Polynomials and Primes

William Gasarch *
Univ. of MD at College Park

1 Introduction

If f is a polynomial is it possible that an infinite number of $f(0), f(1), f(2), \ldots$ are prime? It is well known that if $f \in Z[x]$ then the answer is no. We show this result for $f \in \mathrm{Q}[x]$ and also for $f \in \mathrm{C}[x]$. We then discuss what happens over other domains and also what happens with two variables. None of what we present is original.

We remind the reader that if p is a prime then $-p$ is a prime. More generally, there are three kinds of numbers: (1) units, which have multiplicative inverses (just $-1,1$ in Z), (2) primes, numbers such that if $p=a b$ then one of a, b is a unit, (3) composites, numbers that are neither prime nor units.

2 Polynomials in $\mathrm{Z}[x]$

Theorem 2.1 Let $f(x)=\sum_{L=0}^{d} a_{L} x^{L}$ be a polynomial over Z. If there exists $y \in \mathbb{Z}$ such that for all $0 \leq m \leq 2(d-1), f(y+m f(y)) f(x)$ is prime then $f(x)$ is constant.

Proof:

Let $0 \leq m \leq 2(d-1)$.

[^0]$$
f(y+m f(y))=\sum_{L=0}^{d} a_{L}(y+m f(y))^{L}=\sum_{L=0}^{d} a_{L} \sum_{i=0}^{L}\binom{L}{i}(m f(y))^{i} y^{L-i}=\sum_{L=0}^{d} a_{L}\left(y^{L}+\sum_{i=1}^{L}\binom{L}{i}(m f(y))^{i}\right)=
$$
$$
\left.\sum_{L=0}^{d} a_{L} y^{L}+\sum_{L=0}^{d} \sum_{i=1}^{L} a_{L}\binom{L}{i}(m f(y))^{i}\right)=f(y)+f(y)\left(\sum_{L=0}^{d} \sum_{i=1}^{L} a_{L}\binom{L}{i} m^{i} f(y)^{i-1}\right) \equiv 0 \quad(\bmod f(y))
$$

Hence, for all $0 \leq m \leq 2 d-2, f(y)$ divides $f(y+m f(y))$. Since both $f(y)$ and $f(y+m f(y))$ are prime $f(y+m f(y)) \in\{-f(y), f(y)\}$. Hence for $d+1$ values of m we must have that $f(f(y)+m f(y))$ is the same. Since f is of degree $\leq d, f$ must be constant.

Corollary 2.2 Let $f(x) \in \mathbf{Z}[x]$. There are an infinite number of $y \in \mathbf{Z}$ such that $f(y)$ is not prime.
Can we actually find a y such that $f(y)$ is not prime?
Theorem 2.3 1. There exists an deterministic algorithm that will, on input $f(x)=\sum_{L=0}^{d} a_{L} x^{L}$, determine a y such that $f(y)$ is not prime. The algorithm takes $2 d-1$ evaluations of f.
2. There exists a randomized algorithm that will, on input $f(x)=\sum_{L=0}^{d} a_{L} x^{L}$, determine a y such that $f(y)$ is not prime. The algorithm takes 1 evaluation of f and has failure probability $\frac{1}{2 d-2}$.

Proof:

1) Compute $f(1+m f(1))$ as $m=0,1, \ldots, 2 d-2$ until you get a non prime. By Theorem 2 this algorithm works.
2) Pick a random $0 \leq m \leq(2 d-1)^{2}$ and evaluate it. If it's not prime then you succeed, if not then you fail. By a slight modification of Theorem 2 at most $2 d-2$ of the m will fail, so the probability of failure is $\frac{2 d-2}{(2 d-2)^{2}}=\frac{1}{2 d-2}$.

Open Question: Is there a better deterministic algorithm in terms of number of evaluations. Note that since the model of computation is just number-of-evals lower bounds may be possible.

Note 2.4 The above can all be adjusted to find y such that $f(y)$ is composite (so not $-1,1$) with slightly worse bounds.

3 Polynomials in $\mathrm{D}[x]$

What is is about Z that made the proof of Theorem 2 work? The only property of Z that we used was that it had a finite number of units. In this section proof we proof an analog of Theorem 2 for such integral domains.

Throughout this section D is an integral domain with a finite number of units. We denote the set of units U.

The following theorem is from Steven Weintraub's article [2].

