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1 Introduction

If f is a polynomial is it possible that an infinite number of f(0), f(1), f(2), . . . are prime? It is

well known that if f ∈ Z[x] then the answer is no. We show this result for f ∈ Q[x] and also

for f ∈ C[x]. We then discuss what happens over other domains and also what happens with two

variables. None of what we present is original.

We remind the reader that if p is a prime then −p is a prime. More generally, there are three

kinds of numbers: (1) units, which have multiplicative inverses (just −1, 1 in Z), (2) primes, num-

bers such that if p = ab then one of a, b is a unit, (3) composites, numbers that are neither prime

nor units.

2 Polynomials in Z[x]

Theorem 2.1 Let f(x) =
∑d

L=0 aLx
L be a polynomial over Z. If there exists y ∈ Z such that for

all 0 ≤ m ≤ 2(d− 1), f(y +mf(y)) f(x) is prime then f(x) is constant.

Proof:

Let 0 ≤ m ≤ 2(d− 1).
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f(y+mf(y)) =
d∑

L=0

aL(y+mf(y))L =
d∑

L=0

aL

L∑
i=0

(
L

i

)
(mf(y))iyL−i =

d∑
L=0

aL(y
L+

L∑
i=1

(
L

i

)
(mf(y))i) =

d∑
L=0

aLy
L+

d∑
L=0

L∑
i=1

aL

(
L

i

)
(mf(y))i) = f(y)+f(y)(

d∑
L=0

L∑
i=1

aL

(
L

i

)
mif(y)i−1) ≡ 0 (mod f(y))

Hence, for all 0 ≤ m ≤ 2d−2, f(y) divides f(y+mf(y)). Since both f(y) and f(y+mf(y))

are prime f(y + mf(y)) ∈ {−f(y), f(y)}. Hence for d + 1 values of m we must have that

f(f(y) +mf(y)) is the same. Since f is of degree ≤ d, f must be constant.

Corollary 2.2 Let f(x) ∈ Z[x]. There are an infinite number of y ∈ Z such that f(y) is not prime.

Can we actually find a y such that f(y) is not prime?

Theorem 2.3 1. There exists an deterministic algorithm that will, on input f(x) =
∑d

L=0 aLx
L,

determine a y such that f(y) is not prime. The algorithm takes 2d− 1 evaluations of f .

2. There exists a randomized algorithm that will, on input f(x) =
∑d

L=0 aLx
L, determine a y

such that f(y) is not prime. The algorithm takes 1 evaluation of f and has failure probability

1
2d−2 .

Proof:

1) Compute f(1 +mf(1)) as m = 0, 1, . . . , 2d− 2 until you get a non prime. By Theorem 2 this

algorithm works.

2) Pick a random 0 ≤ m ≤ (2d− 1)2 and evaluate it. If it’s not prime then you succeed, if not then

you fail. By a slight modification of Theorem 2 at most 2d− 2 of the m will fail, so the probability

of failure is 2d−2
(2d−2)2 = 1

2d−2 .
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Open Question: Is there a better deterministic algorithm in terms of number of evaluations. Note

that since the model of computation is just number-of-evals lower bounds may be possible.

Note 2.4 The above can all be adjusted to find y such that f(y) is composite (so not -1,1) with

slightly worse bounds.

3 Polynomials in D[x]

What is is about Z that made the proof of Theorem 2 work? The only property of Z that we used

was that it had a finite number of units. In this section proof we proof an analog of Theorem 2 for

such integral domains.

Throughout this section D is an integral domain with a finite number of units. We denote the

set of units U .

The following theorem is from Steven Weintraub’s article [2].

Theorem 3.1 Let f(x) =
∑d

L=0 aLx
L be a polynomial over D. If there exists y ∈ Z such that for

all 0 ≤ m ≤ |U |(d− 1), f(y +mf(y)) f(x) is prime then f(x) is constant.

Proof:

Let 0 ≤ m ≤ |U |(d− 1).

f(y+mf(y)) =
d∑

L=0

aL(y+mf(y))L =
d∑

L=0

aL

L∑
i=0

(
L

i

)
(mf(y))iyL−i =

d∑
L=0

aL(y
L+

L∑
i=1

aL

(
L

i

)
(mf(y))i) =

d∑
L=0

aLy
L+

d∑
L=0

L∑
i=1

aL

(
L

i

)
(mf(y))i) = f(y)+f(y)(

d∑
L=0

L∑
i=1

aL

(
L

i

)
mif(y)i−1) ≡ 0 (mod f(y))
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Hence, for all 0 ≤ m ≤ 2d−2, f(y) divides f(y+mf(y)). Since both f(y) and f(y+mf(y))

are prime f(y + mf(y)) ∈ {uf(y) : u ∈ U}. Hence for d + 1 values of m we must have that

f(f(y) +mf(y)) is the same. Since f is of degree ≤ d, f must be constant.

Corollary 3.2 Let f(x) ∈ D[x]. There are an infinite number of y ∈ D such that f(y) is not prime.

