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1 Introduction

Def 1.1 Let f : {{0, 1}n}k → X. Assume, for 1 ≤ i ≤ k, Pi has all of the inputs except xi.
Let d(f) be the total number of bits broadcast in the optimal deterministic protocol for f .
At the end of the protocol all parties must know the answer. This is called the multiparty
communication complexity of f . The scenario is called the forehead model.

Note 1.2 Note that there is always the n + 1-bit protocol of (1) P1 broadcasts x2, (2) P2

computes and broadcasts f(x1, . . . , xk). The cases of interest are when d(f) � n.

2 Connections Between Multiparty Comm. Comp. and

Ramsey Theory

In this section we review the connections between the multiparty communication complexity
of f and Ramsey Theory that was first established in [2].

Def 2.1 Let c, T ∈ N. We think of [T ] as being {1, . . . , T} mod T .

1. A proper c-coloring of [T ] × [T ] is a function COL : [T ] × [T ] → [c] such that there
do not exist x, y ∈ [T ] and λ ∈ [T − 1] such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ)

(all of the additions are mod T ). Another way to look at this: In a proper coloring
there cannot be three vertices that (a) are the same color, and (b) are the corners of
a right isosceles triangle with legs parallel to the axes and hypotenuse parallel to the
line y = −x.)

2. Let χ(T ) be the least c such that there is a proper c-coloring of [T ]× [T ].

We will study the following function.

Def 2.2 Let n ∈ N. Let N(n) : N → N. We define MODN(n)
n as follows.

MODN(n)
n (x, y, z) =

{
Y ES if x+ y + z ≡ 0 (mod N(n))

NO if x+ y + z 6≡ 0 (mod N(n))
(1)
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Note 2.3 Chandra, Furst, Lipton actually examined the function EQN(n)
n which is defined

as

EQN(n)
n (x, y, z) =

{
Y ES if x+ y + z = N(n)

NO if x+ y + z 6= N(n)
(2)

However, everything we do here is an easy modification of what they have done (unless
otherwise noted).

Theorem 2.4 Let N(n) : N → N.

1. d(MODN(n)
n ) ≤ lg(χ(N(n))) +O(1).

2. d(MODN(n)
n ) ≥ lg(χ(N(n)) + Ω(1).

Proof:
1) Let COL be a proper c-coloring of [N(n)] × [N(n)]. We represent elements of [c] by
lg(χ(N(n))) + O(1) bit strings. P1, P2, P3 will all know COL ahead of time. We present
a protocol for this problem for which the communication is 2 lg(χ(N(n))) + O(1). We will
then show that it is correct.

1. P1 has y, z. P2 has x, z. P3 has x, y.

2. P1 calculates x′ such that x′+y+z ≡ 0 (mod N(n)). P1 broadcasts σ1 = COL (x′, y).

3. P2 calculates y′ such that x + y′ + z ≡ 0 (mod N(n)). P2 broadcasts 1 if σ2 =
COL (x, y′), 0 otherwise.

4. P3 looks up σ3 = COL (x, y). P3 broadcasts YES if σ1 = σ2 = σ3 and NO otherwise.
(We will prove later that these answers are correct.)

Claim 1: If MODN(n)
n (x, y, z) = Y ES then P1, P2, P3 will all think MODN(n)

n (x, y, z) = Y ES.

Proof: If MODN(n)
n (x, y, z) = Y ES then x′1 = x1, x

′
2 = x2, and x′3 = x3. Hence σ1 = σ2 = σ3

Therefore P1, P2, P3 all think MODN(n)
n (x, y, z) = Y ES.

End of proof of Claim 1.

Claim 2: If P1, P2, P3 all think that MODN(n)
n (x, y, z) = Y ES then MODN(n)

n (x, y, z) = Y ES.

Proof: Assume that P1, P2, P3 all think MODN(n)
n (x, y, z) = Y ES.

Hence
COL (x1, x2) = COL (x′1, x2) = COL (x1, x

′
2).

We call this The Coloring Equation.
Assume
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x1 + x2 + x3 ≡ λ (mod N(n)).

We show that λ ≡ N(n) ≡ 0 (mod N(n)).
By the definition of x′1

x′1 + x2 + x3 ≡ 0 (mod N(n)).

