Equations and Colorings: Rado's Theorem Exposition by William Gasarch

1 Introduction

Everything in this paper was proven by Rado [2] (but see also [1]).
Do you think the following is TRUE or FALSE?
For any 17-coloring $C O L: \mathrm{N} \rightarrow[17]$ there exists e_{1}, e_{2}, e_{3} such that

$$
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)
$$

and

$$
2 e_{1}+5 e_{2}-e_{3}=0
$$

2 FALSE

The statement is FALSE. Our first attempt at finding a 17-coloring will not quite work, but our second one will.
First Attempt

$$
C O L(n) \text { is the number between } 0 \text { and } 16 \text { that is } \equiv n(\bmod 17) .
$$

Assume $\operatorname{COL}\left(e_{1}\right)=\operatorname{COL}\left(e_{2}\right)=\operatorname{COL}\left(e_{3}\right)$. We will try to show that

$$
2 e_{1}+5 e_{2}-e_{3} \neq 0
$$

Assume, by way of contradiction, that

$$
2 e_{1}+5 e_{2}-e_{3}=0
$$

Let e be such that $e_{1} \equiv e_{2} \equiv e_{3} \equiv e \quad(\bmod 17)$ and $0 \leq e \leq 16$. Then

$$
0=2 e_{1}+5 e_{2}-e_{3} \equiv 2 e+5 e-e \equiv 6 e \quad(\bmod 17)
$$

Hence $6 e \equiv 0 \quad(\bmod 17)$. Since 6 has an inverse $\bmod 17$, we obtain $e \equiv 0(\bmod 17)$. We have not arrived at a contradiction. We have just established that if

$$
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)
$$

and

$$
2 e_{1}+5 e_{2}-e_{3}=0
$$

Then $C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=0$.
Hence we will do a similar coloring but do something else when $n \equiv 0 \quad(\bmod 17)$.
Second Attempt
Given n let i, n^{\prime} be such that 17^{i} divides $n, 17^{i+1}$ does not divide n, and $n=17^{i} n^{\prime}$.

We define the coloring as follows:

$$
C O L(n) \text { is the number between } 1 \text { and } 16 \text { that is } \equiv n^{\prime}(\bmod 17)
$$

NOTE- $C O L(n)$ will never be 0 . Hence this is really a 16 -coloring.
Assume

$$
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)
$$

We show that

$$
2 e_{1}+5 e_{2}-e_{3} \neq 0
$$

Let $i, j, k, e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e$ be such that

1. 17^{i} divides $e_{1}, 17^{i+1}$ does not divide $e_{1}, e_{1}=17^{i} e_{1}^{\prime}$.
2. 17^{j} divides $e_{2}, 17^{j+1}$ does not divide $e_{2}, e_{2}=17^{j} e_{2}^{\prime}$.
3. 17^{k} divides $e_{3}, 17^{k+1}$ does not divide $e_{3}, e_{3}=17^{j} e_{3}^{\prime}$.
4. $e_{1}^{\prime} \equiv e_{2}^{\prime} \equiv e_{3}^{\prime} \equiv e \quad(\bmod 17)$

If

$$
2 e_{1}+5 e_{2}-e_{3}=0
$$

then

$$
2 \times 17^{i} e_{1}^{\prime}+5 \times 17^{j} e_{2}^{\prime}-17^{k} e_{3}^{\prime}=0
$$

Every mathematical bone in my body wants to cancel some of the 17 's. There are cases. All \equiv are $\bmod 17$.

1. $i<j \leq k$ or $i<k \leq j$.

$$
2 \times 17^{i} e_{1}^{\prime}+5 \times 17^{j} e_{2}^{\prime}-17^{k} e_{3}^{\prime}=0
$$

Divide by 17^{i}.

$$
2 \times e_{1}^{\prime}+5 \times 17^{j-i} e_{2}^{\prime}-17^{k-i} e_{3}^{\prime}=0
$$

We take this equation mod 17 .

$$
2 e_{1}^{\prime} \equiv 2 e \equiv 0
$$

Since 2 has an inverse mod 17 we have $e=0$. This contradicts that $e \neq 0$.
2. $i=j<k$.