Theorem 3.1 Let $f(x)=\sum_{L=0}^{d} a_{L} x^{L}$ be a polynomial over D. If there exists $y \in Z$ such that for all $0 \leq m \leq|U|(d-1), f(y+m f(y)) f(x)$ is prime then $f(x)$ is constant.

Proof:

$$
\text { Let } 0 \leq m \leq|U|(d-1)
$$

$$
f(y+m f(y))=\sum_{L=0}^{d} a_{L}(y+m f(y))^{L}=\sum_{L=0}^{d} a_{L} \sum_{i=0}^{L}\binom{L}{i}(m f(y))^{i} y^{L-i}=\sum_{L=0}^{d} a_{L}\left(y^{L}+\sum_{i=1}^{L} a_{L}\binom{L}{i}(m f(y))^{i}\right)=
$$

$$
\left.\sum_{L=0}^{d} a_{L} y^{L}+\sum_{L=0}^{d} \sum_{i=1}^{L} a_{L}\binom{L}{i}(m f(y))^{i}\right)=f(y)+f(y)\left(\sum_{L=0}^{d} \sum_{i=1}^{L} a_{L}\binom{L}{i} m^{i} f(y)^{i-1}\right) \equiv 0 \quad(\bmod f(y))
$$

Hence, for all $0 \leq m \leq 2 d-2, f(y)$ divides $f(y+m f(y))$. Since both $f(y)$ and $f(y+m f(y))$ are prime $f(y+m f(y)) \in\{u f(y): u \in U\}$. Hence for $d+1$ values of m we must have that $f(f(y)+m f(y))$ is the same. Since f is of degree $\leq d, f$ must be constant.

Corollary 3.2 Let $f(x) \in \mathrm{D}[x]$. There are an infinite number of $y \in \mathrm{D}$ such that $f(y)$ is not prime.

The following has a proof similar to that of Theorem 2.3, and has similar open questions related to it.

Theorem 3.3 1. There exists an deterministic algorithm that will, on input $f(x)=\sum_{L=0}^{d} a_{L} x^{L}$, determine a y such that $f(y)$ is not prime. The algorithm takes $|U|(d-1)$ evaluations of f.
2. There exists a randomized algorithm that will, on input $f(x)=\sum_{L=0}^{d} a_{L} x^{L}$, determine a y such that $f(y)$ is not prime. The algorithm takes 1 evaluation of f and has failure probability $\frac{1}{|U|(d-1)}$.

Note 3.4 The above can all be adjusted to find y such that $f(y)$ is composite (so not a unit with slightly worse bounds.

4 Polynomials in $\mathrm{Q}[x]$

Is there a version of Theorem 2 for Q ? There is!
Let $\omega(B)$ be the number of distinct prime divisors of B.

Theorem 4.1 Let $f(x)=\sum_{L=0}^{d} \frac{a_{L}}{b_{L}} x^{L}$ be a polynomial over Q . Let $B=\operatorname{LCM}\left(b_{0}, \ldots, b_{L}\right)$. If there exists $y_{1}, \ldots, y_{\omega(B)+1} \in \mathbf{Z}$ such that for all $0 \leq m \leq 2(d-1), f(y+m f(y)) f(x)$ is prime then $f(x)$ is constant.

Proof:

Let $y \in\left\{y_{1}, \ldots, y_{\omega(B)+1}\right.$. Let $0 \leq m \leq 2(d-1)$.

$$
\begin{aligned}
& f(y+m f(y))=\sum_{L=0}^{d} \frac{a_{L}}{b_{L}}(y+m f(y))^{L}=\sum_{L=0}^{d} \frac{a_{L}}{b_{L}} \sum_{i=0}^{L}\binom{L}{i}(m f(y))^{i} y^{L-i}=\sum_{L=0}^{d} \frac{a_{L}}{b_{L}}\left(y^{L}+\sum_{i=1}^{L}\binom{L}{i}(m f(y))^{i}\right)= \\
& \left.\sum_{L=0}^{d} \frac{a_{L}}{b_{L}} y^{L}+\sum_{L=0}^{d} \sum_{i=1}^{L} \frac{a_{L}}{b_{L}}\binom{L}{i}(m f(y))^{i}\right)=f(y)+f(y)\left(\sum_{L=0}^{d} \sum_{i=1}^{L} \frac{a_{L}}{b_{L}}\binom{L}{i} m^{i} f(y)^{i-1}\right)=f(y)\left(1+\left(\sum _ { L = 0 } ^ { d } \sum _ { i = 1 } ^ { L } \frac { a _ { L } } { b _ { L } } \left(\begin{array}{c}
L \\
i
\end{array}\right.\right.\right.
\end{aligned}
$$

