A Complete High School Proof of Schur’s Theorem on

Making Change of n cents

William Gasarch *

Univ. of MD at College Park

1 Introduction

Let ay,as,...,ay be coin denominations. Assume you have an unlimited number of each coin.
How many ways can you make n cents with these coins? Schur’s theorem gives the answer asymp-

totically and also yields the coefficient of the dominant term. We state it:

Theorem 1.1 Let a; < --- < ap € N be relatively prime. Think of them as coin denominations.

L—-1

As n goes to infinity the number of ways to make change of n cents is MT% + O(nt=2).

I volunteered to present a proof of Schur’s theorem to high school students taking pre-calculus.
I then realized that the proof of Schur’s theorem I knew, from Wilf’s wonderful book on generating

functions [1], uses generating function, roots of unity, partial fractions, and the Taylor series for

1
(1)t~

The material on generating functions and roots of unity is such that I could prove and use just
what was needed. Partial fractions could certainly be taught to high school students; however, I

wanted to prove they worked, not show them a cook book way to decompose. I then realized that
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I had never seen a proof that they worked; however, I doubt this would be hard to obtain. Getting
a Taylor series without calculus for = ) ———1 seemed like an interesting challenge.
I succeeded in my goals. We present a complete high school proof of Schur’s theorem, essen-

tially Wilf’s proof, with the following features:

1. We prove the partial fractions decomposition that we need. The result is standard; however,
our proof is short and makes our treatment self contained. We doubt our proof is new though

we have not been able to find a reference.

2. We obtain the Taylor series of = ) —— without calculus. We doubt our proof is new though

we have not been able to find a reference.

3. We obtain that forall 1 < r < M — 1 where M = LC'M(ay,...,ar) there is a polynomial
h, of degree L — 1 such that if n = r (mod M) then h,(n) is the number of ways to make

change of n. We doubt the result is new though we have not been able to find a reference.

2 Induction Proof of Partial Fractions Decomposition

Lemma 2.1

1. Foralln €N, forall c,d € C, ¢ # d, there exists A, Ay, ..., A, such that

1 A A
(1—cx)(1—dz)» 1—cx (1 —dz)k
2. Foralln,,...,n; € N, forall cy,...,c;, € C distinct complex numbers, there exists A; ;

such that
L

A j
1—cZ ZZ 1—cz
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Proof:
1) We prove this by induction on n.

Base Case: n = 1. We need to solve for A, A; in this equation:

1 1 A Ay
l—cx 1—dx =~ l—czx + 1—dx"

1=A(1—-dzx)+ A;(1 —cx),s01 = (A+ Ay) — (dA+ cA;)x. Hence

A+ Ay = 1and dA + cA; = 0. These can be easily solved to yield A = %5 and A; = %.
Note that we are using ¢ # d.
Induction Hypothesis (IH): We assume the lemma is true for n — 1.

By the IH there exists A’, Ay, ..., A, (we purposely make these off by one so that later they

will be what we want) such that

i
L

1 LA A
(1—cz)(1—dz)!  1—cx (1 —dx)*
Hence
1 _ n— 1 Ay A’
(I—cz)(1=dz)» — 1— da: 1 cz +Z (1 derxl)k:| (1—cz)(1—dx) +Zk 2 (1— dx)

:1A 1dx+2“ 162; (by the n = 1 case)

- m + 2 (1—da:)j

2) We prove this by induction on ZiL:1 n;.
Base Case: Zle n; = 1. This only happens when L = 1 and n; = 1 which is trivial.

