Statement of Poly VDW Theorem for my Blog

An Exposition by William Gasarch
I first state Van Der Warden's theorem:

Notation 0.1 If W is a number then $[W]=\{1, \ldots, W\}$.

Theorem 0.2 For all k for all c there exists $W=W(k, c)$ such that for all c-colorings $C O L$: $[W] \rightarrow[c]$ there exists a, d such that

$$
C O L(a)=C O L(a+d)=\cdots=C O L(a+(k-1) d
$$

What is special about $d, 2 d, 3 d, \ldots,(k-1) d$? Can they be replaced by other functions? Yes! They can be replaced by polynomials with zero constant term.

This is the Poly Van Der Warden Theorem:

Theorem 0.3 For all $p_{1}, \ldots, p_{k} \in Z[x]$ such that $(\forall i)\left[p_{i}(0)=0\right]$ for all c there exists $W=$ $W\left(p_{1}, \ldots, p_{k} ; c\right)$ such that for all c-colorings $C O L:[W] \rightarrow[c]$ there exists a, d such that

$$
\operatorname{COL}(a)=C O L\left(a+p_{1}(d)\right)=\cdots=\operatorname{COL}\left(a+p_{k}(d)\right.
$$

