Less Elegant Proofs that $\binom{2n}{n}$ and $C_n = \frac{1}{n+1} \binom{2n}{n}$ are Integers

By Bill Gasarch

1 Introduction

Notation 1.1 $\binom{n}{k}$ is $\frac{n!}{k!(n-k)!}$. C_n is $\frac{1}{n+1} \binom{2n}{n}$.

We all know that $\binom{2n}{n}$ is an integer since it solves a combinatorial problem. But if we didn’t know that, it would not be obvious. We give several proofs that $\binom{2n}{n}$ is an integer, some of which do not require combinatorics.

We all know that C_n is an integer since it solves a combinatorial problem. But this is even less obvious than $\binom{2n}{n}$ being an integer! (That last punctuation is an explanation point, not a factorial.) We give several proofs that C_n is an integer, some of which do not require combinatorics.

2 Combinatorial Proof that $\binom{2n}{n}$ is an Integer

Consider the following problem: How many ways can you pick n distinct objects out of $2n$ distinct objects (without caring about the order). Whatever the answer is, it must be an integer. Elementary combinatorics shows that its $\binom{2n}{n}$.

I think its a great proof since we don’t need to do any algebra. Others who don’t know the combinatorics ahead of time might find it a very very odd proof. Such people also find the counting proof that $2^n = \sum_{i=0}^{n} \binom{n}{i}$ to be very very odd.

3 Proof by Combinatoric and Induction that $\binom{2n}{n}$ is an Integer

By a standard combinatorial argument one can show that

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Hence by induction $\binom{n}{k}$ is an integer.
This proof is a cheat. In order to do the combinatorial argument you need to already know that \(\binom{n}{k} \) is the number of ways to choose \(k \) from \(n \), and hence you already know that \(\binom{2n}{n} \) is an integer

4 Proof by Algebra and Induction that \(\binom{2n}{n} \) is an Integer

By an algebraic argument one can show that

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.
\]

Hence by induction \(\binom{n}{k} \) is an integer. Hence \(\binom{2n}{n} \) is an integer.

This proof is not a cheat. It is completely algebraic. This proof also demonstrates the principle that it is sometimes easier to proof a harder theorem: We just wanted \(\binom{2n}{n} \) to be an integer. However, this proof works well with \(\binom{n}{k} \) and would be hard (impossible?) to push through a proof like this for just \(\binom{2n}{n} \).

5 Proof by Number Theory that \(\binom{2n}{n} \) is an Integer

Let \(p \) be a prime. We want to find \(x \) and \(y \) such that

1. \(x \) is the largest number such that \(p^x \) divides \((2n)! \)
2. \(y \) is the largest number such that \(p^y \) divides \(n!n! \)

We then show that \(x \geq y \) to complete the proof.

The number of factors of \(p \) in \(m! \) is

\[
\left\lfloor \frac{m}{p} \right\rfloor + \left\lfloor \frac{m}{p^2} \right\rfloor + \left\lfloor \frac{m}{p^3} \right\rfloor + \cdots
\]

Hence

\[
x = \left\lfloor \frac{2n}{p} \right\rfloor + \left\lfloor \frac{2n}{p^2} \right\rfloor + \left\lfloor \frac{2n}{p^3} \right\rfloor + \cdots
\]
\[y = 2 \left\lfloor \frac{n}{p} \right\rfloor + 2 \left\lfloor \frac{n}{p^2} \right\rfloor + 2 \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots \]

To obtain \(x \geq y \) it suffice to show that, for all real \(\alpha \), \(\lfloor 2\alpha \rfloor \geq 2 \lfloor \alpha \rfloor \). If \(\alpha \) is an integer we get equality. If \(n < \alpha < n + 1 \) then \(2n < 2\alpha < 2n + 2 \) and hence \(\lfloor \alpha \rfloor = n \) and \(\lfloor 2\alpha \rfloor \geq 2n \). Hence we have \(\lfloor 2\alpha \rfloor \geq 2 \lfloor \alpha \rfloor \).

6 Incomplete Proof by Number Theory that \(\binom{2n}{n} \) is an Integer

Is there a proof that \(\binom{2n}{n} \) that just uses cancelling and not the kind of argument in Section 5? Here is an attempt at such.

\(\binom{2n}{n} \) can be written as

\[
\frac{2n}{n} \frac{2(n - 1)}{n - 1} \frac{2(n - 2)}{n - 2} \cdots \frac{2(n - (n - 1))}{n - (n - 1)} \times \frac{(2n - 1)(2n - 3) \cdots (2n - (2n - 1))}{n!}
\]

This equals

\[
2^n \times \frac{1 \times 3 \times 5 \times \cdots \times (2n - 1)}{n!}
\]

NEED TO FINISH. DO NOT WANT TO USE THAT \(2^n \) DIVIDES \(n! \) SINCE IF WE USE THAT TRICK WE MINE AS WELL HAVE USED THE PROOF IN THE LAST SECTION.

7 Combinatorial Proof that \(C_n \) is an Integer

This is well know but we include it for completness.

Let \(C_n \) be the number of ways to parenthesis \(X \cdots X \) (\(n \) times). The parenthization should be such that if the operation is non-associative the answer is still unambiguous.

Example 7.1
1. \(n = 0 \): By convention we define \(C_0 = 1 \).

2. \(n = 1 \): There is only one way to parenthesize \(X \) and that is by \(X \).

3. \(n = 2 \): There is only one way to parenthesize \(XX \) namely \((XX) \) so \(C_1 = 1 \).

4. \(n = 3 \): \(XXX \) can be parenthesized by either
 - \(((XX)X)X, \)
 - \((X(XX))X, \)
 - \((XX)(XX), \)
 - \(X((XX)X, \)
 - \(X(X(X(X))). \)

 Hence \(C_3 = 5 \).

 We derive a recurrence for \(C_n \). In any parentheization of \(X^n \) there will an \(Y, Z \) (nonempty) such that \(X = (Y)(Z) \) where \(Y \) and \(Z \) are also parenthesized. Hence \(C_0 = 1 \).

 \[
 C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}
 \]

 Let \(C(x) = \sum_{i=0}^{\infty} C_n x^n \).

 From the recurrence one can show that

 \[
 C(x) = 1 + xC(x)^2.
 \]

 Hence

 \[
 C(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = \frac{2}{1 + \sqrt{1 - 4x}}.
 \]
From this the Taylor series yields the answer.

If all you want to know is that C_n is an integer this actually is not an elegant proof.

8 Proof by Number Theory that C_n is an Integer

It is easy to show that $C_n = \binom{2n}{n} - \binom{2n}{n+1}$. By Section 5 we already have a proof that $\binom{2n}{n}$ is an integer that just uses number theory. It can easily be modified to show that $\binom{2n}{n+1}$ is an integer. Hence C_n is an integer.

Is there a proof that C_n is an integer that is similar to the proof in Section 5 that $\binom{2n}{n}$ is an integer?