An Exposition of an Upper Bound in Multiparty Communication Complexity
By William Gasarch

1 Introduction

Def 1.1 Let f: {{0,1}"}* — X. Assume, for 1 < i < k, P, has all of the inputs ezcept ;.
Let d(f) be the total number of bits broadcast in the optimal deterministic protocol for f.
At the end of the protocol all parties must know the answer. This is called the multiparty
communication complexity of f. The scenario is called the forehead model.

Note 1.2 Note that there is always the n + 1-bit protocol of (1) P, broadcasts xz, (2) Py
computes and broadcasts f(z1,...,zx). The cases of interest are when d(f) < n.

2 Connections Between Multiparty Comm. Comp. and
Ramsey Theory

In this section we review the connections between the multiparty communication complexity
of f and Ramsey Theory that was first established in [2].

Def 2.1 Let ¢, T € N. We think of [T] as being {1,...,7} mod T

1. A proper c-coloring of [T'] x [T] is a function COL : [T] x [T] — [¢] such that there
do not exist z,y € [T] and A € [T" — 1] such that

COL (z,y) = COL (z+ A\,y) = COL (z,y + )

(all of the additions are mod T'). Another way to look at this: In a proper coloring
there cannot be three vertices that (a) are the same color, and (b) are the corners of
a right isosceles triangle with legs parallel to the axes and hypotenuse parallel to the
line y = —x.)

2. Let x(T) be the least ¢ such that there is a proper c-coloring of [T'] x [T7].
We will study the following function.

Def 2.2 Let n € N. Let N(n) : N — N. We define MODY™ as follows.

YES ifzx+y+2=0 (mod N(n))

MODY ™ (z,y, 2) =
w2y, 2) {NO ifz+y+2#0 (mod N(n))



Note 2.3 Chandra, Furst, Lipton actually examined the function EQY (") which is defined
as

EQY™ (x,y,z) =

n

{YES if £ +y+2=N(n) )

NO ifx+y+z# N(n)

However, everything we do here is an easy modification of what they have done (unless
otherwise noted).

Theorem 2.4 Let N(n) : N — N.
1. d(MODY™) < 1g(x(N(n))) + O(1).
2. d(MODN™) > 1g(y(N(n)) 4+ Q(1).

Proof:

1) Let COL be a proper c-coloring of [N(n)] x [N(n)]. We represent elements of [¢| by
lg(x(N(n))) + O(1) bit strings. Py, P, P3 will all know COL ahead of time. We present
a protocol for this problem for which the communication is 21g(x(N(n))) + O(1). We will
then show that it is correct.

1. P, hasy,z. P, has x,z. P; has z,y.
2. P calculates 2’ such that 2’ +y+2 =0 (mod N(n)). P, broadcasts oy = COL (2, y).

3. Py calculates y' such that 2 + ¢ + 2z = 0 (mod N(n)). P, broadcasts 1 if oy =
COL (z,v), 0 otherwise.

4. P3looks up o3 = COL (z,y). P3 broadcasts YES if 01 = 09 = 03 and NO otherwise.
(We will prove later that these answers are correct.)

Claim 1: If MODY®™ (g 4. 2) = Y ES then Py, P, Ps will all think MODY® (2 4, 2) = YES.

Proof: It MODY™ (2. y, 2) = YES then ', = x1, 2, = x5, and 24 = x3. Hence oy = 0y = 03
Therefore Pj, P, P3 all think MODnN(”) (x,y,2) =YES.
End of proof of Claim 1.

Claim 2: If Py, Py, Py all think that MODY ™ (z,y, 2) = Y ES then MODY ™ (2,3, 2) = YES.

Proof: Assume that Py, Py, Ps all think MODY ™ (2,4, 2) = YES.
Hence
COL (z1,22) = COL (2, 22) = COL (1, x3).

We call this The Coloring Equation.
Assume



1+ x2+23 =X (mod N(n)).

We show that A = N(n) =0 (mod N(n)).
By the definition of

i+ z+23=0 (mod N(n)).

