ak--1. 

DEFINITION. Let ~ be a protocol for k processes 
working with integers in the range 1 to n. For each 

E Hn, ~ determines a string (I)(~) E (0 + 1)* that  
is the complete broadcast  history for the processes in 
situation ~. 

The following technical definition of validity for 
an assignment of broadcast  histories is used to define 
the more natural  notion of validity of protocols, and 
is motivated by its use in Lemma 2.1. 

DEFINITION. Let Q be a 0-1 predicate of k integers 
in the range 1 to n. An assignment • of broadcast  
histories to Hn is valid for Q if, for every v, w E H,~ 
tha t  differ in exactly one component, 

• (~) ~ ~ (~)  whenever Q(~) ~ Q(~).  

DEFINITION. A protocol • is valid for a predicate Q 
if ~ determines a valid broadcast  history for Q. 

LEMMA 2.1. A k-party protocol ~ can be used by 
processes P0, - . . ,  P k - I  to determine a predicate Q if 
and only if ¢ is valid for Q. 

Proof. Suppose (I) is not valid 'for Q. Then there are 
two points ~ and ~ such that  

Ca) # 

(b) ~ and ~ differ only in coordinate i, and 

(c) = 

Since process Pi cannot see coordinate i it must  
behave in exactly the same way in situations ~ and ~. 
Thus, Pi must  accept or reject incorrectly at one of 
or ~. Therefore, ¢ cannot be used by the parties to 
correctly determine Q. 

The other direction is straightforward. | 

DEFINITION. The cost of a protocol (I) on H,~ is the 
maximum length of a complete broadcast  history on 
situations in Itn,  i.e., 

cost~Cn) ~- maxveH~ I'I'(~)l. 

DEFINITION. The complexity of a predicate Q is the 
minimum, over all valid protocols (I) for Q, of the cost 
of (I). In this setting, complexity is a non-uniform 
function of n. 

3. L o w e r  B o u n d .  We now examine the inherent 
communication complexity of mult i-party protocols. 
There is a relationship between Ramsey coloring 
numbers and the number of bits tha t  processes must  
communicate  in order to determine basic predicates. 
See [GRS] or [G] for background on Ramsey theory. 

DEFINITION. The predicate Exactly-n is true of k 
integers a 0 , . . . ,  ak-1 if and only if ao + " .  + a k - t  -~- n. 

We prove a lower bound on the number of bits k 
processes have to communicate  in order to determine 
Exactly-n. This particular predicate is chosen for 
convenience, and our results hold for all predicates of 
this type. As has been noted before, lower bounds 
on exactly-equal-to predicates imply lower bounds on 
threshold predicates ( " ~  al ~ n")  [FSS]. 

The structure of the lower bound proof is as 
follows. Let Hn -~- { 1 , . . . ,  n} k be the set of situations. 
Let Sn = {~ E Hn ] ~ --~- n} be the hyperplane on 
which the processes must  "accept", as shown in Figure 
I. We prove that  if a protocol determines too few 
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distinct broadcast  histories on the plane So, then it is 
not valid for Exactly-n. Thus, to be valid, a protocol 
must  force the parties to t ransmit  enough .bits to ensure 
that  there are enough distinct broadcast  histories. 

S r ~  

/I 
I 
f 

J 

Figure 1. Ho and So. 

We first show tha t  protocols do not assign broadcast  
histories to situations in Hn in an arbi t rary manner.  

DEFINITION.  A set of k distinct points T0, . . .  ,Tk-1 E 
Ho is a forbidden k-pattern if there is a point ~ E Ho 
such that ,  for each i, ~ differs from Ti only in coordinate 
i. (For the ease k ~--- 3, forbidden k-pat terns  on the 
plane So are just  equilateral triangles.) 

LEMMA 3.1. Let • be a protocol for processes ]90, 
• . . ,  P k - l .  Let  Ho -~ { 1 , . . . , n }  k be the hypercube of 
situations, and let ~----  ( w 0 , . . . , w 4 - 1 )  be any point 
in Ho. If v 0 , . . - , T k - I  is a forbidden k-pat tern  for 
~ ,  and the complete broadcast  histories at  the Tj are 
identical, i.e., 

=  (T0) =  (TI) . . . . .  

then ~ ( ~ )  ~--- a.  

Proof. By induction on the length of the broadcast  
history we prove that ,  for all i, the i TM bit broadcast  
at  ~ is the same as the i th bit  broadcast  at  Ti(mo d 4). 

