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Abstract 

In the Ramsey theory ofgraphs F + (G, H) means 
that for every way of coloring the edges of F red 
and blue F will contain either a red G or a blue 
H. The problem ARROWING of deciding whether 
F + (G, H) lies in II; = coNPNP and it was 
shown to be coNP hard by Burr [5]. We prove 
that ARROWING is actually II;-complete, simulta- 
neously settling a conjecture of Burr and provid- 
ing a natural example of a problem complete for a 
higher level of the polynomial hierarchy. We also 
show that STRONG ARROWING, the version for in- 
duced subgraphs, is rI;-complete. 

1 Introduction 

Party mathematics is an important tool in the reper- 
toire of the socially gifted mathematician, and one 
of the all-time favorite stories tells us that at a party 
of six people there are at least three people who 
know each other, or three people who do not know 
each other. As mathematicians started to get invited 
IO larger parties, they began working on the general 
case: how large a group of people do you need to 
have at least k people who know each other, or I 

people who do not know each other. Frank Ram- 
sey [ZO, 121 showed in 1930 that the size of the 
group needed is finite. Since then Ramsey theory 
has developed into an active and rich field. 

Looking at the party example again, we see that 
it could also have been phrased thus: every edge- 
coloring of the complete graph on six vertices Ks 
in red and blue contains either a red or a blue trian- 
gle. Graphs offer a generalized approach to classi- 
cal Ramsey theory which has turned out to be quite 
fruitful in the last twenty years [12]. The basic 
notion of Graph Ramsey theory is arrowing: we 
say that a graph F arrmw (G, H) and write F + 
(G, H) if for every edge-coloring of F with colors 
red and blue, a red G or a blue H occurs as a sub- 
graph. We say F strongly arrows (G, H) and write 
F H (G, H) if for every edge-coloring of F with 
colors red and blue, a red G or a blue H occurs as 
an induced subgraph. 

Take for example G = H = P4, a path on 
four vertices. One quickly verifies that KS + 
(P4, P4) [8]. For the induced case the complete 
graph will obviously not do: in a monochromatic 
coloring Ks will only have complete induced sub- 
graphs. The graph obtained from the Miibius ladder 
Ms (a Cs in which all pairs of opposite vertices are 
connected) by removing one of the spokes, howver, 
strongly arrows P4 [22]. See Figure 1 for a pic- 
ture of the graph. Harary, Ne~etfil and R6dl [13] 
claimed that A4s itself would do, but this is not the 
Case. 

Given that arrowing is the central notion of 
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Figure 1: A variant of the Mdbius ladder Ms 

Graph Ramsey theory, it is natural to ask what its 
computational complexity is, that is, how hard is it 
to determine whether F + (G, H)? In thenotation 
of Carey and Johnson we can define two problems: 

ARROWING 

Instance: (Finite) graphs F, G and H 
Question: Does F + (G, H)? 

STRONG ARROWlNG 

Instance: (Finite) graphs F, G and H 
Question: Does F H (G, H)? 

The contribution of this paper is to show that 
both problems are complete for the second level of 
the polynomial hierarchy (settling a conjecture by 
Burr[5]), simultaneouslydetermining theircompu- 
tational complexity and giving examples of natural 
problems complete for higher levels of the polyno- 
mial hierarchy (in addition to IT; for coNPNP we 
will also use Cg for NPNP, and Ei for NP”;). 

As a consequence several other Ramsey type 
questions can be reduced (by a polynomial time al- 
gorithm) to a single question F + (G, H), includ- 
ing Ramsey problems with several colors, or prob- 
lems of the type F + (G, X) (where G and 7-1 are 
families of graphs). On the other hand there cannot 
be a polynomial time algorithm converting a ques- 
tion of the form F fi (C, H) to a question F’ + 
(C’, H’) unless the polynomial hierarchy collapses 

to the second level. 
Let us have a look at the history of the ARROW- 

ING problem. Fixing the graphs G and H makes 
F + (G, H) a coNP problem in input F since 
checking for fixed subgraphs can be done in polyno- 
mial time for any coloring. Stefan Burr [S] showed 
that this problem is complete for coNP for any 
fixed three-connected graphs G and H (a graph is 
three-connected if it remains connected when any 
two vertices are removed from it). An earlier ver- 
sion of this result (again by Burr) where G = H = 
Ks is already mentioned by Garey and Johnson [I 0, 
GT6]. Compared to this restricted version AR- 

ROWING immediately appears stronger, since F + 
(KI,~, K,) decides whether F has a clique of size 
R and is therefore NP-hard. 

