An Exposition of an Upper Bound in Multiparty Communication Complexity By William Gasarch

1 Introduction

Def 1.1 Let $f:\left\{\{0,1\}^{n}\right\}^{k} \rightarrow X$. Assume, for $1 \leq i \leq k, P_{i}$ has all of the inputs except x_{i}. Let $d(f)$ be the total number of bits broadcast in the optimal deterministic protocol for f. At the end of the protocol all parties must know the answer. This is called the multiparty communication complexity of f. The scenario is called the forehead model.

Note 1.2 Note that there is always the $n+1$-bit protocol of (1) P_{1} broadcasts x_{2}, (2) P_{2} computes and broadcasts $f\left(x_{1}, \ldots, x_{k}\right)$. The cases of interest are when $d(f) \ll n$.

2 Connections Between Multiparty Comm. Comp. and Ramsey Theory

In this section we review the connections between the multiparty communication complexity of f and Ramsey Theory that was first established in [2].

Def 2.1 Let $c, T \in \mathbb{N}$. We think of $[T]$ as being $\{1, \ldots, T\} \bmod T$.

1. A proper c-coloring of $[T] \times[T]$ is a function $\mathrm{COL}:[T] \times[T] \rightarrow[c]$ such that there do not exist $x, y \in[T]$ and $\lambda \in[T-1]$ such that

$$
\operatorname{COL}(x, y)=\operatorname{COL}(x+\lambda, y)=\operatorname{COL}(x, y+\lambda)
$$

(all of the additions are $\bmod T$). Another way to look at this: In a proper coloring there cannot be three vertices that (a) are the same color, and (b) are the corners of a right isosceles triangle with legs parallel to the axes and hypotenuse parallel to the line $y=-x$.)
2. Let $\chi(T)$ be the least c such that there is a proper c-coloring of $[T] \times[T]$.

We will study the following function.
Def 2.2 Let $n \in \mathbb{N}$. Let $N(n): \mathbb{N} \rightarrow \mathbb{N}$. We define $\mathrm{MOD}_{n}^{N(n)}$ as follows.

$$
\operatorname{MOD}_{n}^{N(n)}(x, y, z)=\left\{\begin{array}{lll}
Y E S & \text { if } x+y+z \equiv 0 & (\bmod N(n)) \tag{1}\\
N O & \text { if } x+y+z \not \equiv 0 & (\bmod N(n))
\end{array}\right.
$$

Note 2.3 Chandra, Furst, Lipton actually examined the function $\mathrm{EQ}_{n}^{N(n)}$ which is defined as

$$
\mathrm{EQ}_{n}^{N(n)}(x, y, z)= \begin{cases}Y E S & \text { if } x+y+z=N(n) \tag{2}\\ N O & \text { if } x+y+z \neq N(n)\end{cases}
$$

However, everything we do here is an easy modification of what they have done (unless otherwise noted).

Theorem 2.4 Let $N(n): \mathbb{N} \rightarrow \mathbb{N}$.

1. $d\left(\operatorname{MOD}_{n}^{N(n)}\right) \leq \lg (\chi(N(n)))+O(1)$.
2. $d\left(\operatorname{MOD}_{n}^{N(n)}\right) \geq \lg (\chi(N(n))+\Omega(1)$.

Proof:

1) Let COL be a proper c-coloring of $[N(n)] \times[N(n)]$. We represent elements of $[c]$ by $\lg (\chi(N(n)))+O(1)$ bit strings. P_{1}, P_{2}, P_{3} will all know COL ahead of time. We present a protocol for this problem for which the communication is $2 \lg (\chi(N(n)))+O(1)$. We will then show that it is correct.
1. P_{1} has $y, z . P_{2}$ has $x, z . P_{3}$ has x, y.
2. P_{1} calculates x^{\prime} such that $x^{\prime}+y+z \equiv 0(\bmod N(n)) . P_{1}$ broadcasts $\sigma_{1}=\operatorname{COL}\left(x^{\prime}, y\right)$.
3. P_{2} calculates y^{\prime} such that $x+y^{\prime}+z \equiv 0(\bmod N(n))$. P_{2} broadcasts 1 if $\sigma_{2}=$ COL $\left(x, y^{\prime}\right), 0$ otherwise.
4. P_{3} looks up $\sigma_{3}=\operatorname{COL}(x, y) . P_{3}$ broadcasts YES if $\sigma_{1}=\sigma_{2}=\sigma_{3}$ and NO otherwise. (We will prove later that these answers are correct.)