Base: If lal = 0, then every process immediately halts 
on ~ since it immediately halts on Ti. 

Induction: Suppose, for all histories of length < t, the 
inductive hypothesis is true. Consider the t th bit to 
be broadcast .  By induction, Pt(mod k) sees the same 
broadcast  history at ~ and at Vt(mo d k), and hence, 
Pt(mod 4) broadcasts  the same bit at t ime t at  ~ as it 
broadcasts  at  t ime t at Tt(rnod k)" II. 

Note tha t  this Lemma is true for all protocols, not 
just  valid ones. 

LEMMA 3.2. A k-party protocol • is not valid for the 
predicate Exactly-n if it assigns the same broadcast  
history to all the points of a forbidden k-pat tern  of 
S.. 

Proof. Suppose T0, . . . ,  v4-1 ,  is a forbidden k-pat tern  
on So for the point ~ ,  such tha t  

By geometry,  ~ is not on Sn, and by Lemma  3.1, 
• (~) = a. Therefore, • is not valid for Exactly-n.  
| 

DEFINITION. The integer x4(n) is the smallest number 
of colors required to color the points of Sn so tha t  no 
forbidden k-pat te rn  on So is colored monochromatical ly.  

THEOREM 3.3. The complexity of any k-party protocol 
for Exactly-n is bounded below by the logarithm of 
the number of colors required to color Sn so that no 
forbidden k-patterns are colored monochromatically. 

Proof. Consider a protocol (b for Exactly-n.  Let each 
distinct broadcast  h is tory  (I)(T), for T E Ha, define a 
color. If some forbidden k-pat tern  on Sn is colored 
monochromatical ly,  then, by Lemma  3.2, • is not valid 
for Exactly-n.  This is a contradiction. Therefore, there 
must be more than xk(n) distinct broadcast  histories, 
and hence, in some situation, at least log(x4(n)) bits 
must  be communicated.  II 

DEFINITION. Let  

BkCn)---- { ( v o , . . .  , v k - l )  I 1 < v, _< n}.  

For 0 _< i < k -  1, let ~i be the vector whose j th  
coordinate is 61j. 

We now state  a powerful Theorem from Ramsey 
theory. It  is actually a corollary of a stronger result 
and can be thought  of as a general ized pigeon-hole 
principle. 

THEOREM 3.4. (Gallai [G, GRS]) For every c and k, 
there exists a k and an n, such that every c-coloring 
of Bk(n) contains k distinct vectors 

v, v + X~0, . . . ,  T +)~ek_l  

that are identically colored. 

We are now in a position to prove the main lower 
bound. 

TIIEOREM 3.5. Threshold has multi-party protocol 
complexity greater than any constant. 
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Proof. By Theorem 3.3 it suffices to prove that  for a 
fixed k, xk(n)  is unbounded. To get a contradiction, 
assume that  xk(n)  is bounded by some constant c. 

Define the projection p from S,~ to B a - l ( n )  by 

 a-1) = 

Since xk(n)  <_ c, there is a c-coloring C of Sn in which 
no forbidden k-pattern is colored monochromatically. 
The mapping p is one-to-one, so C and p induce, in 
a natural way, a c-coloring of the points in p(S,~). 
Consider a smaller set, Bk-~(n /4k) .  It is a subset 
of p(S,~) and is thus also c-colored via p. For large 
enough n, Gallai's Theorem implies the existence of 
k - 1 distinct vectors 

v, v + X~o, . . . ,  F+X~a_2,  

in B k - l ( n / 4 k )  that  are colored identically. 

Let ~ ~-- ( vo , . . . , v k -2 ) ,  and let 

= ( v 0 , . . . ,  v a - 2 ,  n - s - X ) ,  

where s ~- v 0 + v l + . . .  + v a - ~ .  Since s > 0 and 
k > 0, the last coordinate of ~ is _< n. Furthermore, 
1 _< n -  s -  k since s is at most ( k "  1)n/4k and k is 
at most n/4k .  Thus, ~ is a situation in Hn. 

We now have a contradiction since the points 

p--l(~), p--lC~_{_)~e0), " '*,  p--l(~4_ )~ek--2) 

form a monochromatic forbidden k-pattern for ~.  | 

4. U p p e r  b o u n d .  In this section we prove 
that, within an additive constant, the lower bound 
of log(xk(n)) bits proved in the previous section is 
also an upper bound. That  is, we exhibit a cost 
[log(xk(n)) + k]-bit k-party protocol that  is valid for 
the predicate Exactly-n. 