It is a widely accepted view that a complexity 
class is justified by its complete problems. Both 
the number of problems and their naturalness play 
a role. The classes P and NP excel on both ac- 
counts and have become the most popular classes 
ofcomputational complexity even outside the field. 
Nothing similar is true for the higher levels of the 
polynomial hierarchy, and Garey and Johnson [lo, 
Section 7.21 went so far as to say that the interest of 
the hierarchy was mainly theoretical and not practi- 
cal: would we really care if the hierarchy collapsed 
to the second level as long as P # NP? There is 
some evidence, however, that even Ct and Hi are 
natural classes of more than theoretical interest. 

Probably the first natural problem to be shown 
Cf-complete was INTEGER EXPRESSION IN- 
EQUIVALENCE by Stockmeyer [lo, AN181 in 1976 
shortly after the polynomial hierarchy was defined. 
A couple of problems related to INTEGER EX- 
PRESSION INEQUIVALENCE were later shown to 
be @-complete and Et-complete by Wagner [24] 
(he even mentions one Xi-complete problem). 
The basic structure of INTEGER EXPRESSION 
INEQUIVALENCE of testing whether two repre- 
sentations denote the same object is at the root 
of at least hvo other completeness results for the 
second level: Sagiv and Yannakakis [21] proved 
that deciding whether two monotonic relational 
expressions are equivalent is @-complete (mono- 
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tonic expressions contain only the operators select, 
project, join and union), and a result by Huynb [ 161 
shows that deciding whether two context-free 
grammars with only one terminal letter generate 
the same language is @-complete. In a similar 
spirit Lin [19] recently showed a problem related 
to pattern matching (and program optimization) 
to be II:-complete. Ko and Tzeng [17] exhibited 
three X:-complete problems that belong to the 
realm of computational learning theory: PATTERN 

CONSISTENCY. GRAPH RECONSTRUCTION and 
GENERALIZED’ 3-CNF CONSISTENCY. The last 
problem asks whether for two sets of Boolean for- 
mulas there is a 3-CNF formula which is consistent 
with each formula from the first set, but with no 
formula from the second set. 

2 Arrowing 

Theorem 2.1 ARROWING is @-complete, 

The result will be immediate from Corollary 2.8 
which shows that deciding F + (T, Km) for any 
tree T is II;-complete. 

Definition 2.2 A coloring of F is called (G, H)- 
good ifF does not contain a red G or a blue H in 
this coloring. 

In all of the following constructions we will 
use the implicit convention that if we take several 
graphs and identify some of their edges or vertices, 
then only these edges or vertices are identical and 
the remainders of the graphs still distinct. 

Some famous problems remain candidates for 
Cg-completeness. In the sixties and seventies 
the question of size of machines and programs 
was investigated in detail, and in parallel to re- 
search done in computability, Meyer and Stock- 
meyer defined the MINIMAL problem of deciding 
whether for a given formula v there is no for- 
mula of smaller size that is equivalent to it. MIN- 

IMAL lies in @ but only recently did Hemas- 
paandra and Wechsung [15] show that MINIMAL 

is coNP-hard. Stockmeyer also defined the prob- 
lem MINIMUM EQUIVALENT EXPRESSIONDNF of 
deciding whether for a given DNF formula ‘p there 
is a DNF formula of size at most k which is equiv- 
alent to it. This problem was recently shown to be 
X:-complete by Umans [23]. 

Finally there is an analogue of the GRAPH 

ISOMORPHISM problem, the BOOLEAN ISOMOR- 

PHISM problem in II; which asks whether two 
formulas are equivalent up to a permutation of the 
variables. BOOLEAN ISOMORPHISM is II:-hard, 

but not known to lie in ny. Agrawal and Thier- 
auf [I] recently showed that the complement of 
BOOLEAN ISOMORPHISM lies in AMNP which 
means that we do not expect it to be complete 
for Cz since this would collapse the polynomial 
hierarchy to Cg. 