Claim 1: If $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$ then P_{1}, P_{2}, P_{3} will all think $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$.
Proof: If $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$ then $x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}$, and $x_{3}^{\prime}=x_{3}$. Hence $\sigma_{1}=\sigma_{2}=\sigma_{3}$ Therefore P_{1}, P_{2}, P_{3} all think $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$.
End of proof of Claim 1.
Claim 2: If P_{1}, P_{2}, P_{3} all think that $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$ then $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$.
Proof: Assume that P_{1}, P_{2}, P_{3} all think $\operatorname{MOD}_{n}^{N(n)}(x, y, z)=Y E S$.
Hence

$$
\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}^{\prime}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{2}^{\prime}\right)
$$

We call this The Coloring Equation.
Assume

$$
x_{1}+x_{2}+x_{3} \equiv \lambda \quad(\bmod N(n)) .
$$

We show that $\lambda \equiv N(n) \equiv 0(\bmod N(n))$.
By the definition of x_{1}^{\prime}

$$
x_{1}^{\prime}+x_{2}+x_{3} \equiv 0 \quad(\bmod N(n)) .
$$

Hence

$$
\begin{gathered}
x_{1}^{\prime}+x_{1}+x_{2}+x_{3}-x_{1} \equiv 0 \quad(\bmod N(n)) . \\
x_{1}^{\prime}-x_{1} \equiv \lambda \quad(\bmod N(n)) \\
x_{1}^{\prime} \equiv x_{1}+\lambda \quad(\bmod N(n))
\end{gathered}
$$

By the same reasoning

$$
x_{2}^{\prime} \equiv x_{2}+\lambda \quad(\bmod N(n)) .
$$

Hence we can rewrite The Coloring Equation as

$$
\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}+\lambda, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{2}+\lambda\right) .
$$

Since COL is a proper coloring, $\lambda \equiv 0(\bmod N(n))$.
End of proof of Claim 2.
2) Let P be a protocol for $\mathrm{MOD}_{n}^{N(n)}$. Let d be the maximum number of bits communicated. Note that the number of transcripts is bounded by 2^{d}. We use this protocol to create a proper 2^{d}-coloring of $[N(n)] \times[N(n)]$.

We define COL (x, y) as follows. First find z such that $x+y+z \equiv 0(\bmod N(n))$. Then run the protocol on (x, y, z). The color is the transcript produced.

Claim 3: COL is a proper coloring of $[N(n)] \times[N(n)]$.
Proof: Let $\lambda \in[N(n)]$ be such that

$$
\operatorname{COL}(x, y)=\operatorname{COL}(x+\lambda, y)=\operatorname{COL}(x, y+\lambda) .
$$

We denote this value TRAN (for Transcript). We show that $\lambda \equiv 0(\bmod N(n))$.
Let z be such that

$$
x+y+z \equiv 0 \quad(\bmod N(n)) .
$$

Since

$$
\operatorname{COL}(x, y)=\operatorname{COL}(x+\lambda, y)=\operatorname{COL}(x, y+\lambda)
$$

We know that the following tuples produce the same transcript $T R A N$ (all arithmetic is $\bmod N(n))$:

- (x, y, z).
- $(x+\lambda, y, z-\lambda)$.
- $(x, y+\lambda, z-\lambda)$.