Color the hyperplane Sn ---- {~ E g n  I ~ ~ -~ n} of 
Hn with xa(n) colors such that  no forbidden k-pattern 
is monochromatic. Let (vo , . . . ,  Vk-1) be a situation in 
HE. Let process Pi know every number but vi. Each 
process Pi computes the point 

~ ,  ---': <vo, . . . , v i - l ,  n - ( ~ j # i  vj), vi+t, . . . , va - ,>  E Sn. 

At time t --~ 0, P0 broadcasts bit 0 of the color at 
~0. At t ~ 1, P1 broadcasts bit 1 of the color at ~x. 
This continues until log(xk(n)) bits are transmitted. 

Then, each Pi in turn transmits a 1 if and only if the 
color i t  sees matches the color transmitted in the first 
log(xk(n)) bits. Finally, the processes halt and accept 
if and only if every process braodcast a 1 in the last 
phase. 

THEOREM 4.1. The above protocol is valid for Exactly- 
n .  

Proof. The points wi are a forbidden k-pattern in S,,. 
Thus, if the processes agree that  all are the same color, 
the points must coincide. Hence ( v o , . . . , v a - x )  E Sn 
and the processes correctly accept. 

If ( v o , . . . , V a - l ) ~ / S n ,  then the processes cannot 
all see the same color since the forbidden points are 
not monochromatic. Therefore, the processes correctly 
reject. | 

Note that  even though Xa is not known, the optimal 
protocol can be implemented after an exhaustve search. 
Although precise bounds are not known, we can relate 
Xa to classic Ramsey numbers. 

DEFINITION. Let Ca(N)  be the minimum number of 
colors needed to color 1 , . . . , N  such that  no length-k 
arithmetic progression is colored monochromatically. 

TtIEOREM 4.2. For N .-~ kn, 

xa(n) ~ Ck(N) .  

Proof. Define the map q from Sn to ( 1 , . . . , N }  by 

q(vo,Vt, . . . ,Vk--1) ----- Vo + 2vl + " "  + k .  vk--x. 

Color 1 , . . . , N  with c - - - - C k ( N )  colors, avoiding 
monochromatic length-k arithmetic progressions. Color 
each ~ E Sn with the color of q(~). We prove by 
contradiction that  this coloring of S,~ contains no 
monochromatic forbidden k-patterns. 

Assume v 0 , . . . ,  ~k-a is a monochromatic forbidden 
k-pattern. By definition there is a ~ E Hn such that  • 

F i ~ ~ -~- ki-~i ,  

for some k 0 , . . . ,  Xk-t.  Since each ~i is on S,~, it follows 
that  X0 = X1 . . . . .  kk - l .  Consider the points 

qCv0), qCvl), . . . ,  q(va-1). 

The map q is linear, so q(~i) : q(@)+ k0q(~i). By 
definition of q, 

q(el) = i + 1; 
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hence 

q(~,) = a + (i + 1)b, 

where a----- q(@) and b = k0. But then there is 
a monochromat ic  ari thmetic progression of length k, 
which is a contradiction. | 

Determining the true rate of growth of Ck(N)  
is a difficult open problem. It is known tha t  Ck is 
unbounded for fixed k, however, for k > 4 it can only 
be shown to grow extremely slowly. In the remainder  
of this section we look at the specific case of k ~-~ 3 
by relating Ck(N)  to another  Ramsey-like function. 

DEFINITION. Let  R k ( N )  be the size of a largest subset 
A C ( 1 , . . . ,  N}  tha t  contains no length-k ar i thmet ic  
progression. 

THEOREM 4.3. For some constant a > O, 

N R~(N) < Ck(N)  < aNlgN 
- -  -- Rk(N)" 

Proof. Suppose { 1 , . . . ,  N )  can be c-colored in such a 
way tha t  there are no length-k ari thmetic progressions. 
Then some color class must  be used at least N / c  times. 
Therefore, R k ( N )  > N / c .  The first inequality holds 
since c ~- Ck(N) .  

