
Equations and Colorings: Rado’s Theorem
Exposition by William Gasarch

1 Introduction

Everything in this paper was proven by Rado [2] (but see also [1]).
Do you think the following is TRUE or FALSE?
For any 17-coloring COL : N → [17] there exists e1, e2, e3 such that

COL(e1) = COL(e2) = COL(e3)

and

2e1 + 5e2 − e3 = 0.

2 FALSE

The statement is FALSE. Our first attempt at finding a 17-coloring will not quite work, but
our second one will.
First Attempt

COL(n) is the number between 0 and 16 that is ≡ n (mod 17).

Assume COL(e1) = COL(e2) = COL(e3). We will try to show that

2e1 + 5e2 − e3 6= 0.

Assume, by way of contradiction, that

2e1 + 5e2 − e3 = 0.

Let e be such that e1 ≡ e2 ≡ e3 ≡ e (mod 17) and 0 ≤ e ≤ 16. Then

0 = 2e1 + 5e2 − e3 ≡ 2e + 5e− e ≡ 6e (mod 17).

Hence 6e ≡ 0 (mod 17). Since 6 has an inverse mod 17, we obtain e ≡ 0 (mod 17).
We have not arrived at a contradiction. We have just established that if

COL(e1) = COL(e2) = COL(e3)

and

2e1 + 5e2 − e3 = 0.

Then COL(e1) = COL(e2) = COL(e3) = 0.
Hence we will do a similar coloring but do something else when n ≡ 0 (mod 17).

Second Attempt
Given n let i, n′ be such that 17i divides n, 17i+1 does not divide n, and n = 17in′.
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We define the coloring as follows:

COL(n) is the number between 1 and 16 that is ≡ n′ (mod 17).

NOTE- COL(n) will never be 0. Hence this is really a 16-coloring.
Assume

COL(e1) = COL(e2) = COL(e3).

We show that

2e1 + 5e2 − e3 6= 0.

Let i, j, k, e′1, e
′
2, e

′
3, e be such that

1. 17i divides e1, 17i+1 does not divide e1, e1 = 17ie′1.

2. 17j divides e2, 17j+1 does not divide e2, e2 = 17je′2.

3. 17k divides e3, 17k+1 does not divide e3, e3 = 17je′3.

4. e′1 ≡ e′2 ≡ e′3 ≡ e (mod 17)

If
2e1 + 5e2 − e3 = 0

then

2× 17ie′1 + 5× 17je′2 − 17ke′3 = 0.

Every mathematical bone in my body wants to cancel some of the 17’s. There are cases.
All ≡ are mod 17.

1. i < j ≤ k or i < k ≤ j.

2× 17ie′1 + 5× 17je′2 − 17ke′3 = 0.

Divide by 17i.

2× e′1 + 5× 17j−ie′2 − 17k−ie′3 = 0.

We take this equation mod 17.

2e′1 ≡ 2e ≡ 0.

Since 2 has an inverse mod 17 we have e = 0. This contradicts that e 6= 0.
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2. i = j < k.

2× 17ie′1 + 5× 17ie′2 − 17ke′3 = 0.

Divide by 17i.

2× e′1 + 5× 17j−ie′2 − 17k−ie′3 = 0.

We take this equation mod 17.

2e′1 + 5e′2 ≡ 7e ≡ 0.

Since 7 has an inverse mod 17 we have e = 0. This contradicts that e 6= 0.

3. Rather than go through all of the cases in detail, we say what results in all caes,
including those above.

(a) i < j ≤ k or i < k ≤ j: 2e ≡ 0.

(b) i = j < k: 2e + 5e ≡ 0.

(c) i = k < j: 2e− e ≡ 0.

(d) i = j = k: 2e + 5e− 3e ≡ 0.

(e) j < i ≤ k or j < k ≤ i: 5e ≡ 0.

(f) j = k < i: 2e− e ≡ 0.

(g) k < i = j: −e ≡ 0.

There were 7 cases. Each corresponded to a combination of the coefficients. The key is
that every combination was relatively prime to 17. The reader should be able to prove the
following.

Theorem 2.1 Let b1, . . . , bn ∈ Z. If there exists c that is relatively prime to every nonempty
subsum of {b1, . . . , bn} then there is a c−1-coloring of N such that there is no e1, . . . , en ∈ N
with

COL(e1) = · · · = COL(en)

and

b1e1 + · · ·+ bnen = 0.

3



3 TRUE

So is there any b1, . . . , bn so that a positive statement about colorings is true. For what
b1, . . . , bn could the premise of Theorem 2.1 be false? The only way is if some nontempty
subset of {b1, . . . , bn} sums to 0.