Definition 2.3 A graph F is called a (G, H)- 
enforcer with signal vertex II ifthegraph obtained 
from F by attaching a free edge in 21 has theprop- 
erty that this edge is colored blue in all (G, H)- 
good colorings, and there is a (G, H )-good color- 
ing of the graph. 

We can use enforcers to force edges leaving the 
signal vertex to be blue (assuming that H is two- 
connected). We will sometimes talk of a blue en- 
forcer to make this point explicit. Red enforcers are 
defined analogously. 

Our main result in this section is the next theo- 
rem. It will follow l?om a series of lemmata we will 
prove later. 

Theorem 2.4 Let G be a fixed connected graph 
of size at least two for which we can compute a 
(G, K,,)-enforcer in timepolynomialin n. Then de- 
ciding F + (G, Kn) is II;-complete. 

Before we prove the theorem we show how to ap- 
ply it in case G is a tree. For this we need a well- 
known fact from the Ramsey theory of graphs. The 
Ramsey number r(G, H) of two graphs is defined 
as the least n such that I<,, + (G, H). 

Lemma 2.5 (ChvBtal [7]) If T is a tree on t ver- 
tices, then r(T, K,) = (t - l)(n - 1) + 1. 
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The lower bound of Chvhtal’s result is estab- 
lished by coloring a subgraph (n - l)Kt+l of 
K(,_lj(,-I) red and its complement blue. Note that 
in this coloring the red degree ofeach vertex is t - 2. 
This observation can be generalized. 

Lemma 2.6 The red degree of evety vertex in 
li(,-l~(,-l~ in any (T, Ii,)-good coloring is at 
least t - 2, where t is the order of T. 

Proof Let m = (t - l)(n - 1). Assume for 
a contradiction that there is a (T, K,)-good color- 
ing of Km in which some vertex z has red degree 
at most t - 3. Let y, , . , yt-s be its red neighbors. 
Lookat thegraph Ii, - {z, yI,. , y+s} under the 
induced coloring. This graph has m - (t - 2) = 
(t-l)(n-l)-(t-2)= (t-l)(n-2)tlvertices 
and hence (by Chvital’s result) contains a red T or 
a blue Kn-*. Neither, however, is possible, since a 
red T would also be contained in the original graph, 
and a blue I~,,-z together with 3: would form a blue 
K,-l in the original graph. 0 

It is a graph-theoretical folklore fact (a proof can 
be found in Chvital’s note [7]) that a graph of min- 
imum degree t - 1 contains every tree on 1 points. 
More precisely the tree can be embedded node by 
node, starting at an arbitrary node of the tree and 
the graph. Hence if we remove from T an edge 
leading to a leaf, then the resulting tree T’ will oc- 
cur as a red subgraph in any (T, K,)-good coloring 
of Kc+~J(,-~) with any particular vertex of T’ in 
anyparticularvertexofK~,_,)(,_l). Inotherwords 
I?-(,-~)(,_~) is an enforcer, and each of its vertices 
can act as a signal vertex 

Lemma 2.1 For any tree T a (T, K,)-enforcercan 
be constructed inpolynomialtime in 12 (namely take 
a li(lTl-l)(n-l) andany of its vertices). 

Hence we obtain the following corollary of the 
above theorem, in tom implying Theorem 2.1. 

Corollary2.8 Deciding F + (T,K,) is @- 
complete (where T is a tree of size at least two). 

Before we can prove Theorem 2.4 we need to 
construct a particular kind of graph which works 

like a switch between two edges: at least one of the 
edges will be blue in a good coloring. 

Definition 2.9 A graph F is called a (G, H)- 
switch ifit contains an inducedpath of length two 
such thntforaN(G, H)-goodcoloringsat mostone 
of the edges of the path is red, and there are (G, H )- 
good colorings of F in which each of the two edges 
is blue while the other is red. 

The constructionofswitches requires yet another 
kind of graph which like the enforcer determines a 
particular edge to have a certain color. 

Definition2.10 A graph is called a (G, H)- 
determiner with signal edge e if e is colored 
red in all (G, H )-good colorings. and there is a 
(G, H)-goodcoloringof thegraph. 

