
A Complete High School Proof of Schur’s Theorem on

Making Change of n cents

William Gasarch ∗

Univ. of MD at College Park

1 Introduction

Let a1, a2, . . . , aL be coin denominations. Assume you have an unlimited number of each coin.

How many ways can you make n cents with these coins? Schur’s theorem gives the answer asymp-

totically and also yields the coefficient of the dominant term. We state it:

Theorem 1.1 Let a1 < · · · < aL ∈ N be relatively prime. Think of them as coin denominations.

As n goes to infinity the number of ways to make change of n cents is nL−1

(L−1)!a1a2···aL
+O(nL−2).

I volunteered to present a proof of Schur’s theorem to high school students taking pre-calculus.

I then realized that the proof of Schur’s theorem I knew, from Wilf’s wonderful book on generating

functions [1], uses generating function, roots of unity, partial fractions, and the Taylor series for

1
(1−x)L .

The material on generating functions and roots of unity is such that I could prove and use just

what was needed. Partial fractions could certainly be taught to high school students; however, I

wanted to prove they worked, not show them a cook book way to decompose. I then realized that
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I had never seen a proof that they worked; however, I doubt this would be hard to obtain. Getting

a Taylor series without calculus for 1
(1−x)L seemed like an interesting challenge.

I succeeded in my goals. We present a complete high school proof of Schur’s theorem, essen-

tially Wilf’s proof, with the following features:

1. We prove the partial fractions decomposition that we need. The result is standard; however,

our proof is short and makes our treatment self contained. We doubt our proof is new though

we have not been able to find a reference.

2. We obtain the Taylor series of 1
(1−x)L without calculus. We doubt our proof is new though

we have not been able to find a reference.

3. We obtain that for all 1 ≤ r ≤ M − 1 where M = LCM(a1, . . . , aL) there is a polynomial

hr of degree L − 1 such that if n ≡ r (mod M) then hr(n) is the number of ways to make

change of n. We doubt the result is new though we have not been able to find a reference.

2 Induction Proof of Partial Fractions Decomposition

Lemma 2.1

1. For all n ∈ N, for all c, d ∈ C, c 6= d, there exists A,A1, . . . , An such that

1

(1− cx)(1− dx)n
=

A

1− cx
+

n∑
k=1

Ak
(1− dx)k

.

2. For all n1, . . . , nL ∈ N, for all c1, . . . , cL ∈ C, distinct complex numbers, there exists Ai,j

such that
L∏
i=1

1

(1− cix)ni
=

L∑
i=1

ni∑
j=1

Ai,j
(1− cix)j

.
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Proof:

1) We prove this by induction on n.

Base Case: n = 1. We need to solve for A,A1 in this equation:

1
1−cx

1
1−dx = A

1−cx +
A1

1−dx .

1 = A(1− dx) + A1(1− cx), so 1 = (A+ A1)− (dA+ cA1)x. Hence

A + A1 = 1 and dA + cA1 = 0. These can be easily solved to yield A = c
c−d and A1 = −d

c−d .

Note that we are using c 6= d.

Induction Hypothesis (IH): We assume the lemma is true for n− 1.

By the IH there exists A′, A2, . . . , An (we purposely make these off by one so that later they

will be what we want) such that

1

(1− cx)(1− dx)n−1
=

A′

1− cx
+

n−1∑
k=1

Ak+1

(1− dx)k
.

Hence

1
(1−cx)(1−dx)n = 1

1−dx

[
A′

1−cx +
∑n−1

k=1
Ak+1

(1−dx)k

]
= A′

(1−cx)(1−dx) +
∑n

k=2
Ak

(1−dx)k

= A
1−cx +

A1

1−dx +
∑n

k=2
Ak

(1−dx)k (by the n = 1 case)

= A
1−cx +

∑n
k=1

Ak

(1−dx)j

2) We prove this by induction on
∑L

i=1 ni.

Base Case:
∑L

i=1 ni = 1. This only happens when L = 1 and n1 = 1 which is trivial.

Induction Hypothesis (IH): Assume the lemma is true for all (n′1, . . . , n
′
L) with

∑L
i=1 n

′
i <∑L

i=1 ni.

Clearly

L∏
i=1

1

(1− cix)ni
=

1

1− c1x

[
1

(1− c1x)n1−1

L∏
i=2

1

(1− ci)ni

]
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We rewrite what is in the square brackets as

1

(1− c1x)n1−1
1

(1− c2)n2

1

(1− c3)n3
· · · 1

(1− cL)nL

This is in the exact form of the lemma we are proving though note that the sum of the exponents

is (
∑L

i=1 ni)− 1 <
∑L

i=1 ni. Hence by the IH there exists A1,j+1 (we purposely make these off by

one so that later they will be what we want) and A′i,j such that the expression in square brackets is

the following (we seperate out the first term for notationaly convinence).

n1−1∑
j=1

A1,j+1

(1− c1x)j
+

L∑
i=2

ni∑
j=1

A′i,j
(1− cix)j

Hence our original product,
∏L

i=1
1

(1−cix)ni
, is

1

1− c1x

[n1−1∑
j=1

A1,j+1

(1− c1x)j
+

L∑
i=2

ni∑
j=1

A′i,j
(1− cix)j

]
=

[n1−1∑
j=1

A1,j+1

(1− c1x)j+1
+

L∑
i=2

ni∑
j=1

A′i,j
(1− cix)j

]