All of these input produce the same transcript $T R A N$ and this transcript ends with a YES. By an easy communication complexity Lemma the tuple ($x, y, z-\lambda$) also goes to $T R A N$. Hence $x+y+z-\lambda \equiv 0(\bmod N(n))$. Since $x+y+z \equiv 0(\bmod N(n))$ we have $\lambda \equiv 0(\bmod N(n))$.
End of Proof of Claim 3

Note 2.5 The lower bound (in the genreal k case) can be used to get lower bounds on Branching Programs, which was the original motivation for the Chandra-Furst-Lipton paper. However, this exposition is only concerned with the upper bound.

3 Upper Bounds: Connection to 3-free Sets

We bound $\chi(N(n))$ and hence, by Theorem 2.4, bound $d\left(\operatorname{MOD}_{n}^{N(n)}\right)$.
We first find bounds on $\chi^{*}(N(n))$ which is the following.
Def 3.1 Let $c, T \in \mathbb{N}$. We think of $[T]$ as being $\{1, \ldots, T\}(\operatorname{not} \bmod T)$.
 do not exist $x, y, z \in[T]$ and $\lambda \in[T-1]$ such that

$$
\operatorname{COL}(x, y, z)=\operatorname{COL}(x+\lambda, y, z)=\operatorname{COL}(x, y+\lambda, z)=\operatorname{COL}(x, y, z+\lambda)
$$

(all of the additions are NOT mod T). Another way to look at this: In a proper' coloring there cannot be three vertices that (a) are the same color, and (b) are the corners of a right isosceles triangle with legs parallel to the axes and hypotenuse parallel to the line $y=-x$.)
2. Let $\chi^{*}(T)$ be the least c such that there is a proper' c-coloring of $[T] \times[T]$.

We will need the following definition from Ramsey Theory.

Def 3.2

1. A 3-AP is an arithmetic progression of length 3 .
2. Let ψ_{3}^{T} be the minimum number of colors needed to color $\{1, \ldots, T\}$ such that there are no monochromatic $3-A P$'s.
3. A set $A \subseteq[T]$ is 3 -free if there do not exist any 3 -AP's in A.
4. Let $\mathrm{r}_{3}(T)$ be the size of the largest 3-free subset of $[T]$.

Lemma 3.3

1. $\chi^{*}(T) \leq \psi_{3}^{3 T}$.
2. There exists a constant c such that $\psi_{3}^{T} \leq c \frac{T \log T}{\mathrm{r}_{3}(T)}$.
3. There exists a constant c such that $\chi^{*}(T) \leq c \frac{T \log (T)}{\mathrm{r}_{3}(T)}$. (This follows from 1 and 2.)

Proof:

1) Let $c=\psi_{3}^{3 T}$. Let COL' be a c-coloring of $[3 T]$ with no monochromatic 3-AP's. Let COL be the following c-coloring of $[T] \times[T]$.

$$
\operatorname{COL}(x, y)=\mathrm{COL}^{\prime}(x+2 y)
$$

Assume, by way of contradiction, that COL is not a proper' c-coloring. Hence there exist $x, y, z \in[T]$ and $\lambda \neq 0$ such that

$$
\operatorname{COL}(x, y)=\operatorname{COL}(x+\lambda, y)=\operatorname{COL}(x, y+\lambda)
$$

By the definition of COL the following are equal.

$$
\mathrm{COL}^{\prime}(x+2 y)=\mathrm{COL}^{\prime}(x+\lambda+2 y)=\mathrm{COL}^{\prime}(x+2 \lambda+2 y)
$$

Hence $x+2 y, x+2 y+\lambda, x+2 y+2 \lambda$ form a monochromatic 3 -AP. which yields a contradiction.
2) Let $A \subseteq[T]$ be a set of size $r_{k}(T)$ with no 3 - $A P$'s. We use A to obtain a 3 -free coloring of $[T]$. The main idea is that we use randomly chosen translations of A to cover all of $[T]$.

