Pollard's Factoring Algorithm Exposition by William Gasarch

1 Introduction

There is a trivial algorithm that factors N in time $O(N^{1/2})$. We will present Pollard's algorithm for factoring which is believed to have complexity $O(N^{1/4})$ though this has not been proven. It works well in practice.

We take *factoring* to mean just finding a non-trivial factor. In practice we would use such an algorithm recursively.

2 We Seek x, y such that $x \equiv y \pmod{p}$

We want to factor N. Let p be the smallest prime factor of N. Note that $p \leq N^{1/2}$. We do not know p. Lets say we somehow find x, y such that $x \equiv y \pmod{p}$. Then GCD(x-y, N) will likely yield a nontrivial factor of N. We look at several approaches to finding such an x, y that do not work before presenting the approach that does work.

3 Use Randomization!

Given N we generate a sequence of random numbers $x_1, x_2, \ldots \in [0, N-1]$. Thought experiment: look at

$x_1 \mod p, x_2 \mod p, \ldots$

This is a sequence of random elements in [0, p-1]. By the birthday paradox, with high probability there exists $i, j \leq p^{1/2} \leq N^{1/4}$ such that $x_i \pmod{p} = x_j \pmod{p}$, or $x_i \equiv x_j \pmod{p}$.

So we could have an algorithm that generates this sequence and looks for repeats. NO WE CAN"T- we don't know p. But we can pretend that $x_i \equiv x_j \pmod{p}$ and try $GCD(x_i - x_j, N)$. Which x_i, x_j do we do this for? ALL of them which is why this algorithm is too slow. Even so, here is the algorithm.

```
x_1 = RAND(0,N-1)
i=2
FOUND = FALSE
while NOT FOUND
{
    x_i := RAND(0,N-1)
    for j=1 to i-1
    {
        d=GCD(x_i-x_j,N)
        if (d NE 1) and (d NE N) then FOUND=TRUE
    }
        i=i+1
    }
output(d)
```

Assume If $x_i \equiv x_j \pmod{p}$ and $x_i \neq x_j$. Then $x_i - x_j \equiv 0 \pmod{p}$. Hence p divides $d = GCD(x_i - x_j, N)$. Therefore $d \neq 1$. Since $x_i, x_j \in [0, N-1], d \neq N$. Hence if $x_i \equiv x_j \pmod{p}$ then the algorithm will terminate.

Look at the sequence $x_1 \mod p$, $x_2 \mod p$, By the birthday paradox this sequence will almost surely have a repeat before $O(p^{1/2})$ iterations. Hence the run time is almost surely bounded by

$$\sum_{i=1}^{p^{1/2}} \sum_{j=1}^{i-1} \log N \le \log N \sum_{i=1}^{p^{1/2}} i = O(p) = O(N^{1/2}).$$

That's not better than the trivial algorithm. Oh well. Also, the algorithm is a space hog.

4 Don't Use Randomization

The reason the last algorithm was a space hog is that it generated random numbers and had to store all of them. Instead we use a deterministic sequence that looks random.

The sequence that begins with a random x_1 and c, and then does $x_i := x_{i-1}^2 + c \pmod{N}$ appears random. This has not been proven (I am not even sure how you would state it); however, it does seem to have the property of repeating within $O(p^{1/2})$ steps.

With this in mind we can write the algorithm which is no longer a space hog but still takes too much time.

```
x_1 = RAND(0, N-1)
c = RAND(0, N-1)
i=2
FOUND = FALSE
while NOT FOUND
   {
     x_i := x_{i-1}^2 + c \mod N
     for j=1 to i-1
      {
        for k=2 to j
            x_k = x_{k-1}^2 + c.
        d=GCD(x_i-x_j,N)
        if (d NE 1) and (d NE N) then FOUND=TRUE
      }
        i=i+1
   }
output(d)
```

5 Using Cycle Detection

We plan to generate x_1, x_2, \ldots deterministically. We need to find x_i, x_j such that $x_i \equiv x_j \pmod{p}$ without storing too much or spending too much time.

We prove a lemma due to Floyd that is interesting in its own right.

Lemma 5.1 Let z_1, z_2, z_3, \ldots be an infinite sequence. Let m be such that there is some $i \leq m$ such that the sequence z_i, z_{i+1}, \ldots is periodic with period $\rho \leq m$. Then there exists $a \leq 2m$ such that $z_a = z_{2a}$.

Proof:

Let a be such that $(a-1)\rho \leq i < a\rho$. Note that the sequence is $a\rho$ -periodic.

Since the sequence is $a\rho$ -periodic after z_i we have that, for all $\Delta \geq 0$, $z_{i+\Delta} = z_{i+a\rho+\Delta}$. Plug in $\Delta = a\rho - i$ (note that $a\rho - i \geq 0$ by the case that we are in) to obtain. $z_{a\rho} = z_{2a\rho}$.

How big is $a\rho$? We know that $a\rho/2 \le (a-1)\rho \le i \le m$, so $a\rho \le 2m$.

We will form two sequences. One will be x_1, x_2, \ldots The other will be x_2, x_4, \ldots . Given c we let f_c be the function $f_c(x) \equiv x^2 + c \pmod{p}$.

Consider the sequence $x_1 = x$, $x_i = f_c(x_{i-1})$. Note that the *x*-sequence is x_1, x_2, x_3, \ldots while the *y*-sequence is x_2, x_4, \ldots . We assume that the sequence has the same properties as a random sequence. Let $z_i = x_i \pmod{p}$. This is also random. By the Birthday paradox it is highly likely that there is a repeat before $O(p^{1/2})$ iterations. By Lemma 5.1 there exists $a \leq p^{1/2}$ such that $z_a = z_{2a}$. When this occurs we have $x - y \equiv 0 \pmod{p}$, and hence $d \neq 1$ and $d \neq N$.

With high prob this algorithm takes $O(p^{1/2}) = O(N^{1/4})$ iterations. Each iteration only takes $\log N$ steps. Hence the algorithm takes $O(N^{1/4} \log N)$ steps.