For later reference note that we will sometimes 
call these determiners red determiners to distin- 
guish them from blue determiners which are defined 

Lemma 2.11 Suppose that G is a connectedgraph 
of size at least two and that we can compute (I 
(G, Ii,)-enforcer in polynomial time in IZ. Then a 
(G, Ii,)-switch can be constructed in polynomial 

Proof The proof will be in two steps. We first 
show how to obtain a red determiner from the blue 
enforcer and then how to use that to obtain a switch. 

Build a graph F by taking a copy of K, and 
identifying all of its vertices except for two (say u 
and V) with the signal vertex of a (G, K,)-enforcer. 
We claim that F is a (G, K,)-determiner. Fix a 
(G, K,)-good coloring of F. The enforcers force 
all edges of Ii, except for uv to be blue. This de- 
termines uu to be red since the coloring does not 
contain a blue K,. Furthermore coloring all the en- 
forcers with a good coloring and letting all the edges 
in K,, be blue except for uu which is red shows that 
there is a good coloring of F (this relies on the fact 
that G is connected). 

With the determiner we can now construct the 
switch. The fact that there is a (G, K,)-enforcer 
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implies that G must have a vertex ofdegree one. Let 
e be the edge attached to that vertex, and let f be an 
edge adjacent to e (remember that G is connected 
and has size at least two). 

Construct the switch by taking a copy of G and 
making all of its edges except for e and f signal 
edges of determiners. That forces one of e or f to 
be blue. It is straightfonvard to construct two good 
colorings of the switch in which either e or f is 
blue and the other red (again we need that G is con- 
nected). 

Obviously all of these constructions can be per- 
formed in polynomial time. L3 

In view of the preceding result the next lemma is 
sufficient to establish Theorem 2.4 

Lemma 2.12 Let G be a connected graph of size 
at least two such that we can compute a (G, K,)- 
enforcer and a (G, K&witch in polynomial time 
in IL Then for any II2 sentence $ we can construct 
a graph F and compute a number n in polynomial 
time such that $ is true ifand only ifF + (G, I~,,). 

Proof Fix G, and let $ be the formula 
(V”l.. .Zk@Yl .Yk)[vD(rl,. .,Xk,Yl, .,Yk)l 
which is to be coded, the 2k variables ranging over 
(0, 1). We will refer to the xi as the s-variables 
and the yi as the y-variables. Without loss of 
generality (3 is in conjunctive normal form with at 
most three literals per clause and each literal occurs 
at most twice in the whole formula. We can also 
assume that each variable occurs at most once per 
clause. Finally using the fact that (Vcz)[p(r,~)] E 

W~)(~Yl,YZN(~ v Yl) A (x v a A PP(Yl,YZ)l 
we can assume that all the z-variables occur only 
twice, once positive and once negative with one y 
variable each (thanks to Dieter Van Melkebeek for 
pointing out this important simplification). 

Let y(a, b) consist of m clauses Cl,. , C,. 
We will now mimic the construction that shows 

that CLIQUE is NP-complete. We can already com- 
pute x it is going to be m, the number of clauses. 

Construct the graph F as follows. For each 
clause C that does not contain an z-variable take a 
triangle or an edge (if the clause contains only two 
literals), and label the vertices by the literals in the 

clause. Call this a y-gadget. For each pair (EV yj) 

and (Zi V yr) take a (G, Km)-switch with adjacent 
signal edges ei and fi say. Since these two edges are 
different there is a vertex u of ei which does not be- 
long to .fi and a vertex u Offi which does not belong 
to ei. Label u with yj and 2) with yl and the common 
vertex of e; and fi with 2;. Call this an z-gadget. 

Include all edges between vertices which are not 
labeled by contradictory literals and belong to dif- 
ferent gadgets. Furthermore make each vertex of a 
y-gadget the signal vertex of a (G, K,)-enforcer. 

This completes the construction of F. We claim 
that F + (G, Km) if and only if $ is true (see Fig- 
ure 2 for an example). 

Figure 2: F for (Vs)(3y)[z p4 y] 

Assume first that ?1, is true. Suppose for a contra- 
diction that there is a (G, Km)-good coloring of F. 
Fix that coloring. In this coloring all the enforcers 
and switches work, namely all the edges within the 
y-gadgets and from the y-gadgets to the z-gadgets 
are blue, and in the xi-gadget at least one of e; and 
f; is blue. Call +; true if ei is blue, and false oth- 
erwise. For this troth assignment to the z-variables 
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there is a truth assignment to the y variables such 
that y(zl, , zk, ~1,. . ., yk) is true. Fix this as- 
signment. For each y-gadget pick a vertex whose 
label is assigned true. In each z-gadget choose the 
two vertices belonging to et if zi is true and j; oth- 
erwise. By the construction of F these m vertices 
form a blue clique contradicting the assumption. 