Let $x \in[T]$. Pick a translation of A by picking $t \in[T]$. The probability that $x \in A+t$ is $\frac{|A|}{T}$. Hence the probability that $x \notin A+t$ is $1-\frac{|A|}{T}$. If we pick s translations t_{1}, \ldots, t_{s} at random (s to be determined later) then the expected number of x that are not covered by any $A+t_{i}$ is

$$
T\left(1-\frac{|A|}{T}\right)^{s} \leq T e^{-s \frac{|A|}{T}}
$$

We need to pick s such that this quantity is <1 We take $s=2 \frac{T \ln T}{|A|}$ which yields

$$
T e^{-s \frac{|A|}{T}}=T e^{-2 \ln T}=1 / T<1 .
$$

We color T by coloring each of the s translates a different color. If a number is in two translates then we color it by one of them arbitrarily. Clearly this coloring has no monochromatic 3-APs. Note that it uses $\frac{T \ln T}{|A|}=O\left(\frac{T \log T}{\mathrm{r}_{k}(T)}\right)$ colors.

4 Three Free Sets

In this section we review two constructions of 3 -free sets. Our notation will be to take them to be subsets of $\{1, \ldots, n\}$. In particular, $\mathrm{r}_{3}(n)$ will be the largest 3 -free subset of $\{1, \ldots, n\}$. Do not confuse this n with the n we have used before.

We present constructions in order of how large a 3 -free set they give us. This is not the same order they were discovered.

The following are trivial to prove; however, since we use it throughout the paper we need a shorthand way to refer to it:

Fact 4.1 Let $x \leq y \leq z$. Then x, y, z is a 3-AP iff $x+z=2 y$.

4.1 $\quad r_{3}(n)=\Omega\left(n^{0.63}\right.$: The Base 3 Method

The following theorem appeared in [3] but they do not take credit for it; hence we can call it folklore.

Theorem 4.2 $\quad \mathrm{r}_{3}(n) \geq n^{\log _{3} 2} \approx n^{0.63}$.

Proof:

$A_{n}=\{m \mid 0 \leq m \leq n$ and all the digits in the base 3 representation of m are in the set $\{0,1\}\}$.
The following is a (large) subset of A_{n} : every number in base 3 of length $\left\lfloor\log _{3} n\right\rfloor$ that only yas 0 's and 1 's. Hence

$$
\left|A_{n}\right| \geq \Omega\left(2^{\log _{3} n}\right)=\Omega\left(n^{\log _{3} 2}\right) \geq n^{0.63}
$$

We show that A_{n} is 3 -free. Let $x, y, z \in A_{n}$ form a 3 -AP. Let x, y, z in base 3 be $x=x_{k-1} \cdots x_{0}, y=y_{k-1} \cdots y_{0}$, and $z=z_{k-1} \cdots a_{0}$, By the definition of A_{n}, for all i, $x_{i}, y_{i}, z_{i} \in\{0,1\}$. By Fact $4.1 x+z=2 y$. Since $x_{i}, y_{i}, z_{i} \in\{0,1\}$ the addition is done without carries. Hence we have, for all $i, x_{i}+z_{i}=2 y_{i}$. Since $x_{i}, y_{i}, z_{i} \in\{0,1\}$ we have $x_{i}=y_{i}=z_{i}$, so $x=y=z$.

4.2 $\quad r_{3}(n) \geq \Omega\left(n^{1-\frac{c}{\sqrt{\lg n}}}\right)$: The Sphere Methods

The result and proof in this section are a minor variant of what was done by Behrend [1, 4]. We will express the number in a base and put a condition on the representation so that the numbers do not form a 3-AP. It will be helpful to think of the numbers as vectors.

Def 4.3 Let $x, b \in \mathbb{N}$ and $k=\left\lfloor\log _{b} x\right\rfloor$. Let x be expressed in base b as $\sum_{i=0}^{k} x_{i} b^{i}$. Let $\vec{x}=\left(x_{0}, \ldots, x_{k}\right)$ and $|\vec{x}|=\sqrt{\sum_{i=0}^{k} x_{i}^{2}}$.

Behrend used digits $\{0,1,2 \ldots, d\}$ in base $2 d+1$. We use digits $\{-d,-d+1, \ldots, d\}$ in base $4 d+1$. This choice gives slightly better results since there are more coefficients to use. Every number can be represented uniquely in base $4 d+1$ with these coefficients. There are no carries since if $a, b \in\{-d, \ldots, d\}$ then $-(4 d+1)<a+b<(4 d+1)$.