Hence
¥yt r+taa+ar3—2 =0 (mod N(n)).

/ —_—

i —x1 =X (mod N(n))

i =z1+ X (mod N(n))

By the same reasoning

Ty =x3+ A (mod N(n)).

Hence we can rewrite The Coloring Equation as

COL (ZL’l, 1’2) = COL (Il + /\, 5(72) = COL ((L’l,ZL’Q + )\)
Since COL is a proper coloring, A =0 (mod N(n)).

End of proof of Claim 2.

2) Let P be a protocol for MODY™ . Let d be the maximum number of bits communicated.
Note that the number of transcripts is bounded by 2¢. We use this protocol to create a
proper 2%-coloring of [N(n)] x [N(n)].

We define COL (z,y) as follows. First find z such that t4+y+2z =0 (mod N(n)). Then

run the protocol on (z,y, z). The color is the transcript produced.

Claim 3: COL is a proper coloring of [N (n)] x [N (n)].
Proof: Let A € [N(n)] be such that

COL (z,y) = COL (z+ A,y) = COL (z,y+ ).

We denote this value TRAN (for Transcript). We show that A =0 (mod N(n)).

Let z be such that

r4+y+2=0 (mod N(n)).

Since

COL (z,y) = COL (z+ \,y) = COL (z,y + A).

3



We know that the following tuples produce the same transcript TRAN (all arithmetic is
mod N(n)):

o (z,y,2).
o (x+ ANy, z—\).
o (z,y+ A z—\).

All of these input produce the same transcript TRAN and this transcript ends with
a YES. By an easy communication complexity Lemma the tuple (z,y,z — A) also goes to
TRAN. Hence x +y+ 2z — A =0 (mod N(n)). Since x +y + z =0 (mod N(n)) we have
A =0 (mod N(n)).
End of Proof of Claim 3 1

Note 2.5 The lower bound (in the genreal k case) can be used to get lower bounds on
Branching Programs, which was the original motivation for the Chandra-Furst-Lipton paper.
However, this exposition is only concerned with the upper bound.

3 Upper Bounds: Connection to 3-free Sets

We bound y(N(n)) and hence, by Theorem 2.4, bound d(MODY®)),
We first find bounds on x*(N(n)) which is the following.

Def 3.1 Let ¢, T € N. We think of [T] as being {1,...,T'} ( not mod T').

1. A proper’ c-coloring of [T] x [T] is a function COL : [T] x [T] — [c] such that there
do not exist z,y,z € [T] and X\ € [T — 1] such that

COL (,y,z) = COL (x + \,y,2) = COL (2,5 + A,2) = COL (z,y, 2+ A

(all of the additions are NOT mod T'). Another way to look at this: In a proper’
coloring there cannot be three vertices that (a) are the same color, and (b) are the
corners of a right isosceles triangle with legs parallel to the axes and hypotenuse parallel
to the line y = —x.)

2. Let x*(T) be the least ¢ such that there is a proper’ c-coloring of [T'] x [T].
We will need the following definition from Ramsey Theory.

Def 3.2

1. A 3-AP is an arithmetic progression of length 3.



2. Let I be the minimum number of colors needed to color {1,...,T} such that there
are no monochromatic 3-AP’s.

3. A set A C[T]is 3-free if there do not exist any 3-AP’s in A.
4. Let r3(T) be the size of the largest 3-free subset of [T7].

Lemma 3.3
1. x*(T) < ¢§T.

2. There exists a constant ¢ such that ng < cLloeT

r3(T) °

3. There exists a constant ¢ such that x*(T) < ¢E22D) " (This follows from 1 and 2.)

r3(T)
Proof:
1) Let ¢ = ¢37. Let COL’ be a c-coloring of [3T] with no monochromatic 3-AP’s. Let
COL be the following c-coloring of [T] x [T7.