To show the other direction assume that II, 
is false, i.e. there is an assignment of truth- 
values to I,, ., zk such that for all assign- 
ments of truth-values to ~1,. . , yk the formula 
4 I~, .,sk,yl,. .,yk) is false. Fix such 
I ,,..., Zk. The enforcers and switches were 
constructed in such a way that they have good 
colorings. Fix a good coloring for each enforcer. 
For the zi-gadget we choose a coloring of the 
switch in which e; is blue and f; is red if Xi is hue 
and vice versa otherwise. 

Finally color all edges between gadgets blue. We 
claim that this coloring is a (G, h’,)-good coloring. 
It obviously does not contain a red G since none 
of the components contains a red G, and only the 
x-gadgets contain isolated red edges (we use that 
G is connected). Suppose, for a contradiction, that 
there is a blue Ii,. Each y-gadget can share at most 
one vertex with this K, and each z-gadget at most 
two. Hence every y-gadget has exactly one vertex 
in common with h’, and every z;-gadget exactly 
two (from ei if 5; is true or from fi otherwise). Call 
a y-literal true if it one of the K, vertices is labeled 
with that literal. By the construction this yields a 
well-defined partial assignment of truth-values to 
y-variables such that ~(sl, , zk, ~1,. . , yk) is 
true, contradicting the choice of the assignment to 
the r variables. q 

3 Strong An-owing 

At the heart of the completeness proof for ARROW- 
ING was the construction of enforcers, building on 
the computation of r(T, I<,) by Chvhtal. Exact in- 
duced Ramsey numbers are only known for small 
graphs. Even finding some F with F H (G, H) 
for a given G and H is hard. The existence of 
such an F for every pair (G, H ) was only shown 

in 1973, independently, by Deuber, by ErdGs, Haj- 
nal and P&a, and by R6dl[9]. Though two of these 
proofs are constructive, the graph F they construct 
will be at least of doubly exponential size in the in- 
put graphs. Since we are only allowed polynomial 
time we cannot use them. Though there are better 
bounds for induced Ramsey numbers in the litera- 
ture (see for example the forthcoming paper by Ko- 
hayakawa, Prijmel and R6dl [ 181) these bounds are 
obtained by the use of random graphs, and therefore 
of no use in polynomial time. 

Theorem3.1 STRONG ARROWING is II;- 
complete. 

Since we are dealing with induced graphs we will 
(in this section) say that a coloring of a graph F 
is (G, H)-good if it contains neither a red G nor a 
blue H as an induced subgraph. This, of course, 
changes the notions of enforcers and determiners as 
defined above, and to avoid confusion we will call 
them strong enforcers and strong determiners. 

Theorem 3.2 Let G be ajired connected graph of 
size at least two for which we can compute a strong 
(G, A’,)-enforcer in polynomial time. Then decid- 
ing F H (G, K,) is @-complete. 

The proof is the same as in the noninduced case, 
with enforcers, etc. substituted by their strong vari- 
ants. We only need some additional reasoning to 
show that the enforcers, determiners, switches, and 
the final graph forces the colors in a (G, Ii-,,)-good 
coloring as it did before. This, however, follows 
from themodularityofthe construction: all thegad- 
gets are induced subgraphs of the final graph F (the 
only interesting case to verify are switches since 
they have two signal edges; by construction the two 
signal edges of a switch form an induced path, and 
the construction of F does not change this prop- 
erty.) Hence the same arguments as before apply. 

Corollary 3.3 Deciding whether F H ( KI ,P, I<,) 
is II:-complete. 

The proof of the corollary reduces (by the pre- 
ceding theorem) to the construction of a strong 
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(lit,,, Ii,)-enforcer. As in the non-induced case 
there is a connection to the construction of graphs 
F for which F ++ (Kr,,, IS,). For the special 
case at hand we use a construction based on an idea 
of Thomas Hayes [14]: a complete n-partite graph 
with ip vertices in the ith partition class will do. 