Theorem 3.1 Let b1, . . . , bn ∈ Z. Assume there exists a nonempty subset of {b1, . . . , bn}
that sums to 0. For all c, for all c-coloring of N there exists e1, . . . , en ∈ N with

COL(e1) = · · · = COL(en)

and

b1e1 + · · ·+ bnen = 0.

Before proving this theorem we talk about how to go about it. Lets use

5e1 + 6e2 − 11e3 + 7e4 − 2e5 = 0

as an example. Note that the first three coefficients add to 0: 5 + 6 − 11 = 0. We are
thinking about colorings. OH, we can use van der Waerden’s theorem!

Theorem 3.2 (van der Waerden) For all k, for all c, for all c-colorings COL : N → [c]
there exists a, d such that

COL(a) = COL(a + d) = COL(a + 2d) = · · ·COL(a + (k − 1)d).

We will actually use the following easy corollary

Theorem 3.3 (van der Waerden) For all x1, . . . , xk ∈ Z, for all c, for all c-colorings
COL : N → [c] there exists a, d such that

COL(a) = COL(a + x1d) = COL(a + x2d) = · · ·COL(a + xkd).

We use the k = 5 case. Is there a choice of x1, x2, x3, x4, x5 that will give us our theorem?
Say that ei = a + xid. Then

5e1 + 6e2 − 11e3 + 7e4 − 2e5 = 5(a + x1d) + 6(a + x2d)− 11(a + x3d) + 7(a + x4d)− 2(a + x5d)
= (5 + 6− 11)a + d(5x1 + 6x2 − 11x3) + (7− 2)a + d(7x4 − 2x5).
= (5 + 6− 11)a + d(5x1 + 6x2 − 11x3 + 7x4 − 2x5) + 5a.

GOOD NEWS: The first a has coefficeint (5+6-11)=0.
GOOD NEWS: We can pick x1, x2, x3, x4, x5 to make the 5x1+6x2−11x3+7x4−2x5 = 0.
BAD NEWS: The 5a looks hard to get rid of.
It would be really great if we did not have that ‘5a’ term.
Hence we need a variant of van der Waerden’s theorem.
The following is true and will be proved in the Section 4
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Lemma 3.4 For all k, s, c, for any c-coloring COL of N, there exists a, d such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d) = COL(sd).

We now state an easy corollary of this. We still call it a lemma since we don’t really
care about it for itself, only for what it can do for us.

Lemma 3.5 For all x1, . . . , xm ∈ Z, for all s ∈ N, for all c ∈ N, for any c-coloring COL
of N there exists a, d such that

COL(a) = COL(a + x1d) = COL(a + x2d) = · · · = COL(a + xmd) = COL(sd).

We now restate and prove the main theorem of this section.

Theorem 3.6 Let b1, . . . , bn ∈ Z. Assume there exists a nonempty subset of {b1, . . . , bn}
that sums to 0. For all c, for all c-coloring of N, there exists e1, . . . , en ∈ N with

COL(e1) = · · · = COL(en)

and

b1e1 + · · ·+ bnen = 0.

Proof: The cases of n = 1 and n = 2 are easy and left to the reader. Hence we assume
n ≥ 3. If any of the bi’s are 0 then we can omit the term with that bi. So we can assume
that (∀i)[bi 6= 0].

By renumbering we can assume that there is an m ≤ n such that

m∑
i=1

bi = 0.

Let COL be a c-coloring of N. We will determine x1, . . . , xm ∈ Z−{0} and s ∈ N later.
By Lemma 3.5 there exists a, d such that

COL(a) = COL(a + x1d) = COL(a + x2d) = · · · = COL(x + xmd) = COL(sd).

We will let

e1 = a + x1d,

e2 = a + x2d,

...

em = a + xmd,
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and

em+1 = · · · = en = sd

Then

n∑
i=1

biei =
m∑

i=1

biei +
n∑

i=m+1

biei =
m∑

i=1

bi(a + xid) +
n∑

i=m+1

bisd

This is equal to

a
m∑

i=1

bi + d
L∑

i=1

bixi + sd
n∑

i=m+1

bi

KEY:
∑m

i=1 bi = 0 so the first term drops out.
KEY: All of the remaining terms have a factor of d. If we want to set this to 0 we

can cancel the d’s. Hence we need x1, . . . , xn ∈ Z − {0} and s ∈ N such that the following
happens.

m∑
i=1

bixi + s
n∑

i=m+1

bi = 0

Let
∑n

i=m+1 bi = B. Then we rewrite this as

m∑
i=1

bixi + sB = 0

We can take

s = |mb1 · · · bm|

x1 = −sB

b1

x2 = −sB

b2

...

xm = −sB

bm
.
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4 Proof of that VDW-type Theorem

We prove a theorem that looks stronger than Lemma 3.4 but is actually equivalent (by a
compactness argument).