Induction Hypothesis (IH): Assume the lemma is true for all (n),...,n}) with 3.7 n! <

ZiLzl T
Clearly

ﬁ (1- 1@35) ThN —161:10 [(1 - cllx)”ll ri! (1 —1ci)"2}

N
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We rewrite what is in the square brackets as

1 1 1 1
(1 —crz)m=1 (1 —c)™ (1 —c3)™ (1 —cp)m™

This is in the exact form of the lemma we are proving though note that the sum of the exponents
is (Zle n)—1< Zle n;. Hence by the IH there exists A; ;1 (we purposely make these off by
one so that later they will be what we want) and A; ; such that the expression in square brackets is

the following (we seperate out the first term for notationaly convinence).

ni—1 n;

Z A ZZ
1—033 1—c

j=1 1 i=2 j=1 i

is

i L
Hence our original product, [[.”, m,
- &

1 ni—1 A1j+1 L n; B ni—1 A17]+1 L n;
1—011,[; 1 —cx) +ZZ 1—cz }—{Z (l—clq;J‘H_'_ZZ 1—cZ ]

=2 j=1

(1 —cz)( 1 — ¢r)d

niy L
Ay Ay
= L +
Z A= oy Z
=2
By Part 1 there exists constants A} ; and A, ; such that

// J

L L L n
ZZ 1—clx 1—cx Z 1—clx+zz 1—2’30

1=2 j=1 =2 j=1 1231—1

Let Zz‘L:Z Z;il AZ] == A171. Then

5

L m "
Ai,j o Avq
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: l—czx 1—c¢x
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For2<i<Landl1<j<mletA,;=>,", Z;“:k A, jx Then

L L n

= Aij
ZZZ ’” SHHI 1_’21; =20 Ay
zzzj1k1 z2k1]k i=2 k= it
Hence our original product, HiL:1 m, is
— Ay Ain L A j
Z(l—cix) 1—clx+zz l—cl ZZ 1—c,
7j=2 1=2 k=1 i=1 j=1

The usual theorem about partial fraction decomposition that is used in calculus starts with a
polynomial over the reals and factors it into linear and quadratic polynomials over the reals. This

version can easily be derived from Lemma 2.1

3 Non Calculus Proof of the Taylor Series for ﬁ

We obtain the Taylor expansion for = ) —— via combinatorics, not calculus.

Def 3.1
1. If n € N then [n] is the set {1,...,n}.

2. An L-set of X is a subset of X of size L.

Lemma 3.2 Foralln,L, Y} , (L_Hi) = (L+n)'

L-1 L

Proof: The term L-set will mean L-set of {1,..., L + n} throughout.
We solve the following problem two ways: How many L-sets are there? Clearly the answer is
L+n
(2")-
Another way to solve this problem is to partition the L-sets based on the set’s largest element.

The largest element in any L-set is of the form L + 7 where 0 < ¢ < n. The number of L-sets with
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L—1+4+1%

largest element L + i is the number of (L — 1)-sets of {1, ..., L — 1+ 4}, namely (“; ']

). Hence

the number of L-sets is >, (“,'1*). This yields our result. |

Lemma 3.3 Forall L, = = Yoo, (V142

Proof:  We prove this by induction on L.

Base Case: L = 1. This is the well known geometric series 1% = o
x 1=

Induction Hypothesis (IH): Assume the lemma is true for L — 1:

1 ~(L—2+1i\ ,
(1—:c)L—1_;< L—2 )x

From the IH we obtain:

<1—1x>L - <1—2>L-11ix - (i (LL_E;i)xi) (i)

This last equality used Lemma 3.2 |

4 Lemma about Roots of Unity

Lemma 4.1 If0 < x <y < 27, cos(x) = cos(y), and sin(z) = sin(y) then x = y.

Proof:  Since cos(z) = cos(y) either x = y or x + y = 27. Since sin(x) = sin(y) either x = y

orx+y € {m3n}. Since 27 ¢ {m, 37}, z =y. |



Lemmad4.2 Leta; < --- < ay, € N be relatively prime. Let g(z) = (™ —1)--- (2% —1). When
g(x) is factored completely into linear terms the factor (x — 1) occurs L times and all of the other

linear factors occur < L — 1 times.

Proof: Clearly x — 1 occurs in all L of the polynomials (z* — 1) and hence occurs L times.
Each polynomial (z% — 1) has distinct roots, so if another linear term occurs L times it has to occur
as a factor in each (z% — 1).

