
Pollard’s Factoring Algorithm
Exposition by William Gasarch

1 Introduction

There is a trivial algorithm that factors N in time O(N1/2). We will present Pollard’s
algorithm for factoring which is believed to have complexity O(N1/4) though this has
not been proven. It works well in practice.

We take factoring to mean just finding a non-trivial factor. In practice we would
use such an algorithm recursively.

2 We Seek x, y such that x ≡ y (mod p)

We want to factor N . Let p be the smallest prime factor of N . Note that p ≤ N1/2.
We do not know p. Lets say we somehow find x, y such that x ≡ y (mod p). Then
GCD(x−y,N) will likely yield a nontrivial factor of N . We look at several approaches
to finding such an x, y that do not work before presenting the approach that does
work.

3 Use Randomization!

Given N we generate a sequence of random numbers x1, x2, . . . ∈ [0, N − 1]. Thought
experiment: look at

x1 mod p, x2 mod p, . . . .

This is a sequence of random elements in [0, p − 1]. By the birthday paradox,
with high probability there exists i, j ≤ p1/2 ≤ N1/4 such that xi (mod p) = xj
(mod p), or xi ≡ xj (mod p).

So we could have an algorithm that generates this sequence and looks for repeats.
NO WE CAN”T- we don’t know p. But we can pretend that xi ≡ xj (mod p) and
try GCD(xi − xj, N). Which xi, xj do we do this for? ALL of them which is why
this algorithm is too slow. Even so, here is the algorithm.
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x_1 = RAND(0,N-1)

i=2

FOUND = FALSE

while NOT FOUND

{

x_i := RAND(0,N-1)

for j=1 to i-1

{

d=GCD(x_i-x_j,N)

if (d NE 1) and (d NE N) then FOUND=TRUE

}

i=i+1

}

output(d)

Assume If xi ≡ xj (mod p) and xi 6= xj. Then xi − xj ≡ 0 (mod p). Hence
p divides d = GCD(xi − xj, N). Therefore d 6= 1. Since xi, xj ∈ [0, N − 1], d 6= N .
Hence if xi ≡ xj (mod p) then the algorithm will terminate.

Look at the sequence x1 mod p, x2 mod p, . . .. By the birthday paradox this
sequence will almost surely have a repeat before O(p1/2) iterations. Hence the run
time is almost surely bounded by

p1/2∑
i=1

i−1∑
j=1

logN ≤ logN
p1/2∑
i=1

i = O(p) = O(N1/2).

That’s not better than the trivial algorithm. Oh well.
Also, the algorithm is a space hog.

4 Don’t Use Randomization

The reason the last algorithm was a space hog is that it generated random numbers
and had to store all of them. Instead we use a deterministic sequence that looks
random.

The sequence that begins with a random x1 and c, and then does xi := x2
i−1 + c

(mod N) appears random. This has not been proven (I am not even sure how you
would state it); however, it does seem to have the property of repeating within O(p1/2)
steps.

With this in mind we can write the algorithm which is no longer a space hog but
still takes too much time.
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x_1 = RAND(0,N-1)

c = RAND(0,N-1)

i=2

FOUND = FALSE

while NOT FOUND

{

x_i := x_{i-1}^2 + c mod N

for j=1 to i-1

{

for k=2 to j

x_k = x_{k-1}^2 + c.

d=GCD(x_i-x_j,N)

if (d NE 1) and (d NE N) then FOUND=TRUE

}

i=i+1

}

output(d)

5 Using Cycle Detection

We plan to generate x1, x2, . . . deterministically. We need to find xi, xj such that
xi ≡ xj (mod p) without storing too much or spending too much time.

We prove a lemma due to Floyd that is interesting in its own right.

Lemma 5.1 Let z1, z2, z3, . . . be an infinite sequence. Let m be such that there is
some i ≤ m such that the sequence zi, zi+1, . . . is periodic with period ρ ≤ m. Then
there exists a ≤ 2m such that za = z2a.

Proof:
Let a be such that (a− 1)ρ ≤ i < aρ. Note that the sequence is aρ-periodic.
Since the sequence is aρ-periodic after zi we have that, for all ∆ ≥ 0, zi+∆ =

zi+aρ+∆. Plug in ∆ = aρ − i (note that aρ − i ≥ 0 by the case that we are in) to
obtain. zaρ = z2aρ.

How big is aρ? We know that
aρ/2 ≤ (a− 1)ρ ≤ i ≤ m, so aρ ≤ 2m.

We will form two sequences. One will be x1, x2, . . .. The other will be x2, x4, . . ..
Given c we let fc be the function fc(x) ≡ x2 + c (mod p).
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x = RAND(0,N-1)

c = RAND(0,N-1)

y = f_c(x)

FOUND = FALSE

while NOT FOUND

{

x := f_c(x)

y := f_c(f_c(y))

d=GCD(x-y,N)

if (d NE 1) and (d NE N) then FOUND=TRUE

}

output(d)

Consider the sequence x1 = x, xi = fc(xi−1). Note that the x-sequence is
x1, x2, x3, . . . while the y-sequence is x2, x4, . . .. We assume that the sequence has
the same properties as a random sequence. Let zi = xi (mod p). This is also ran-
dom. By the Birthday paradox it is highly likely that there is a repeat before O(p1/2)
iterations. By Lemma 5.1 there exists a ≤ p1/2 such that za = z2a. When this occurs
we have x− y ≡ 0 (mod p), and hence d 6= 1 and d 6= N .

With high prob this algorithm takes O(p1/2) = O(N1/4) iterations. Each iteration
only takes logN steps. Hence the algorithm takes O(N1/4 logN) steps.
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