We leave the proof of the following lemma to the reader.
Lemma 4.4 Let $x=\sum_{i=0}^{k} x_{i}(4 d+1)^{i}, y=\sum_{i=0}^{k} y_{i}(4 d+1)^{i}$, $z=\sum_{i=0}^{k} z_{i}(4 d+1)^{i}$, where $-d \leq x_{i}, y_{i}, z_{i} \leq d$. Then the following hold.

1. $x=y$ iff $(\forall i)\left[x_{i}=y_{i}\right]$.
2. If $x+y=2 z$ then $(\forall i)\left[x_{i}+z_{i}=2 y_{i}\right]$

The set $A_{d, s, k}$ defined below is the set of all numbers that, when interpreted as vectors, have norm s (norm is the square of the length). These vectors are all on a sphere of radius \sqrt{s}. We will later impose a condition on k so that $A_{d, s, k} \subseteq[-n / 2, n / 2]$.

Def 4.5 Let $d, s, k \in \mathbb{N}$.

$$
A_{d, s, k}=\left\{x: x=\sum_{i=0}^{k-1} x_{i}(4 d+1)^{i} \wedge(\forall i)\left[-d \leq x_{i} \leq d\right] \wedge\left(|\vec{x}|^{2}=s\right)\right\}
$$

Def 4.6 Let $d, s, m \in \mathbb{N}$.

$$
B_{d, s, k}=\left\{x: x=\sum_{i=0}^{k-1} x_{i}(4 d+1)^{i} \wedge(\forall i)\left[0<x_{i} \leq d\right] \wedge\left(|\vec{x}|^{2}=s\right)\right\}
$$

Lemma 4.7 Let $n, d, s, k \in \mathbb{N}$.

1. $A_{d, s, k}$ is 3-free.
2. If $n=(4 d+1)^{k}$ then $A_{d, s, k} \subseteq\{-n / 2, \ldots, n / 2\}$.

Proof: a) Assume, by way of contradiction, that $x, y, z \in A_{d, s, k}$ form a 3-AP. By Fact 4.1, $x+z=2 y$. By Lemma $4.4(\forall i)\left[x_{i}+z_{i}=2 y_{i}\right]$. Therefore $\vec{x}+\vec{z}=2 \vec{y}$, so $|\vec{x}+\vec{z}|=|2 \vec{y}|=$ $2|\vec{y}|=2 \sqrt{s}$. Since $|\vec{x}|=|\vec{z}|=\sqrt{s}$ and \vec{x} and \vec{z} are not in the same direction $|\vec{x}+\vec{z}|<2 \sqrt{s}$. This is a contradiction.
b) The largest element of $A_{d, s, k}$ is at most

$$
\sum_{i=0}^{k-1} d(4 d+1)^{i}=d \sum_{i=0}^{k-1}(4 d+1)^{i}=\frac{(4 d+1)^{k}-1}{2}=\frac{n-1}{2} \leq n / 2
$$

Similarly, the smallest element is $\geq-n / 2$.

Lemma 4.8 For all d, s, k

$$
\left|A_{d, s, k}\right|=\sum_{m=0}^{k}\binom{k}{m} 2^{m}\left|B_{d, s, m}\right| .
$$

Proof:

Define

$$
\begin{aligned}
& A_{d, s, k}^{m}=\left\{x: x=\sum_{i=0}^{k-1} x_{i}(4 d+1)^{i} \wedge(\forall i)\left[-d \leq x_{i} \leq d\right]\right. \\
& \left.\wedge\left(\text { exactly } m \text { of the } x_{i} \text { 's are nonzero }\right) \wedge\left(|\vec{x}|^{2}=s\right)\right\}
\end{aligned}
$$