COL (z,y) = COL’ (z + 2y).
Assume, by way of contradiction, that COL 1is not a proper’ c-coloring. Hence there
exist x,y, z € [T] and A # 0 such that

COL (z,y) = COL (z+ A,y) = COL (z,y + \).
By the definition of COL the following are equal.

COL’ (x 4+ 2y) = COL’ (x + A+ 2y) = COL’ (x + 2\ + 2y)

Hence = + 2y,z + 2y + A,z + 2y + 2\ form a monochromatic 3-AP. which yields a
contradiction.

2) Let A C [T] be a set of size r(T) with no 3-AP’s. We use A to obtain a 3-free coloring
of [T]. The main idea is that we use randomly chosen translations of A to cover all of [T].
Let z € [T]. Pick a translation of A by picking ¢ € [T]. The probability that + € A +¢
is %. Hence the probability that ©z ¢ A+t is 1 — %. If we pick s translations tq,...,t, at
random (s to be determined later) then the expected number of = that are not covered by

any A +t; is
A S
T( —%l) < Tes'T
TInT

We need to pick s such that this quantity is < 1 We take s = 2 Al which yields

Te T = Te T = 1/T < 1.
We color T' by coloring each of the s translates a different color. If a number is in
two translates then we color it by one of them arbitrarily. Clearly this coloring has no

monochromatic 3-APs. Note that it uses Tl = O(21%8T) colors. 11
|A] ri(T)




4 Three Free Sets

In this section we review two constructions of 3-free sets. Our notation will be to take them
to be subsets of {1,...,n}. In particular, rs(n) will be the largest 3-free subset of {1,...,n}.
Do not confuse this n with the n we have used before.

We present constructions in order of how large a 3-free set they give us. This is not the
same order they were discovered.

The following are trivial to prove; however, since we use it throughout the paper we need
a shorthand way to refer to it:

Fact 4.1 Let x <y <z. Then x,y,z is a 3-AP iff vt + z = 2y.

4.1 r13(n) = Q(n’%: The Base 3 Method

The following theorem appeared in [3] but they do not take credit for it; hence we can call
it folklore.

Theorem 4.2 13(n) > nl%8s? ~ n63,

Proof:

A, ={m|0<m <n and all the digits in the base 3 representation of m are in the set {0, 1} }.

The following is a (large) subset of A,,: every number in base 3 of length |logsn| that
only yas 0’s and 1’s. Hence

|An| > Q<2log3n) — Q(nlog3 2) > n0.63'

We show that A, is 3-free. Let x,y,z € A, form a 3-AP. Let z,y,z in base 3 be
T = Tp_1°+To, Y = Yp—1-""Yo, and z = zx_1---ag, By the definition of A,, for all 7,
T, ¥i, 2z € {0,1}. By Fact 4.1 x+ 2 = 2y. Since z;,y;, z; € {0, 1} the addition is done without
carries. Hence we have, for all i, z; + z; = 2y;. Since z;,y;, z; € {0,1} we have z; = y; = z;,
sox=y==z 1

4.2 13(n) > Q(n' VEr): The Sphere Methods

The result and proof in this section are a minor variant of what was done by Behrend [1, 4].
We will express the number in a base and put a condition on the representation so that the
numbers do not form a 3-AP. It will be helpful to think of the numbers as vectors.

Def 4.3 Let 2,0 € N and k = [log,z]. Let z be expressed in base b as S a;b. Let

7= (20,...,73) and |7] = /305, 22



Behrend used digits {0,1,2...,d} in base 2d + 1. We use digits {—d,—d + 1,...,d} in
base 4d + 1. This choice gives slightly better results since there are more coefficients to use.
Every number can be represented uniquely in base 4d + 1 with these coefficients. There are
no carries since if a,b € {—d,...,d} then —(4d+1) <a+b < (4d+1).

We leave the proof of the following lemma to the reader.

Lemma 4.4 Let v = Y. jx(4d + 1)), y = S8 jwi(dd + 1), 2 = S8 zi(4d + 1)7, where
—d < x4, Y, 2 < d. Then the following hold.