$$
2 \times 17^{i} e_{1}^{\prime}+5 \times 17^{i} e_{2}^{\prime}-17^{k} e_{3}^{\prime}=0
$$

Divide by 17^{i}.

$$
2 \times e_{1}^{\prime}+5 \times 17^{j-i} e_{2}^{\prime}-17^{k-i} e_{3}^{\prime}=0
$$

We take this equation $\bmod 17$.

$$
2 e_{1}^{\prime}+5 e_{2}^{\prime} \equiv 7 e \equiv 0
$$

Since 7 has an inverse mod 17 we have $e=0$. This contradicts that $e \neq 0$.
3. Rather than go through all of the cases in detail, we say what results in all caes, including those above.
(a) $i<j \leq k$ or $i<k \leq j: 2 e \equiv 0$.
(b) $i=j<k: 2 e+5 e \equiv 0$.
(c) $i=k<j: 2 e-e \equiv 0$.
(d) $i=j=k: 2 e+5 e-3 e \equiv 0$.
(e) $j<i \leq k$ or $j<k \leq i: 5 e \equiv 0$.
(f) $j=k<i: 2 e-e \equiv 0$.
(g) $k<i=j:-e \equiv 0$.

There were 7 cases. Each corresponded to a combination of the coefficients. The key is that every combination was relatively prime to 17 . The reader should be able to prove the following.

Theorem 2.1 Let $b_{1}, \ldots, b_{n} \in Z$. If there exists c that is relatively prime to every nonempty subsum of $\left\{b_{1}, \ldots, b_{n}\right\}$ then there is a $c-1$-coloring of N such that there is no $e_{1}, \ldots, e_{n} \in \mathrm{~N}$ with

$$
\operatorname{COL}\left(e_{1}\right)=\cdots=\operatorname{COL}\left(e_{n}\right)
$$

and

$$
b_{1} e_{1}+\cdots+b_{n} e_{n}=0
$$

3 TRUE

So is there any b_{1}, \ldots, b_{n} so that a positive statement about colorings is true. For what b_{1}, \ldots, b_{n} could the premise of Theorem 2.1 be false? The only way is if some nontempty subset of $\left\{b_{1}, \ldots, b_{n}\right\}$ sums to 0 .

Theorem 3.1 Let $b_{1}, \ldots, b_{n} \in Z$. Assume there exists a nonempty subset of $\left\{b_{1}, \ldots, b_{n}\right\}$ that sums to 0 . For all c, for all c-coloring of N there exists $e_{1}, \ldots, e_{n} \in \mathrm{~N}$ with

$$
\operatorname{COL}\left(e_{1}\right)=\cdots=\operatorname{COL}\left(e_{n}\right)
$$

and

$$
b_{1} e_{1}+\cdots+b_{n} e_{n}=0
$$

Before proving this theorem we talk about how to go about it. Lets use

$$
5 e_{1}+6 e_{2}-11 e_{3}+7 e_{4}-2 e_{5}=0
$$

as an example. Note that the first three coefficients add to $0: 5+6-11=0$. We are thinking about colorings. OH, we can use van der Waerden's theorem!

Theorem 3.2 (van der Waerden) For all k, for all c, for all c-colorings $C O L: \mathrm{N} \rightarrow[c]$ there exists a, d such that

$$
C O L(a)=C O L(a+d)=C O L(a+2 d)=\cdots C O L(a+(k-1) d) .
$$

We will actually use the following easy corollary
Theorem 3.3 (van der Waerden) For all $x_{1}, \ldots, x_{k} \in \mathrm{Z}$, for all c, for all c-colorings $C O L: \mathrm{N} \rightarrow[c]$ there exists a, d such that

$$
\operatorname{COL}(a)=\operatorname{COL}\left(a+x_{1} d\right)=\operatorname{COL}\left(a+x_{2} d\right)=\cdots C O L\left(a+x_{k} d\right) .
$$