Clearly $\left|A_{d, s, k}\right|=\sum_{m=0}^{k}\left|A_{d, s, k}^{m}\right|$.
Note that $\left|A_{d, s, k}^{m}\right|$ can be interpreted as first choosing m places to have non-zero elements (which can be done in $\binom{k}{m}$ ways), then choosing the absolute values of the elements (which can be done in $\left|B_{d, s, m}\right|$ ways) and then choosing the signs (which can be done in 2^{m} ways). Hence $\left|A_{d, s, k}^{m}\right|=\binom{k}{m} 2^{m}\left|B_{d, s, m}\right|$. So

$$
\left|A_{d, s, k}\right|=\sum_{m=0}^{k}\binom{k}{m} 2^{m}\left|B_{d, s, m}\right| .
$$

Theorem 4.9 There is a c such that $\mathrm{r}_{3}(n) \geq \Omega\left(n^{1-\frac{c}{\sqrt{\mathrm{Ig}}}}\right)$.

Proof:

Let d, s, k be parameters to be specified later. We use the set $A_{d, s, k}$ which, by Lemma 4.7, is 3 -free. We seek values of d, k, s such that $\left|A_{d, s, k}\right|$ is large and contained in $[-n / 2, n / 2]$. Note that once k, d are set the only possibly values of s are $\left\{0,1, \ldots, k d^{2}\right\}$.

A calculation shows that if $k \approx \sqrt{\lg n}$ and d is such that $n=(4 d+1)^{k}$ then $\bigcup_{s=0}^{k d^{2}}\left|A_{d, s, k}\right|$ is so large that there exists a value of s such that $\left|A_{d, s, k}\right| \geq n^{1-\frac{c}{\sqrt{g n}}}$ for some value of c. Note that the proof is nonconstructive in that we do not specify s; we merely show it exists.

5 The Upper Bound

We leave the following lemma to the reader.
Lemma 5.1 For all $N(n)$ there is a constant c such that $\chi(N(n)) \leq c \chi^{*}(N(n))$.

Theorem $5.2 d\left(\operatorname{MOD}_{n}^{N(n)}\right)=$
Proof: By Theorem 2.4

$$
d\left(\mathrm{MOD}_{n}^{N(n)}\right) \leq 2 \lg (\chi(N(n)))+O(1)
$$

By Lemma 5.1 there exists a constant c such that $\chi(N(n))=c \chi^{*}(N(n))$. Hence

$$
d\left(\operatorname{MOD}_{n}^{N(n)}\right) \leq 2 \lg \left(\chi^{*}(N(n))\right)+O(1)
$$

By Lemma 3.3 there exists a constant c such that

$$
\chi^{*}(N(n)) \leq c \frac{N(n) \log (N(n))}{\mathrm{r}_{3}(N(n))}+O(1)
$$

Hence

$$
d\left(\operatorname{MOD}_{n}^{N(n)}\right) \leq 2 \lg \left(\frac{N(n) \log (N(n))}{\mathrm{r}_{3}(N(n))}\right)+O(1)
$$

By Theorem 4.9 there exists a constant c such that

$$
\mathrm{r}_{3}(N(n)) \geq \Omega\left(N(n)^{1-\frac{c}{\sqrt{1 g N(n)}}}\right)
$$

Hence

$$
d\left(\operatorname{MOD}_{n}^{N(n)}\right) \leq 2 \lg \left(\frac{N(n) \log (N(n))}{\mathrm{r}_{3}(N(n))}\right)+O(1)
$$

References

[1] F. Behrend. On set of integers which contain no three in arithmetic progression. Proc. of the National Acadamy of Science (USA), 23:331-332, 1946.
[2] A. Chandra, M. Furst, and R. Lipton. Multiparty protocols. In Proceedings of the Fifteenth Annual ACM Symposium on the Theory of Computing, Boston MA, pages 9499, 1983. http://portal.acm.org/citation.cfm?id=808737.
[3] P. Erdös and P. Turan. On some sequences of integers. Journal of the London Mathematical Society, 11(2):261-264, 1936. http://jlms.oxfordjournals.org/.
[4] R. Graham, B. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.

