Less Elegant Proofs that $\binom{2 n}{n}$ and $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ are Integers

By Bill Gasarch

1 Introduction

Notation $1.1\binom{n}{k}$ is $\frac{n!}{k!(n-k)!} . C_{n}$ is $\frac{1}{n+1}\binom{2 n}{n}$.

We all know that $\binom{2 n}{n}$ is an integer since it solves a combinatorial problem. But if we didn't know that, it would not be obvious. We give several proofs that $\binom{2 n}{n}$ is an integer, some of which do not require combinatorics.

We all know that C_{n} is an integer since it solves a combinatorial problem. But this is even less obvious than $\binom{2 n}{n}$ being an integer! (That last punctuation is an explanation point, not a factorial.) We give several proofs that C_{n} is an integer, some of which do not require combinatorics.

2 Combinatorial Proof that $\binom{2 n}{n}$ is an Integer

Consider the following problem: How many ways can you pick n distinct objects out of $2 n$ distinct objects (without caring about the order). Whatever the answer is, it must be an integer. Elementary combinatorics shows that its $\binom{2 n}{n}$.

I think its a great proof since we don't need to do any algebra. Others who don't know the combinatorics ahead of time might find it a very very odd proof. Such people also find the counting proof that $2^{n}=\sum_{i=0}^{n}\binom{n}{i}$ to be very very odd.

3 Proof by Combinatoric and Induction that $\binom{2 n}{n}$ is an Integer

By a standard combinatorial argument one can show that

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

Hence by induction $\binom{n}{k}$ is an integer.

This proof is a cheat. In order to do the combinatorial argument you need to already know that $\binom{n}{k}$ is the number of ways to choose k from n, and hence you already know that $\binom{2 n}{n}$ is an integer

4 Proof by Algebra and Induction that $\binom{2 n}{n}$ is an Integer

By an algebraic argument one can show that

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

Hence by induction $\binom{n}{k}$ is an integer. Hence $\binom{2 n}{n}$ is an integer.
This proof is not a cheat. It is completely algebraic. This proof also demonstrates the principle that it is sometimes easier to proof a harder theorem: We just wanted $\binom{2 n}{n}$ to be an integer. However, this proof works well with $\binom{n}{k}$ and would be hard (impossible?) to push through a proof like this for just $\binom{2 n}{n}$.

5 Proof by Number Theory that $\binom{2 n}{n}$ is an Integer

Let p be a prime. We want to find x and y such that

1. x is the largest number such that p^{x} divides $(2 n)$!
2. y is the largest number such that p^{y} divides $n!n$!

We then show that $x \geq y$ to complete the proof.
The number of factors of p in $m!$ is

$$
\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\left\lfloor\frac{m}{p^{3}}\right\rfloor+\cdots
$$

Hence

$$
x=\left\lfloor\frac{2 n}{p}\right\rfloor+\left\lfloor\frac{2 n}{p^{2}}\right\rfloor+\left\lfloor\frac{2 n}{p^{3}}\right\rfloor+\cdots
$$

$$
y=2\left\lfloor\frac{n}{p}\right\rfloor+2\left\lfloor\frac{n}{p^{2}}\right\rfloor+2\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots
$$

To obtain $x \geq y$ it suffice to show that, for all real $\alpha,\lfloor 2 \alpha\rfloor \geq 2\lfloor\alpha\rfloor$. If α is an integer we get equality. If $n<\alpha<n+1$ then $2 n<2 \alpha<2 n+2$ and hence $\lfloor\alpha\rfloor=n$ and $\lfloor 2 \alpha\rfloor \geq 2 n$. Hence we have $\lfloor 2 \alpha\rfloor \geq 2\lfloor\alpha\rfloor$.

6 Incomplete Proof by Number Theory that $\binom{2 n}{n}$ is an Integer

Is there a proof that $\binom{2 n}{n}$ that just uses cancelling and not the kind of argument in Section 5? Here is an attempt at such.
$\binom{2 n}{n}$ can be written as

$$
\frac{2 n}{n} \frac{2(n-1)}{n-1} \frac{2(n-2)}{n-2} \cdots \frac{2(n-(n-1)}{n-(n-1)} \times \frac{(2 n-1)(2 n-3) \cdots(2 n-(2 n-1))}{n!} .
$$

This equals

$$
2^{n} \times \frac{1 \times 3 \times 5 \times \cdots \times(2 n-1)}{n!}
$$

NEED TO FINISH. DO NOT WANT TO USE THAT 2^{n} DIVIDES n ! SINCE IF WE USE THAT TRICK WE MINE AS WELL HAVE USED THE PROOF IN THE LAST SECTION.

7 Combinatorial Proof that C_{n} is an Integer

This is well know but we include it for completness.
Let C_{n} be the number of ways to parenthesis $X \cdots X$ (n times). The parenthization should be such that if the operation is non-associative the answer is still unambigous.

Example 7.1

1. $n=0$: By convention we define $C_{0}=1$.
2. $n=1$: There is only one way to parenthsize X and that is by X.
3. $n=2$: There is only one way to parenthesis $X X$ namely $(X X)$ so $C_{1}=1$.
4. $n=3: X X X$ can be parenthesized by either

- $((X X) X) X$,
- $(X(X X)) X$,
- $(X X)(X X)$,
- $X((X X) X$,
- $X(X(X(X)))$.

Hence $C_{3}=5$.

We derive a recurrence for C_{n}. In any parentheization of X^{n} there will an Y, Z (nonempty) such that $X=(Y)(Z)$ where Y and Z are also parenthesized. Hence
$C_{0}=1$.

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

Let $C(x)=\sum_{i=0}^{\infty} C_{n} x^{n}$.
From the recurrence one can show that

$$
C(x)=1+x C(x)^{2} .
$$

Hence

$$
C(x)=\frac{1-\sqrt{1-4 x}}{2 x}=\frac{2}{1+\sqrt{1-4 x}} .
$$

From this the Taylor series yields the answer.
If all you want to know is that C_{n} is an integer this actually is not an elegant proof.

8 Proof by Number Theory that C_{n} is an Integer

It is easy to show that $C_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$. By Section 5 we already have a proof that $\binom{2 n}{n}$ is an integer that just uses number theory. It can easily be modified to show that $\binom{2 n}{n+1}$ is an integer. Hence C_{n} is an integer.

Is there a proof that C_{n} is an integer that is similar to the proof in Section 5 that $\binom{2 n}{n}$ is an integer?

