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We present a proof by Levent Alpoge [?] that shows, from van Der Waer-
den’s theorem, that the primes are infinite. We then compare this proof to
other proofs quantitatively and speculate on what it means formalize the
notion of proving A fromB

1 VDW implies Primes Infinite

We first state van Der Waerden’s Theorem. A proof if it can be found in any
Ramsey theory textbook.

Notation 1.1 If n ∈ N then [n] is the set {1, . . . , n}.

Theorem 1.2 For all k, for all c, there exists W = W (k, c) such that for
all c-colorings COL : [W ]→ [c] there exists a, d such that

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 1)d.

Theorem 1.3 There are an infinite number of primes.

Proof: We give a procedure that will, given a finite set of primes P =
{p1, . . . , pm}, produce a prime p /∈ P . Let pmax be the max element of P .

Let vp(x) be the largest r such that pr divides x.
We define a coloring COL of N as follows: Color a number n by the

vector (vp1(n) (mod 2), vp2(n) (mod 2), . . . , vpm(n) (mod 2)). The number
of colors is 2m which is finite. We determine k later. By van der Warden’s
theorem there exists a, d such that
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COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + kd).

We can assume a ≥ 2.
In the subcases below whenever we are considering a prime p we will let

a = Lpa
′
, d = Mpd

′
where p does not divide L or M . We will use that p does

not divide L or M implicitly. Note that a′ = vp(a) and d′ = vp(d).
Case 1: There exists p ∈ P such that a′ ≥ d′ + 2 (we use the formulation
a′ − d′ − 1 ≥ 1). We show this cannot occur.

vp(a+ id) = vp(Lp
a′ + iMpd

′
) = vp(p

d′(Lpa
′−d′ + iM)) = d′+vp(Lp

a′−d′ + iM)

i = 1: vp(a + d) = d′ + vp(Lp
a′−d′ + M) = d′.

i = p: vp(a+pd) = d′+vp(Lp
a′−d′ +pM) = d′+1+vp(Lp

a′−d′−1+M) = d′+1.
Since vp(a + d) 6≡ vp(a + pd) (mod 2), COL(a + d) 6= COL(a + pd), a

contradiction. Since we use i = p, we will take k ≥ pmax.
Case 2: There exists p ∈ P such that a′ = d′ + 1. We show this cannot
occur.

vp(a + id) = vp(Lp
a′ + iMpd

′
) = vp(p

d′(Lpa
′−d′ + iM)) = d′ + vp(Lp + iM).

i = 1: vp(a + id) = d′ + vp(Lp + M) = d′

i = px where 1 ≤ x ≤ p− 1 is such that L + Mx 6≡ 0 (mod p):

vp(a + pxd) = d′ + vp(Lp + Mpx) = d′ + 1 + vp(L + Mx) = d′ + 1.

Since vp(a + d) 6≡ vp(a + pxd) (mod 2), COL(a + d) 6= COL(a + pd), a
contradiction. Since we use i = px and 1 ≤ x ≤ p− 1, we will take k ≥ p2max.
Case 3: There exists p ∈ P such that a′ = d′ = b. We show this cannot
occur.

vp(a + id) = vp(Lp
b + iMpb) = vp(p

b(L + iM)) = b + vp(L + iM).

If i = 0 then we get vp(a + id) = b + vp(L) = b.
We want vp(L + iM) = 1. We obtain this by finding i such that
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L + iM ≡ p (mod p2)
iM ≡ p− L (mod p2)

Let M−1 be the inverse of M mod p2. Let i be such that 0 ≤ i ≤ p2 − 1
and i ≡ M−1(p − L) (mod p2). With this value of i note that L + iM =
p + Np2 = p(1 + Np) for some N .

vp(a + id) = b + vp(L + iM) = b + vp(p(1 + Np))) = b + 1.

Since vp(a) 6≡ vp(a + id) (mod 2), COL(a) 6= COL(a + id), a contradic-
tion. Since 0 ≤ i ≤ p2, we will take k ≥ p2max.
Case 4: For all p ∈ P a′ ≤ d′ − 1.

For all p ∈ P :

vp(a + d) = vp(Lp
a′ + Mpd

′
) = vp(p

a′(L + pd
′−a′M)) = a′ = vp(a).

Hence

a = Q1

∏
p∈S

pvp(a)

a + d = Q2

∏
p∈S

pvp(a+d) = Q2

∏
p∈S

pvp(a)

where no p ∈ P divides Q1 or Q2.
Since a < a+ d, Q1 < Q2. Hence Q2 ≥ 2. Let p′ be a prime factor of Q2.

p′ /∈ P so we are done.
Looking over all of the cases it suffices to take k = p2max.

2 Compare to Other Proofs

How does this proof compare to others? Let P be a finite set of primes. Let
B(P ) be such that there is a prime p /∈ P , with p ≤ B(P ). We look at
the bounds obtained from different proofs that the primes are infinite. Our
bounds are functions of |P | and the max element of P which we denote pmax.

1. From Bertrand’s Postulate, which is a theorem stating that for all
primes p there is a prime between p + 1 and 2p, B(P ) ≤ 2pmax. Note
that this proof is somewhat sophisticated.
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2. From Euclid’s proof of the infinitude of the primes one obtains B(P ) ≤
p
|P |
max.

3. From the proof above one obtains B(P ) ≤ W (p2max, 2
|P |).

3 What Does it Mean to Prove A from B?

When I told a colleague the statement you can prove that the primes are
infinite from VDW’s theorem he proposed the following.

1. State VDW theorem.

2. Assume that there are a finite number of primes p1, . . . , pn.

3. Form A = 1 +
∏n

i=1 pi.

4. If A is prime then since A /∈ {p1, . . . , pn} we have a contradiction. If A
is not prime then it has a prime factor q /∈ {p1, . . . , pn} that

This proof is clearly not what we mean when we say we can prove primes
infinite from VDW’s theorem. Can we formalize what it means to REALLY
be a proof of A→ B that uses the premise A?

Let PI mean Primes Infinite. Let S be a logical system. That is, axioms
and rules of inference. If S does not suffice to prove the primes are infinite,
but S does suffice to prove V DW → PI then that would be a way to
formalize that V DW was really used. This approach is similar to the reverse
math program where they show that, say, a proof needed to use Konig’s
lemma.

Alternatively one could look at length-of-proofs. Let L(T ) be the length
of the proof of T in S. Let Pn be the statement that there are at least n
primes. If L(V DW → Pn) � L(Pn) then that would be a way to formalize
that V DW was really used. This approach is similar to proofs that, say, to
prove certain propositional statements parameterized by n requires cn steps.
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