The right hand side has fractions in it so we cannot say anything about divisibility. We multiply both sides to B to clear fractions and obtain

$$
B f(y+m f(y))=f(y)\left(B+\left(\sum_{L=0}^{d} \sum_{i=1}^{L} \frac{a_{L} B}{b_{L}}\binom{L}{i} m^{i} f(y)^{i-1}\right)\right)
$$

Since $B, f(y+m f(y)), f(y)$, and $(B+\cdots)$ are all in Z, and $f(y+m f(y))$ and $f(y)$ are primes, we have that either $f(y)$ divides $f(y+m f(y))$ (so $f(y+m f(y)) \in\{-f(y), f(y)\})$ or $f(y)$ is a prime factor of B. We rephrase this as
$\left(\forall y \in\left\{y_{1}, \ldots, y_{\omega(B)+1}(\forall 0 \leq m \leq 2(d-1))[f(y+m f(y)) \in\{-f(y), f(y)\}\right.\right.$ OR $f(y)$ is prime factor of $B]$.

There are two cases.

1) $\left(\forall y \in\left\{y_{1}, \ldots, y_{\omega(B)+1} y\right.\right.$ is a prime factor of B. This cannot happen since B only has $\omega(B)$ prime factors.
2)

$$
\left(\exists y \in \left\{y_{1}, \ldots, y_{\omega(B)+1}(\forall 0 \leq m \leq 2(d-1))[f(y+m f(y)) \in\{-f(y), f(y)\} .]\right.\right.
$$

Then there would be $d+1$ points mapping to the same thing. Hence f is constant.

5 Polynomials in $\mathrm{C}[x]$

Is there a version of Theorem 4.1 for C ? There is!

Theorem 5.1 Let $f(x)=\sum_{L=0}^{d} \frac{a_{L}}{b_{L}} x^{L}$ be a polynomial over C. Let $B=\operatorname{LCM}\left(b_{0}, \ldots, b_{L}\right)$. If there exists $y_{1}, \ldots, y_{\omega(B)+1} \in Z$ such that for all $0 \leq m \leq 2(d-1), f(y+m f(y)) f(x)$ is prime then $f(x)$ is constant.

Proof: By the premise there are $(\omega(B)+1)(2(d-1)+1)$ integers that map to integers. Since the polynomial is of degree d, by Lagrange interpolation the polynomial is actually in $\mathrm{Q}[x]$. Now apply Theorem 4.1.

6 Polynomials in Two Variables

Similar questions for polynomails in two variables are much harder. See Mollin's article [1] for a survey.

7 A Polynomials that Produces a Long Sequence of Primes

Euler noted that $x^{2}-x+41$ is prime for $x=0, \ldots, 40$.
Ribenboim (The new book of prime records, Springer 1995) mentions a cubic polynomial that produces a run of 24 non-composites: $x^{3}-34 x^{2}+381 x-1511$.

8 Do Primes Occur Infinitely Often?

If $f(x) \in \mathrm{Z}[x]$ then for an infinite number of $y, f(y)$ is composite. Do we have that for an infinite number of $y, f(y)$ is prime? The short stupid answer is NO: let $f(x)=2 x$.

Let us rephrase is: Let $f(x) \in \mathbf{Z}[x]$ be such that the coefficients of f are relatively prime. Are there an infinite number of y such that $f(y)$ is prime?

1. Dirichlet's theorem: if $G C D(a, b)=1$ then $f(x)=a x+b$ is a prime infinitely often.
2. Open Question: is $f(x)=x^{2}+1$ is prime infinitely often.
3. Are there any degree $d \geq 2$ polynomials in $\mathrm{Z}[x]$ that produce primes infinitely often. I think this is open, but the good money says that all polynomials have this property.

References

[1] R. Rollin. Prime producing quadratics. The American Mathematical Monthly, 104:529-544, 1997.
[2] S. Weintraub. Values of polynomials over integral domains. The American Mathematical Monthly, 121:73-74, 2014.

[^0]: *University of Maryland, College Park, MD 20742, gasarch@cs.umd.edu