We use the $k=5$ case. Is there a choice of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ that will give us our theorem? Say that $e_{i}=a+x_{i} d$. Then

$$
\begin{aligned}
5 e_{1}+6 e_{2}-11 e_{3}+7 e_{4}-2 e_{5} & =5\left(a+x_{1} d\right)+6\left(a+x_{2} d\right)-11\left(a+x_{3} d\right)+7\left(a+x_{4} d\right)-2\left(a+x_{5} d\right) \\
& =(5+6-11) a+d\left(5 x_{1}+6 x_{2}-11 x_{3}\right)+(7-2) a+d\left(7 x_{4}-2 x_{5}\right) . \\
& =(5+6-11) a+d\left(5 x_{1}+6 x_{2}-11 x_{3}+7 x_{4}-2 x_{5}\right)+5 a .
\end{aligned}
$$

GOOD NEWS: The first a has coefficeint $(5+6-11)=0$.
GOOD NEWS: We can pick $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ to make the $5 x_{1}+6 x_{2}-11 x_{3}+7 x_{4}-2 x_{5}=0$.
BAD NEWS: The $5 a$ looks hard to get rid of.
It would be really great if we did not have that ' $5 a$ ' term.
Hence we need a variant of van der Waerden's theorem.
The following is true and will be proved in the Section 4

Lemma 3.4 For all k, s, c, for any c-coloring $C O L$ of N , there exists a, d such that

$$
C O L(a)=C O L(a+d)=\cdots=C O L(a+(k-1) d)=C O L(s d)
$$

We now state an easy corollary of this. We still call it a lemma since we don't really care about it for itself, only for what it can do for us.

Lemma 3.5 For all $x_{1}, \ldots, x_{m} \in \mathbf{Z}$, for all $s \in \mathbf{N}$, for all $c \in \mathbf{N}$, for any c-coloring $C O L$ of N there exists a, d such that

$$
C O L(a)=C O L\left(a+x_{1} d\right)=C O L\left(a+x_{2} d\right)=\cdots=C O L\left(a+x_{m} d\right)=C O L(s d)
$$

We now restate and prove the main theorem of this section.
Theorem 3.6 Let $b_{1}, \ldots, b_{n} \in$ Z. Assume there exists a nonempty subset of $\left\{b_{1}, \ldots, b_{n}\right\}$ that sums to 0 . For all c, for all c-coloring of N , there exists $e_{1}, \ldots, e_{n} \in \mathrm{~N}$ with

$$
C O L\left(e_{1}\right)=\cdots=C O L\left(e_{n}\right)
$$

and

$$
b_{1} e_{1}+\cdots+b_{n} e_{n}=0
$$

Proof: The cases of $n=1$ and $n=2$ are easy and left to the reader. Hence we assume $n \geq 3$. If any of the b_{i} 's are 0 then we can omit the term with that b_{i}. So we can assume that $(\forall i)\left[b_{i} \neq 0\right]$.

By renumbering we can assume that there is an $m \leq n$ such that

$$
\sum_{i=1}^{m} b_{i}=0
$$

Let $C O L$ be a c-coloring of N . We will determine $x_{1}, \ldots, x_{m} \in \mathrm{Z}-\{0\}$ and $s \in \mathrm{~N}$ later. By Lemma 3.5 there exists a, d such that

$$
C O L(a)=C O L\left(a+x_{1} d\right)=C O L\left(a+x_{2} d\right)=\cdots=C O L\left(x+x_{m} d\right)=C O L(s d)
$$

We will let

$$
\begin{gathered}
e_{1}=a+x_{1} d \\
e_{2}=a+x_{2} d \\
\vdots \\
e_{m}=a+x_{m} d
\end{gathered}
$$

and

$$
e_{m+1}=\cdots=e_{n}=s d
$$

Then

$$
\sum_{i=1}^{n} b_{i} e_{i}=\sum_{i=1}^{m} b_{i} e_{i}+\sum_{i=m+1}^{n} b_{i} e_{i}=\sum_{i=1}^{m} b_{i}\left(a+x_{i} d\right)+\sum_{i=m+1}^{n} b_{i} s d
$$