Lemma 3.4 Wecan constructastrong(I~,,~, K,)- 
enforcer in polynomial time in p and n. 

Proof We will show how to construct F such 
that F + (K1,,, K,,), and F has a vertex 
2) such that in any (Kr,,, I<,)-good coloring v 
is at the center of a red induced h’r,r-t. Let 
F = K I.~ 1,2~,3~ ,..., +I)~, i.e. _ a complete n- 
partite graph where the ith partition class contains 
max{ 1, (i - l)p} vertices with the exception of the 
second partition which only contains p - 1 vertices. 
Coloring the p - 1 edges between the first and sec- 
ond partition red and all the other edges blue shows 
that F + (K,,,, K,). Fix any (Kt,s,K,)-good 
coloring of F. Suppose there is a blue edge from 
~1 to a vertex in the second partition, Using the fact 
that there is no red Kr,, one easily shows by induc- 
tion that the first i partition classes contain a blue 
K;, finishing the proof. 0 

4 Other Graphs 

How can we build enforcers for other graphs? We 
will sketch an example which employs a new idea. 
Our modest goal is to show that F H ( P4, K,) is 
II;-complete. We do not quite achieve this goal, 
the best we can do at present is to show com- 
pleteness for II! under truth-table reductions. A 
truth-table reduction is a reduction that makes all 
its queries simultaneously at once, and then de- 
cides acceptance without being able to make more 
queries. 

We can in polynomial time compute a graph F 
such that F H (Pd, I?-~) (for a proof see [22]). 
Fix an ordering of the edges of F and remove the 
edges in order one by one until finding a graph F’ 
for which F’ + (P4, K,) (use the oracle to do 
this). The search terminates since 0 + (P4, Kn). 

Let the last edge that was removed be between ver- 
ticesvandzu. Thatis F’U{v,w} P+ (P4,h’,)and 
F’ ++ (P4, fire). 

Consider a good coloring of F’. Adding a red 
edge zrw obviously cannot create a blue clique, 
hence VW must be part of a red P4. There are two 
cases: either (i) there is a good coloring of F’ in 
which neither u nor w are incident to a red P3 (and 
hence they are both incident to a red edge), or (ii) 
at least one of v or w is incident to a red induced Pa 
in any good coloring. 

In the first case we take three copies Fl, F2, F3 
of F’ and identify u := vr = rs = va and 1u := 
1ur = tes = 2~s to get a new graph G. In any good 
coloring v and 20 will not be incident to a Ps, but 
they will be incident to a Pz. Take two copies of G 
and connect their u vertices. This graph will func- 
tion as a blue-determiner. The signal edge is the 
edge connecting the two copies of G. As a switch 
we take a copy of G in which we connect 21 and w 
by a path of length two. In the second case we take 
two copies Fl, Fs of F’ and identify u := vt = 20s 
and us = 20, to get a strong enforcer G with sig- 
nal vertex 0. Note that we can effectively decide 
which case we are in: case (i) applies if and only if 
G + (Pd, K,). For the remainder of the proof we 
can apply Theorem 3.2 in the second case. For the 
first case we have to carefully check the construc- 
tion to see that the blue determiners can be used in- 
stead of the enforcers, and that they do not interfere 
with each other. 

What have we shown? For the construction of 
the enforcer we made queries of the form F - 
(P4, K,). Since there are at most polynomially 
many queries and they can be determined ahead of 
time, this amounts to a truth-table reduction. 

Theorem 4.1 Deciding F H ( P4, K,) is truth- 
table completefor II;. 

This example is meant to illustrate the use of 
ideas related to Ramsey-minimal graphs. These 
ideas might also be fruitful in the non-inducedcase. 

Another question to be asked is whether the com- 
plete graph can be substituted by other families 
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of graphs. As we transformed CLIQUE into AR- 

ROWING it should be possible to lift similar NP- 
completeness results to II;. In the induced case 
we can indeed show that F - (Ps, P,) is IIt- 
complete, where P, is a path on n vertices (we do 
not include a proof). This result could be viewed 
as a lifting of Yannakakis’s result that finding in- 
duced paths is NP-complete [lo, CT231 (namely 
he showed that F H (Pc, P,) is NP-complete). 