Assume that there exists w # 1 such that (z — w) divides each (z* — 1). We will show that
ai,...,ar have a nontrivial common factor and hence are not relatively prime. Forall 1 <: < L
let w; be the primitive ¢th root of unity. For all ¢, since z — w divides z* — 1, w is an a,th root of
unity. In particular there exists 1 < A < a; — 1 such that wf‘ = w. Since A < a; — 1, a; does not
divide A. Hence there is some prime power p° that divides a; but does not divide A.

Let 2 < ¢ < L. We show that p divides a;. Since w is an a;th root of unity there exists

1 < B < a; — 1such that w{! = w = wP. Hence

2mA — 1 oain 2TA 2B — 1 iy 2B
cos - +4/—1sin = Cos = + 15111—%_

ai

Hence
cos ZA = cos 2B
a1 a;
sin 4 = sin 278
al a;

By Lemma 4.1 A/a; = B/a;. Therefore Aa; = Bay, hence a; must divide Aa;. Since p°

divides a; but not A, p must divide a;. 1

5 Schur’s Theorem
Theorem 5.1 Let a; < --- < ay, € N be relatively prime. Think of them as coin denominations.

1. Let M = LCM(ay,...,ar). Let 0 < r < M — 1. There is a polynomial h, of degree L — 1



such that if n = r (mod M) then h,.(n) is the number of ways to make change of n cents.

2. Forall 0 < r < M — 1 the coefficient of of n*~! in h, is Note that the

1
(L-D'araz-ar*

coefficient does not depend on r.

3. (This follows from Parts 1 and 2.) The number of ways to make change of n cents is

TLL_l

(L—1!ajas---ay

+ O(n*?).

Proof:
We get a formula for the number of ways to make change of n cents and then prove Parts 1 and
2. Part 3 follows from Parts 1 and 2.

The number of ways to make change of n cents is the coefficient of z" in

f(z) :(1+xal_|_3;2a1+...)(1+xa2+$2a2+...)...(1+xaL+x2aL+...)

— 1
T (1—z1)(1—2%2)--(1—2°L)

Foralll1 <:<L,1<j <a;—1,letq;;be the jth a;th roots of unity (we think of 1 as being
the Oth root of unity). Formally o; ; = cos %lﬂ + +4/—1sin iﬂ Let n; ; be the number of times the
factor (1 — o jz) appears in (1 — 2% )(1 — 2%?)--- (1 — 2%). By Lemma 4.2 n;; < L — 1. We

rewrite f(z) and use Lemma 2.1 and 3.3 to obtain




00 L z—1+n L a;—1 ngj _1+n
i=1

n=0 i=1 j=1 k=1

1) Since «; ; is an ith root of unity, o', = o7'; mod M 'Hence if n = r (mod M) then the coefficient

of " in f(x), which is the answer we seek, is

L . L a;j—1nij
1—1+n \ : k—1+n r
hy(n) :ZAi( i1 ) +Z Ai,j,k;( ko1 )ai,j

i=1 j=1 k=1

Clearly this is a polynomial in n of degree L — 1.

2) We need to find A;.

1 i Az Tt i‘”—l S _ A
(1—29)(1 —a92)--- (1 —zor) “ (1 —ag o)k

i=1 i=1 j=1 k=

Multiply both sides by (1 — z)

L—l azfl ni,j L
(1—x)" L Aije(l—27)
=A; + Ai(1—x)" "+ AL L
(=)= am) - (1= &%) 2 222 oy
The left hand side can be rewritten as
1

I+z+a224--+aza)(I+ax+a2+-- a2l I+ +22+. - faul)

As x approaches 1 (from the left) the LHS approaches - and the RHS approaches Aj.

Hence A; = Therefore

ajas--ay,



m+1D)n+2) - (n+L—1) &2 [i—14n) oo k—1+n
hr = i . i, iy
") (L —Dayag---ar, +ZA i—1 +ZZZAM k1 )

i=1 i=1 j=1 k=1

Since all n; ; < L —1
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