Hence

x′1 + x1 + x2 + x3 − x1 ≡ 0 (mod N(n)).

x′1 − x1 ≡ λ (mod N(n))

x′1 ≡ x1 + λ (mod N(n))

By the same reasoning

x′2 ≡ x2 + λ (mod N(n)).

Hence we can rewrite The Coloring Equation as

COL (x1, x2) = COL (x1 + λ, x2) = COL (x1, x2 + λ).

Since COL is a proper coloring, λ ≡ 0 (mod N(n)).
End of proof of Claim 2.

2) Let P be a protocol for MODN(n)
n . Let d be the maximum number of bits communicated.

Note that the number of transcripts is bounded by 2d. We use this protocol to create a
proper 2d-coloring of [N(n)]× [N(n)].

We define COL (x, y) as follows. First find z such that x+y+z ≡ 0 (mod N(n)). Then
run the protocol on (x, y, z). The color is the transcript produced.

Claim 3: COL is a proper coloring of [N(n)]× [N(n)].
Proof: Let λ ∈ [N(n)] be such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

We denote this value TRAN (for Transcript). We show that λ ≡ 0 (mod N(n)).
Let z be such that

x+ y + z ≡ 0 (mod N(n)).

Since
COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).
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We know that the following tuples produce the same transcript TRAN (all arithmetic is
mod N(n)):

• (x, y, z).

• (x+ λ, y, z − λ).

• (x, y + λ, z − λ).

All of these input produce the same transcript TRAN and this transcript ends with
a YES. By an easy communication complexity Lemma the tuple (x, y, z − λ) also goes to
TRAN . Hence x + y + z − λ ≡ 0 (mod N(n)). Since x + y + z ≡ 0 (mod N(n)) we have
λ ≡ 0 (mod N(n)).
End of Proof of Claim 3

Note 2.5 The lower bound (in the genreal k case) can be used to get lower bounds on
Branching Programs, which was the original motivation for the Chandra-Furst-Lipton paper.
However, this exposition is only concerned with the upper bound.

3 Upper Bounds: Connection to 3-free Sets

We bound χ(N(n)) and hence, by Theorem 2.4, bound d(MODN(n)
n ).

We first find bounds on χ∗(N(n)) which is the following.

Def 3.1 Let c, T ∈ N. We think of [T ] as being {1, . . . , T} ( not mod T ).

1. A proper’ c-coloring of [T ] × [T ] is a function COL : [T ] × [T ] → [c] such that there
do not exist x, y, z ∈ [T ] and λ ∈ [T − 1] such that

COL (x, y, z) = COL (x+ λ, y, z) = COL (x, y + λ, z) = COL (x, y, z + λ)

(all of the additions are NOT mod T ). Another way to look at this: In a proper’
coloring there cannot be three vertices that (a) are the same color, and (b) are the
corners of a right isosceles triangle with legs parallel to the axes and hypotenuse parallel
to the line y = −x.)

2. Let χ∗(T ) be the least c such that there is a proper’ c-coloring of [T ]× [T ].

We will need the following definition from Ramsey Theory.

Def 3.2

1. A 3-AP is an arithmetic progression of length 3.
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2. Let ψT
3 be the minimum number of colors needed to color {1, . . . , T} such that there

are no monochromatic 3-AP ’s.

3. A set A ⊆ [T ] is 3-free if there do not exist any 3-AP’s in A.

4. Let r3(T ) be the size of the largest 3-free subset of [T ].

Lemma 3.3

1. χ∗(T ) ≤ ψ3T
3 .

2. There exists a constant c such that ψT
3 ≤ cT log T

r3(T )
.

3. There exists a constant c such that χ∗(T ) ≤ cT log(T )
r3(T )

. (This follows from 1 and 2.)

Proof:
1) Let c = ψ3T

3 . Let COL’ be a c-coloring of [3T ] with no monochromatic 3-AP’s. Let
COL be the following c-coloring of [T ]× [T ].

COL (x, y) = COL’ (x+ 2y).

Assume, by way of contradiction, that COL is not a proper’ c-coloring. Hence there
exist x, y, z ∈ [T ] and λ 6= 0 such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

By the definition of COL the following are equal.

COL’ (x+ 2y) = COL’ (x+ λ+ 2y) = COL’ (x+ 2λ+ 2y)

Hence x + 2y, x + 2y + λ, x + 2y + 2λ form a monochromatic 3-AP. which yields a
contradiction.