Lemma 4.1 For all k, s, c, there exists U = U(k, s, c) such that for every c-coloring
COL : [U ] → [c] there exists a, d such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d) = COL(sd).

Proof: We prove this by induction on c. Clearly, for all k, s,

U(k, s, 1) = max{k, s}.

We assume U(k, s, c− 1) exists and show that U(k, s, c) exists. We will show that

U(k, s, c) ≤ W ((k − 1)sU(k, s, c− 1) + 1, c).

Let COL be a coloring of [W ((k−1)sU(k, s, c−1)+1, c)]. By the definition of W there
exists a, d such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)sU(k, s, c− 1)).

Assume the color is RED.
1) a, a + d, . . . , a + (k− 1)d are all RED. If sd is also RED then we are done. So we assume
sd is NOT RED.
2) a, a + 2d, a + 4d, . . . , a + 2(k− 1)d are all RED. If 2sd is also RED then we are done. So
we assume 2sd is NOT RED.
...
U(k, s, c− 1)) a,a + U(k, s, c− 1)d,a + 2U(k, s, c− 1)d,. . ., a + (k − 1)U(k, s, c− 1)d are all
RED. If U(k, s, c − 1)sd is RED then we are done. So we assume U(k, s, c − 1)sd is NOT
RED.

By the above we know that sd, 2sd, 3sd, . . . , U(k, s, c− 1)sd are all NOT RED.
Consider the coloring COL′ : [U(k, s, c− 1)] → [c− 1] defined by

COL′(x) = COL(xsd).

The KEY is that NONE of these will be colored RED so there are only c− 1 colors.
By the inductive hypothesis there exists a′, d′ such that

COL′(a′) = COL′(a′ + d′) = · · · = COL′(a′ + (k − 1)d′) = COL′(sd′)

so

COL(a′sd) = COL(a′sd + d′sd) = · · · = COL(a′sd + (k − 1)d′sd) = COL(sd′sd)

Let A = a′sd and D = d′sd. Then
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COL(A) = COL(A + D) = · · · = COL(A + (k − 1)D = COL(sD).

5 The Abridged Rado’s Theorem

By Combining Theorem 2.1 and 3.1 we obtain what [1] refers to as The Abridged Rado’s
Theorem. In this section we state both the Abridged Rado’s theorem and the full Rado
Theorem.

Definition 5.1 A set of integers (b1, . . . , bn) is regular if the following holds: For all c, for
all c-colorings COLN → [c] there exists e1, . . . , en such that

COL(e1) = · · · = COL(en),

n∑
i=1

biei = 0.

The Abridged Rado’s Theorem:

Theorem 5.2 (b1, . . . , bn) is regular iff there exists some nonempty subset of {b1, . . . , bn}
that sums to 0.

6 The Full Rado’s Theorem

The full Rado’s Theorem is about systems of equations. We first view VDW’s theorem as
a system of equations. Lets take VDW’s theorem with k = 4. It is usually written as

For all c, for all c-colorings COL : N → [c], there exists a, d such that

COL(a) = COL(a + d) = COL(a + 2d) = COL(a + 4d),

We rewrite this in terms of equationS.
For all c, for all c-colorings COL : N → [c], there exists e1, e2, e3, e4 such that

COL(a) = COL(a + d) = COL(a + 2d) = COL(a + 4d),

e2 − e1 = e3 − e2

e2 − e1 = e4 − e3

We rewrite these equations:

0e4 − e3 + 2e2 − e1 = 0
−e4 + e3 + e2 − e1 = 0
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Let A be the matrix: (
0 −1 2 −1
−1 1 1 −1

)

VDW for k = 4 can be rewritten as
For all c, for all c-colorings COLN → [c] there exists ~e = e1, . . . , en such that

COL(e1) = · · · = COL(en),

A~e = ~0.

What other matrices have this property?

Definition 6.1 A matrix A of integers is regular if if the following holds: For all c, for all
c-colorings COLN → [c] there exists ~e = e1, . . . , en such that

COL(e1) = · · · = COL(en),

A~e = ~0.

Definition 6.2 A matrix A satisfies the columns condition if the columns can be ordered
~c1, . . . ,~cn and the set {1, . . . , n} can be partitioned into nonempty contigous sets I1, . . . , Ik

such that ∑
i∈I1

~ci = ~0,

For all j, 2 ≤ j ≤ k,
∑

i∈Ij
~ci can be written as a linear combination of the vectors

{ci}i∈I1∪···∪Ij−1 .

The Full Rado’s Theorem:

Theorem 6.3 A is regular iff A satisfies the columns condition.

PROOF- WILL FILL IN LATER
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