This is equal to

$$
a \sum_{i=1}^{m} b_{i}+d \sum_{i=1}^{L} b_{i} x_{i}+s d \sum_{i=m+1}^{n} b_{i}
$$

KEY: $\sum_{i=1}^{m} b_{i}=0$ so the first term drops out.
KEY: All of the remaining terms have a factor of d. If we want to set this to 0 we can cancel the d 's. Hence we need $x_{1}, \ldots, x_{n} \in \mathbf{Z}-\{0\}$ and $s \in \mathrm{~N}$ such that the following happens.

$$
\sum_{i=1}^{m} b_{i} x_{i}+s \sum_{i=m+1}^{n} b_{i}=0
$$

Let $\sum_{i=m+1}^{n} b_{i}=B$. Then we rewrite this as

$$
\sum_{i=1}^{m} b_{i} x_{i}+s B=0
$$

We can take

$$
\begin{gathered}
s=\left|m b_{1} \cdots b_{m}\right| \\
x_{1}=-\frac{s B}{b_{1}} \\
x_{2}=-\frac{s B}{b_{2}} \\
\vdots \\
x_{m}=-\frac{s B}{b_{m}} .
\end{gathered}
$$

4 Proof of that VDW-type Theorem

We prove a theorem that looks stronger than Lemma 3.4 but is actually equivalent (by a compactness argument).

Lemma 4.1 For all k, s, c, there exists $U=U(k, s, c)$ such that for every c-coloring $C O L:[U] \rightarrow[c]$ there exists a, d such that

$$
C O L(a)=C O L(a+d)=\cdots=C O L(a+(k-1) d)=C O L(s d)
$$

Proof: We prove this by induction on c. Clearly, for all k, s,

$$
U(k, s, 1)=\max \{k, s\}
$$

We assume $U(k, s, c-1)$ exists and show that $U(k, s, c)$ exists. We will show that

$$
U(k, s, c) \leq W((k-1) s U(k, s, c-1)+1, c)
$$

Let $C O L$ be a coloring of $[W((k-1) s U(k, s, c-1)+1, c)]$. By the definition of W there exists a, d such that

$$
C O L(a)=C O L(a+d)=\cdots=C O L(a+(k-1) s U(k, s, c-1)) .
$$

Assume the color is RED.

1) $a, a+d, \ldots, a+(k-1) d$ are all RED. If $s d$ is also RED then we are done. So we assume $s d$ is NOT RED.
2) $a, a+2 d, a+4 d, \ldots, a+2(k-1) d$ are all RED. If $2 s d$ is also RED then we are done. So we assume $2 s d$ is NOT RED.
.
$U(k, s, c-1)) a, a+U(k, s, c-1) d, a+2 U(k, s, c-1) d, \ldots, a+(k-1) U(k, s, c-1) d$ are all RED. If $U(k, s, c-1) s d$ is RED then we are done. So we assume $U(k, s, c-1) s d$ is NOT RED.

By the above we know that $s d, 2 s d, 3 s d, \ldots, U(k, s, c-1) s d$ are all NOT RED.
Consider the coloring $C O L^{\prime}:[U(k, s, c-1)] \rightarrow[c-1]$ defined by

$$
C O L^{\prime}(x)=C O L(x s d)
$$

The KEY is that NONE of these will be colored RED so there are only $c-1$ colors. By the inductive hypothesis there exists a^{\prime}, d^{\prime} such that

$$
C O L^{\prime}\left(a^{\prime}\right)=C O L^{\prime}\left(a^{\prime}+d^{\prime}\right)=\cdots=C O L^{\prime}\left(a^{\prime}+(k-1) d^{\prime}\right)=C O L^{\prime}\left(s d^{\prime}\right)
$$

so

$$
C O L\left(a^{\prime} s d\right)=C O L\left(a^{\prime} s d+d^{\prime} s d\right)=\cdots=C O L\left(a^{\prime} s d+(k-1) d^{\prime} s d\right)=C O L\left(s d^{\prime} s d\right)
$$

Let $A=a^{\prime} s d$ and $D=d^{\prime} s d$. Then

$$
\operatorname{COL}(A)=\operatorname{COL}(A+D)=\cdots=\operatorname{COL}(A+(k-1) D=\operatorname{COL}(s D) .
$$

5 The Abridged Rado's Theorem

By Combining Theorem 2.1 and 3.1 we obtain what [1] refers to as The Abridged Rado's Theorem. In this section we state both the Abridged Rado's theorem and the full Rado Theorem.