2) Let A ⊆ [T ] be a set of size rk(T ) with no 3-AP ’s. We use A to obtain a 3-free coloring
of [T ]. The main idea is that we use randomly chosen translations of A to cover all of [T ].

Let x ∈ [T ]. Pick a translation of A by picking t ∈ [T ]. The probability that x ∈ A + t

is |A|
T

. Hence the probability that x /∈ A+ t is 1− |A|
T

. If we pick s translations t1, . . . , ts at
random (s to be determined later) then the expected number of x that are not covered by
any A+ ti is

T

(
1− |A|

T

)s

≤ Te−s
|A|
T .

We need to pick s such that this quantity is < 1 We take s = 2T ln T
|A| which yields

Te−s
|A|
T = Te−2 ln T = 1/T < 1.

We color T by coloring each of the s translates a different color. If a number is in
two translates then we color it by one of them arbitrarily. Clearly this coloring has no
monochromatic 3-APs. Note that it uses T ln T

|A| = O(T log T
rk(T )

) colors.
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4 Three Free Sets

In this section we review two constructions of 3-free sets. Our notation will be to take them
to be subsets of {1, . . . , n}. In particular, r3(n) will be the largest 3-free subset of {1, . . . , n}.
Do not confuse this n with the n we have used before.

We present constructions in order of how large a 3-free set they give us. This is not the
same order they were discovered.

The following are trivial to prove; however, since we use it throughout the paper we need
a shorthand way to refer to it:

Fact 4.1 Let x ≤ y ≤ z. Then x, y, z is a 3-AP iff x+ z = 2y.

4.1 r3(n) = Ω(n0.63: The Base 3 Method

The following theorem appeared in [3] but they do not take credit for it; hence we can call
it folklore.

Theorem 4.2 r3(n) ≥ nlog3 2 ≈ n0.63.

Proof:

An = {m | 0 ≤ m ≤ n and all the digits in the base 3 representation of m are in the set {0, 1} }.

The following is a (large) subset of An: every number in base 3 of length blog3 nc that
only yas 0’s and 1’s. Hence

|An| ≥ Ω(2log3 n) = Ω(nlog3 2) ≥ n0.63.

We show that An is 3-free. Let x, y, z ∈ An form a 3-AP. Let x, y, z in base 3 be
x = xk−1 · · ·x0, y = yk−1 · · · y0, and z = zk−1 · · · a0, By the definition of An, for all i,
xi, yi, zi ∈ {0, 1}. By Fact 4.1 x+z = 2y. Since xi, yi, zi ∈ {0, 1} the addition is done without
carries. Hence we have, for all i, xi + zi = 2yi. Since xi, yi, zi ∈ {0, 1} we have xi = yi = zi,
so x = y = z.

4.2 r3(n) ≥ Ω(n1− c√
lg n): The Sphere Methods

The result and proof in this section are a minor variant of what was done by Behrend [1, 4].
We will express the number in a base and put a condition on the representation so that the
numbers do not form a 3-AP. It will be helpful to think of the numbers as vectors.

Def 4.3 Let x, b ∈ N and k = blogb xc. Let x be expressed in base b as
∑k

i=0 xib
i. Let

~x = (x0, . . . , xk) and |~x| =
√∑k

i=0 x
2
i .
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Behrend used digits {0, 1, 2 . . . , d} in base 2d + 1. We use digits {−d,−d + 1, . . . , d} in
base 4d+ 1. This choice gives slightly better results since there are more coefficients to use.
Every number can be represented uniquely in base 4d+ 1 with these coefficients. There are
no carries since if a, b ∈ {−d, . . . , d} then −(4d+ 1) < a+ b < (4d+ 1).

We leave the proof of the following lemma to the reader.

Lemma 4.4 Let x =
∑k

i=0 xi(4d + 1)i, y =
∑k

i=0 yi(4d + 1)i, z =
∑k

i=0 zi(4d + 1)i, where
−d ≤ xi, yi, zi ≤ d. Then the following hold.

1. x = y iff (∀i)[xi = yi].

2. If x+ y = 2z then (∀i)[xi + zi = 2yi]

The set Ad,s,k defined below is the set of all numbers that, when interpreted as vectors,
have norm s (norm is the square of the length). These vectors are all on a sphere of radius√
s. We will later impose a condition on k so that Ad,s,k ⊆ [−n/2, n/2].