1. x =y iff (Vi)[z; = yi].
2. If x +y = 2z then (Vi)|x; + z; = 2y

The set Ay defined below is the set of all numbers that, when interpreted as vectors,
have norm s (norm is the square of the length). These vectors are all on a sphere of radius
v/s. We will later impose a condition on k so that Ay C [—n/2,n/2)].

Def 4.5 Let d,s,k € N.

Agsk = {x L= ifci(lld—l— DA (Vi) [—d <z < d] A (|Z)? = s)}

=0

Def 4.6 Let d,s,m € N.

k—1

Bisk = {IB tx = Zazi(4d+ DA (V)0 < 2 <d] A (|7 = s)}
=0
Lemma 4.7 Let n,d, s, k € N.

1. Agsp 15 3-free.

2. If n = (4d+ 1)* then Agsx C {-n/2,...,n/2}.

Proof:  a) Assume, by way of contradiction, that z,y, z € Ay form a 3-AP. By Fact 4.1,
x4+ z = 2y. By Lemma 4.4 (Vi)[z; + z; = 2y;]. Therefore & + Z = 2y, so |Z + 2] = 2] =
2|y] = 24/s. Since |Z] = |Z] = /s and ¥ and Z are not in the same direction |Z + Z] < 24/s.
This is a contradiction.

b) The largest element of A,y is at most

N
—
N

- -1

k_ —
(4d+1)i:<4d+1) 1:n21§n/2‘

d(4d + 1) =d

Ing

I
o
v L

% %

Similarly, the smallest element is

—n/2. 1



Lemma 4.8 For all d, s,k

Yk
A = 3 ( )2m|Bd,s,m|.
m=0 m

Proof:
Define
k-1
Ag?s,k; = {$ S Z%(‘ld—l- 1)i A (Vi)[—d < z; < d]
i=0

A( exactly m of the z;’s are nonzero ) A (|Z]* = s)}

k
Clearly |Ad,s,k| = Em:O |Ag?s,k .
Note that |A}, .| can be interpreted as first choosing m places to have non-zero elements
(which can be done in ( :1 ) ways), then choosing the absolute values of the elements (which
can be done in |Bg | ways) and then choosing the signs (which can be done in 2™ ways).

Hence |Ag?s,k| = ( )2m|Bd757m|. So
k
( >2m|3d,s,m|-
m
0

k
m

E

‘Ad,s,k| =

3
]

Theorem 4.9  There is a ¢ such that r3(n) > Q(nlfﬂc?n).

Proof:

Let d, s, k be parameters to be specified later. We use the set Ay which, by Lemma 4.7, is
3-free. We seek values of d, k, s such that |A, x| is large and contained in [—n/2,n/2]. Note
that once k, d are set the only possibly values of s are {0,1,. .., kd*}.

A calculation shows that if k ~ /Ign and d is such that n = (4d + 1)* then U];izo | Ads.k|

is so large that there exists a value of s such that |Ags x| > n'~View for some value of ¢. Note
that the proof is nonconstructive in that we do not specify s; we merely show it exists. |

5 The Upper Bound

We leave the following lemma to the reader.

Lemma 5.1 For all N(n) there is a constant ¢ such that x(N(n)) < ex*(N(n)).



Theorem 5.2 d(MODY™) =
Proof: By Theorem 2.4
d(MOD;™) < 21g(x(N(n))) +O(1).
By Lemma 5.1 there exists a constant ¢ such that x(N(n)) = ex*(N(n)). Hence
d(MOD,™) < 21g(x"(N(n))) + O(1).
By Lemma 3.3 there exists a constant ¢ such that

N(n)log(N(n))
rs(N(n))

X" (N(n)) <c +O0(1).

Hence
N(n)log(N(n))
r3(N(n))

By Theorem 4.9 there exists a constant ¢ such that

d(MODY™) < 21g( ) +O(1).

ry(N(n)) = Q(N(n) " ViEre).
Hence
Nen N(n)log(N(n))
d(MODYN™) < 21g( V() ) +O0(1).
|
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