Definition 5.1 A set of integers $\left(b_{1}, \ldots, b_{n}\right)$ is regular if the following holds: For all c, for all c-colorings $C O L \mathrm{~N} \rightarrow[c]$ there exists e_{1}, \ldots, e_{n} such that

$$
\begin{aligned}
C O L\left(e_{1}\right)=\cdots & =C O L\left(e_{n}\right) \\
\sum_{i=1}^{n} b_{i} e_{i} & =0
\end{aligned}
$$

The Abridged Rado's Theorem:
Theorem $5.2\left(b_{1}, \ldots, b_{n}\right)$ is regular iff there exists some nonempty subset of $\left\{b_{1}, \ldots, b_{n}\right\}$ that sums to 0 .

6 The Full Rado's Theorem

The full Rado's Theorem is about systems of equations. We first view VDW's theorem as a system of equations. Lets take VDW's theorem with $k=4$. It is usually written as

For all c, for all c-colorings $C O L: N \rightarrow[c]$, there exists a, d such that

$$
C O L(a)=C O L(a+d)=C O L(a+2 d)=C O L(a+4 d)
$$

We rewrite this in terms of equationS.
For all c, for all c-colorings $C O L: N \rightarrow[c]$, there exists $e_{1}, e_{2}, e_{3}, e_{4}$ such that

$$
\begin{gathered}
C O L(a)=C O L(a+d)=C O L(a+2 d)=C O L(a+4 d) \\
e_{2}-e_{1}=e_{3}-e_{2} \\
e_{2}-e_{1}=e_{4}-e_{3}
\end{gathered}
$$

We rewrite these equations:

$$
\begin{aligned}
0 e_{4}-e_{3}+2 e_{2}-e_{1} & =0 \\
-e_{4}+e_{3}+e_{2}-e_{1} & =0
\end{aligned}
$$

Let A be the matrix:

$$
\left(\begin{array}{cccc}
0 & -1 & 2 & -1 \\
-1 & 1 & 1 & -1
\end{array}\right)
$$

VDW for $k=4$ can be rewritten as
For all c, for all c-colorings COLN $\rightarrow[c]$ there exists $\vec{e}=e_{1}, \ldots, e_{n}$ such that

$$
\begin{gathered}
\operatorname{COL}\left(e_{1}\right)=\cdots=\operatorname{COL}\left(e_{n}\right), \\
A \vec{e}=\overrightarrow{0} .
\end{gathered}
$$

What other matrices have this property?
Definition 6.1 A matrix A of integers is regular if if the following holds: For all c, for all c-colorings COLN $\rightarrow[c]$ there exists $\vec{e}=e_{1}, \ldots, e_{n}$ such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=\cdots=\operatorname{COL}\left(e_{n}\right), \\
A \vec{e}=\overrightarrow{0} .
\end{gathered}
$$

Definition 6.2 A matrix A satisfies the columns condition if the columns can be ordered $\vec{c}_{1}, \ldots, \vec{c}_{n}$ and the set $\{1, \ldots, n\}$ can be partitioned into nonempty contigous sets I_{1}, \ldots, I_{k} such that

$$
\sum_{i \in I_{1}} \vec{c}_{i}=\overrightarrow{0},
$$

For all $j, 2 \leq j \leq k, \sum_{i \in I_{j}} \vec{c}_{i}$ can be written as a linear combination of the vectors $\left\{c_{i}\right\}_{i \in I_{1} \cup \ldots \cup I_{j-1}}$.

The Full Rado's Theorem:
Theorem 6.3 A is regular iff A satisfies the columns condition.
PROOF- WILL FILL IN LATER

References

[1] R. Graham, A. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.
[2] R. Rado. Studien zur kombinatorik. Mathematische Zeitschrift, pages 424-480, 1933.