Def 4.5 Let d, s, k ∈ N.

Ad,s,k =

{
x : x =

k−1∑
i=0

xi(4d+ 1)i ∧ (∀i)[−d ≤ xi ≤ d] ∧ (|~x|2 = s)

}

Def 4.6 Let d, s,m ∈ N.

Bd,s,k =

{
x : x =

k−1∑
i=0

xi(4d+ 1)i ∧ (∀i)[0 < xi ≤ d] ∧ (|~x|2 = s)

}

Lemma 4.7 Let n, d, s, k ∈ N.

1. Ad,s,k is 3-free.

2. If n = (4d+ 1)k then Ad,s,k ⊆ {−n/2, . . . , n/2}.

Proof: a) Assume, by way of contradiction, that x, y, z ∈ Ad,s,k form a 3-AP. By Fact 4.1,
x + z = 2y. By Lemma 4.4 (∀i)[xi + zi = 2yi]. Therefore ~x + ~z = 2~y, so |~x + ~z| = |2~y| =
2|~y| = 2

√
s. Since |~x| = |~z| =

√
s and ~x and ~z are not in the same direction |~x + ~z| < 2

√
s.

This is a contradiction.

b) The largest element of Ad,s,k is at most

k−1∑
i=0

d(4d+ 1)i = d

k−1∑
i=0

(4d+ 1)i =
(4d+ 1)k − 1

2
=
n− 1

2
≤ n/2.

Similarly, the smallest element is ≥ −n/2.
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Lemma 4.8 For all d, s, k

|Ad,s,k| =
k∑

m=0

(
k

m

)
2m|Bd,s,m|.

Proof:
Define

Am
d,s,k =

{
x : x =

k−1∑
i=0

xi(4d+ 1)i ∧ (∀i)[−d ≤ xi ≤ d]

∧( exactly m of the xi’s are nonzero ) ∧ (|~x|2 = s)

}
Clearly |Ad,s,k| =

∑k
m=0 |Am

d,s,k|.
Note that |Am

d,s,k| can be interpreted as first choosing m places to have non-zero elements

(which can be done in
(

k
m

)
ways), then choosing the absolute values of the elements (which

can be done in |Bd,s,m| ways) and then choosing the signs (which can be done in 2m ways).
Hence |Am

d,s,k| =
(

k
m

)
2m|Bd,s,m|. So

|Ad,s,k| =
k∑

m=0

(
k

m

)
2m|Bd,s,m|.

Theorem 4.9 There is a c such that r3(n) ≥ Ω(n
1− c√

lg n ).

Proof:
Let d, s, k be parameters to be specified later. We use the set Ad,s,k which, by Lemma 4.7, is
3-free. We seek values of d, k, s such that |Ad,s,k| is large and contained in [−n/2, n/2]. Note
that once k, d are set the only possibly values of s are {0, 1, . . . , kd2}.

A calculation shows that if k ≈
√

lg n and d is such that n = (4d+ 1)k then
⋃kd2

s=0 |Ad,s,k|
is so large that there exists a value of s such that |Ad,s,k| ≥ n

1− c√
lg n for some value of c. Note

that the proof is nonconstructive in that we do not specify s; we merely show it exists.

5 The Upper Bound

We leave the following lemma to the reader.

Lemma 5.1 For all N(n) there is a constant c such that χ(N(n)) ≤ cχ∗(N(n)).
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Theorem 5.2 d(MODN(n)
n ) =

Proof: By Theorem 2.4

d(MODN(n)
n ) ≤ 2 lg(χ(N(n))) +O(1).

By Lemma 5.1 there exists a constant c such that χ(N(n)) = cχ∗(N(n)). Hence

d(MODN(n)
n ) ≤ 2 lg(χ∗(N(n))) +O(1).

By Lemma 3.3 there exists a constant c such that

χ∗(N(n)) ≤ c
N(n) log(N(n))

r3(N(n))
+O(1).

Hence

d(MODN(n)
n ) ≤ 2 lg

(N(n) log(N(n))

r3(N(n))

)
+O(1).

By Theorem 4.9 there exists a constant c such that

r3(N(n)) ≥ Ω(N(n)
1− c√

lg N(n) ).

Hence

d(MODN(n)
n ) ≤ 2 lg

(N(n) log(N(n))

r3(N(n))

)
+O(1).
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