The following has a proof similar to that of Theorem 2.3, and has similar open questions related

to it.

Theorem 3.3 1. There exists an deterministic algorithm that will, on input f(x) =
∑d

L=0 aLx
L,

determine a y such that f(y) is not prime. The algorithm takes |U |(d− 1) evaluations of f .

2. There exists a randomized algorithm that will, on input f(x) =
∑d

L=0 aLx
L, determine a y

such that f(y) is not prime. The algorithm takes 1 evaluation of f and has failure probability

1
|U |(d−1) .

Note 3.4 The above can all be adjusted to find y such that f(y) is composite (so not a unit with

slightly worse bounds.

4 Polynomials in Q[x]

Is there a version of Theorem 2 for Q? There is!

Let ω(B) be the number of distinct prime divisors of B.

Theorem 4.1 Let f(x) =
∑d

L=0
aL
bL
xL be a polynomial over Q. Let B = LCM(b0, . . . , bL). If

there exists y1, . . . , yω(B)+1 ∈ Z such that for all 0 ≤ m ≤ 2(d− 1), f(y +mf(y)) f(x) is prime

then f(x) is constant.
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Proof:

Let y ∈ {y1, . . . , yω(B)+1. Let 0 ≤ m ≤ 2(d− 1).

f(y+mf(y)) =
d∑

L=0

aL
bL

(y+mf(y))L =
d∑

L=0

aL
bL

L∑
i=0

(
L

i

)
(mf(y))iyL−i =

d∑
L=0

aL
bL

(yL+
L∑
i=1

(
L

i

)
(mf(y))i) =

d∑
L=0

aL
bL

yL+
d∑

L=0

L∑
i=1

aL
bL

(
L

i

)
(mf(y))i) = f(y)+f(y)(

d∑
L=0

L∑
i=1

aL
bL

(
L

i

)
mif(y)i−1) = f(y)(1+(

d∑
L=0

L∑
i=1

aL
bL

(
L

i

)
mif(y)i−1))

The right hand side has fractions in it so we cannot say anything about divisibility. We multiply

both sides to B to clear fractions and obtain

Bf(y +mf(y)) = f(y)(B + (
d∑

L=0

L∑
i=1

aLB

bL

(
L

i

)
mif(y)i−1))

Since B, f(y + mf(y)), f(y), and (B + · · · ) are all in Z, and f(y + mf(y)) and f(y) are

primes, we have that either f(y) divides f(y + mf(y)) (so f(y + mf(y)) ∈ {−f(y), f(y)}) or

f(y) is a prime factor of B. We rephrase this as

(∀y ∈ {y1, . . . , yω(B)+1(∀0 ≤ m ≤ 2(d−1))[f(y+mf(y)) ∈ {−f(y), f(y)} OR f(y) is prime factor of B ].

There are two cases.

1) (∀y ∈ {y1, . . . , yω(B)+1 y is a prime factor of B. This cannot happen since B only has ω(B)

prime factors.

2)
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(∃y ∈ {y1, . . . , yω(B)+1(∀0 ≤ m ≤ 2(d− 1))[f(y +mf(y)) ∈ {−f(y), f(y)}.]

Then there would be d+ 1 points mapping to the same thing. Hence f is constant.

5 Polynomials in C[x]

Is there a version of Theorem 4.1 for C? There is!

Theorem 5.1 Let f(x) =
∑d

L=0
aL
bL
xL be a polynomial over C. Let B = LCM(b0, . . . , bL). If

there exists y1, . . . , yω(B)+1 ∈ Z such that for all 0 ≤ m ≤ 2(d− 1), f(y +mf(y)) f(x) is prime

then f(x) is constant.

Proof: By the premise there are (ω(B) + 1)(2(d− 1) + 1) integers that map to integers. Since

the polynomial is of degree d, by Lagrange interpolation the polynomial is actually in Q[x]. Now

apply Theorem 4.1.

6 Polynomials in Two Variables

Similar questions for polynomails in two variables are much harder. See Mollin’s article [1] for a

survey.

7 A Polynomials that Produces a Long Sequence of Primes

Euler noted that x2 − x+ 41 is prime for x = 0, . . . , 40.

Ribenboim (The new book of prime records, Springer 1995) mentions a cubic polynomial that

produces a run of 24 non-composites: x3 − 34x2 + 381x− 1511.

8 Do Primes Occur Infinitely Often?

If f(x) ∈ Z[x] then for an infinite number of y, f(y) is composite. Do we have that for an infinite

number of y, f(y) is prime? The short stupid answer is NO: let f(x) = 2x.
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Let us rephrase is: Let f(x) ∈ Z[x] be such that the coefficients of f are relatively prime. Are

there an infinite number of y such that f(y) is prime?

1. Dirichlet’s theorem: if GCD(a, b) = 1 then f(x) = ax+ b is a prime infinitely often.

2. Open Question: is f(x) = x2 + 1 is prime infinitely often.

3. Are there any degree d ≥ 2 polynomials in Z[x] that produce primes infinitely often. I think

this is open, but the good money says that all polynomials have this property.
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