Now, assume tha t  A is a subset of { 1 , . . . , N }  
tha t  contains no ar i thmetic  progressions of length k. 
We demonstra te  tha t  the second inequality holds by 
proving tha t  it is possible to c-color {1, • • •, N }  so tha t  
it has no length-k ar i thmetic  progressions provided 
c < a N  lg N / I A  I. This follows directly from: 

LEMMA 4.4. Let  A C { 1 , . . . , N } .  No more than  
O ( N  lg N/iAI) t ranslates of A are needed to completely 
cover { 1 , . . . ,  N} .  

Proof of Lemma: We use a probabilistic existence 
argument .  Choose random translations t l , . . . ,  tt, with 
each ti in the interval - N  to N .  The probabi l i ty  tha t  
a value x C { 1 , . . . ,  N }  is not covered by a part icular  
t ranslat ion is at most  1 -  [A[/2N. Therefore, the 
expected number  of missed values is bounded above 
by 

(1 IAI ~t N " I ,  - ~ - - N ]  • 

For large enough a, choosing l = a N  lg N / I A  ] makes 
this less than  1 and the Lemma  is proved. | 

THEOREM 4.5. (Roth [R/) Ra(n) > ne -c lv/~'~. 

COROLLARY 4.6. Three players can determine Exactly- 
n in O(lov/i-o~--~) bits. 

Proof. From the above, 

x3(n) <_ C3(3n) < a g l g g / R 3 ( 3 n )  < algneClX/i'g-~. 

Therefore, logx3(n),  the number  of bits tha t  have to 
be communicated,  is O ( ~ ) .  | 

5. A p p l i c a t i o n  t o  B r a n c h i n g  P r o g r a m s .  The 
lower bounds for mul t i -par ty  protocols give lower bounds 
on the space and t ime of branching programs.  Branching 
programs play an impor tan t  role in the s tudy of t ime 
and space tradeoffs and were initially described by 
Tompa  [T] and have been studied by Pippenger [P] 
and Borodin, Fischer, Kirkpatr ick,  Lynch, and Tompa  
[B]. A lower bound for branching programs of width-2 
appears  elsewhere in these proceedings [BD]. 

DEFINITION. A branching program on the hits 
b 0 , . . . ,  bn-1 is a rooted, directed, acyclic graph whose 
internal nodes are labeled with queries of the form 
"bit bi?", whose edges are labeled with possible query 
answers "bl ~-~ 0", or "bi~-~ 1", and whose leaves 
are labeled either "accept",  or "reject". For a given 
assignment of zeroes and ones to the bl, a branching 
program either accepts or rejects as the pa th  defined 
by the bit values leads to an accept or reject leaf. 
Time for a branching program is the maximum pa th  
length from the root to a leaf. Space for a branching 
program is the maximum,  over all d, of the number  of 
vertices at  distance d from the root.  

The MPP model described in the first few sections 
allows us to deal with processes tha t  share information.  
In the most  general situation we can think of processes 
as having access to a proper subset of a set of bits bo, . . . ,  
b,~-l. The next l emma shows tha t  the integer-sharing 
model is also appropr ia te  here. 

LEMMA 5.1. Let  Po, . . . ,  P k - t  be processes. Let  Pi 
have access to subset si of the bits { b 0 , . . . , b n - 1 ) .  ff 
[si[ < a . n ,  for some a < 1, i.e., ff each process is 
missing at  least a constant  fraction of the bits, then 
there exists a constant  fl, and disjoint subsets r0, . . . ,  
rk--1 of the bi such that ,  

(i) si f-) rl = O, i.e., process Pi doesn ' t  have 
access to bits in subset rl, and 

(ii) Irll >_ fl . n. 

Proof. An iterated application of Hall 's  matching 
Theorem gives this result directly. ! 

9 8  



This means that if the bits outside the union of the rl 
are held constant, the Pi share integers whose values 
are the number of bits "on" in the rj. 

THEOREM 5.2. Any constant-space branching program 
requires super-linear length to eompute Exactly-n. 

Proof. Suppose not. Then, for some integers c, d 
there are branching programs of width d and length c. n 
that accept Exaetly-n. Think of a branching program 
of length c. n as being composed of 2cd equally-long 
segments. Each segment can be thought of as a process, 
Pi, that has access to no more than n/2 bits. The 
whole branching program can thus be viewed as 2ed 
processes, each missing 1/2 the bits, communicating 
a constant amount of information (2cdlog d bits) and 
determining Exactly-n. Using Lemma 5.1 we can show 
that this contradicts Theorem 3.3. I 

COROLLARY 5.3. Any constant-space branching 
program for Threshold requires greater than linear 
time. 
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