An interesting open problem is settling the com- 
plexity of F ++ (li~,~, Kt,,). In the non-induced 
case deciding F + (Ki,“, lit,,,,) can be done in 
polynomial time by reducing it to a matching prob- 
lem [5]. This is not true for the induced case (un- 
less P = NP): a graph G has an independent set 
of size at least n iff the graph obtained horn G by 
adding a vertex and connecting it to all vertices of 
G contains an induced K,,, (for rz > 4, remem- 
ber that we can assume that G has maximal degree 
3). Hence F Y (Kl,,, Kt,t) is an NP-complete 
problem. It seems likelythat F w (Kt,,, KI,,) is 
II;-complete. 

5 Conclusion 

We have shown several completeness results for 
both ARROWING and STRONG ARROWING and 
presented some general results which reduce the 
problem to the effective construction of graphs like 
(strong) enforcers and (strong) determiners. These 
are combinatorial problems of some trickiness. In a 
first step the paper [22] collects effective construc- 
tions of graphs that strongly arrow other graphs, but 
more work is to be done. 

As a particular problem let us mention the com- 
plexity of F + (KS, ICn). The enforcer approach 
will not work here. A modification (using a lemma 
from a paper by Burr, NeSetfil and Rod1 [6]) will 
give the result that if a (Ka, K,)-determiner can 
be computed in polynomial time, then the problem 
is @‘-complete. This leaves open as an interest- 
ing task the construction of a (KS, K,)-determiner 
(with or without oracle help). Another question is 
whether we can show completeness for diagonal ar- 
rowing, i.e. a problem of the form F + (G, G) or 

F - (G, G). The main difficulty, of course, is that 
we cannot construct enforcers or determiners in this 
case, and would have to base the whole construc- 
tion on switches (if this is possible). A good can- 
didate to investigate more closely should be F H 
(Ill,,, Iid. 

The effectiveness of general Ramsey theory (as 
opposed to Graph Ramsey theory) is covered in a 
forthcoming survey by Bill Gasarch [ll]. Most 
of the results in this area belong to computabil- 
ity rather than complexity. There is one exception 
though which also establishes a link to Graph Ram- 
sey Theory, and that is the computation of Ram- 
sey numbers. Remember the definition of the gen- 
eralized Ramsey number of two graphs G and H 
as T(G,H) = min{n. : K,, + (G, H)}. The 
usual Ramsey numbers can be defined from this as 
~(k, 2) = r(Kk, K,). 

The question of how hard it is to compute r(lc, I) 
is probably not a good one, since r( Ic, I) might be 
exponentially large compared to Ic and I, so that 
an algorithm in the polynomial hierarchy might fail 
just because of the size of the output, whereas we 
do not expect the problem to be hard for exponential 
time. This problem is not an issue in the graph vari- 
ant. Burr [3] considered the question of how hard 
it is to decide whether r(G, H) < m, where m is 
part of the input, He showed that this problem is 
NP-hard. Since the best upper bound we have is 
II; again this leaves us with a gap which will be 
more difficult to close than the one for the ARROW- 

ING problem, since we rely heavily on the structure 
of the graph F we are constructing. The situation 
for T( Ic, 1) seems worse. Burr’s proof requires one 
of G or H to be a path, so the restriction to com- 
plete graphs necessitates new ideas. There do not 
seem to be any lower bounds on the complexity of 
computingr(k,I). 

In conclusion let us point out some other results 
inquiring into the complexity of Ramsey Theory. 
Burr showed that deciding whether a finite set of 
points in the plane can be colored with three colors 
such that no two points within distance h’ have the 
same color is NP-complete [2]. This seems to be 
the only computational result in Euclidean Ramsey 
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theory. 
We should finally mention an analogue of F + 

(C, H) in computability. Ifthe edge set of (the pos- 
sibly infinite graph) F is computably enumerable, 
and G and H are finite, then ARROWING m-reduces 
to @, the complement of the halting problem (if 
e ,,..., e, ,... is an enumeration of the edges of F 
ask whether there is a (G, H)-good coloring of F 
restricted to edges q, , e, for all n). This ob- 
servation is complemented by a result of Burr’s [4] 
who showed that @ can be m-reduced to ARROW- 

ING even if F is restricted to be a highly computable 
(essentially finite and periodic) graph. Hence this 
infinite version of ARROWING is nl-complete. 
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