We can re-index the first summation to get:

=

n1∑
j=2

A1,j

(1− c1x)j
+

L∑
i=2

ni∑
j=1

A′i,j
(1− c1x)(1− cix)j

By Part 1 there exists constants A′′i,j and Ai,j,k such that

L∑
i=2

ni∑
j=1

A′i,j
(1− c1x)(1− cix)j

=
L∑
i=2

ni∑
j=1

A′′i,j
1− c1x

+
L∑
i=2

ni∑
j=1

j∑
k=1

Ai,j,k
(1− cix)k

Let
∑L

i=2

∑n1

j=1A
′′
i,j = A1,1. Then

L∑
i=2

n1∑
j=1

A′′i,j
1− c1x

=
A1,1

1− c1x
.
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For 2 ≤ i ≤ L and 1 ≤ j ≤ ni let Ai,j =
∑ni

k=1

∑ni

j=k Ai,j,k. Then

L∑
i=2

ni∑
j=1

j∑
k=1

Ai,j,k
(1− cix)k

=
L∑
i=2

ni∑
k=1

ni∑
j=k

Ai,j,k
(1− cix)k

=
L∑
i=2

ni∑
k=1

Ai,j
(1− cix)k

Hence our original product,
∏L

i=1
1

(1−cix)ni
, is

n1∑
j=2

A1,j

(1− c1x)j
+

A1,1

1− c1x
+

L∑
i=2

ni∑
k=1

Ai,j
(1− cix)k

=
L∑
i=1

ni∑
j=1

Ai,j
(1− cix)j

.

The usual theorem about partial fraction decomposition that is used in calculus starts with a

polynomial over the reals and factors it into linear and quadratic polynomials over the reals. This

version can easily be derived from Lemma 2.1

3 Non Calculus Proof of the Taylor Series for 1
(1−x)n

We obtain the Taylor expansion for 1
(1−x)L via combinatorics, not calculus.

Def 3.1

1. If n ∈ N then [n] is the set {1, . . . , n}.

2. An L-set of X is a subset of X of size L.

Lemma 3.2 For all n, L,
∑n

i=0

(
L−1+i
L−1

)
=
(
L+n
L

)
.

Proof: The term L-set will mean L-set of {1, . . . , L+ n} throughout.

We solve the following problem two ways: How many L-sets are there? Clearly the answer is(
L+n
L

)
.

Another way to solve this problem is to partition the L-sets based on the set’s largest element.

The largest element in any L-set is of the form L+ i where 0 ≤ i ≤ n. The number of L-sets with
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largest element L+ i is the number of (L− 1)-sets of {1, . . . , L− 1 + i}, namely
(
L−1+i
L−1

)
. Hence

the number of L-sets is
∑n

i=0

(
L−1+i
L−1

)
. This yields our result.

Lemma 3.3 For all L, 1
(1−x)L =

∑∞
n=0

(
L−1+n
L−1

)
xn.

Proof: We prove this by induction on L.

Base Case: L = 1. This is the well known geometric series 1
1−x =

∑∞
i=0 x

i.

Induction Hypothesis (IH): Assume the lemma is true for L− 1:

1

(1− x)L−1
=
∞∑
i=0

(
L− 2 + i

L− 2

)
xi

From the IH we obtain:

1

(1− x)L
=

1

(1− x)L−1
1

1− x
=

( ∞∑
i=0

(
L− 2 + i

L− 2

)
xi
)( ∞∑

j=0

xj
)

=
∞∑
i=0

∞∑
j=0

(
L− 2 + i

L− 2

)
xi+j =

∞∑
n=0

( n∑
i=0

(
L− 2 + i

L− 2

))
xn =

∞∑
n=0

(
L− 1 + n

L− 1

)
xn

This last equality used Lemma 3.2

4 Lemma about Roots of Unity

Lemma 4.1 If 0 ≤ x ≤ y ≤ 2π, cos(x) = cos(y), and sin(x) = sin(y) then x = y.

Proof: Since cos(x) = cos(y) either x = y or x + y = 2π. Since sin(x) = sin(y) either x = y

or x+ y ∈ {π, 3π}. Since 2π /∈ {π, 3π}, x = y.
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Lemma 4.2 Let a1 < · · · < aL ∈ N be relatively prime. Let g(x) = (xa1 − 1) · · · (xaL − 1). When

g(x) is factored completely into linear terms the factor (x− 1) occurs L times and all of the other

linear factors occur ≤ L− 1 times.

Proof: Clearly x − 1 occurs in all L of the polynomials (xai − 1) and hence occurs L times.

Each polynomial (xai−1) has distinct roots, so if another linear term occurs L times it has to occur

as a factor in each (xai − 1).

Assume that there exists ω 6= 1 such that (x − ω) divides each (xai − 1). We will show that

a1, . . . , aL have a nontrivial common factor and hence are not relatively prime. For all 1 ≤ i ≤ L

let ωi be the primitive ith root of unity. For all i, since x − ω divides xa1 − 1, ω is an aith root of

unity. In particular there exists 1 ≤ A ≤ a1 − 1 such that ωA1 = ω. Since A ≤ a1 − 1, a1 does not

divide A. Hence there is some prime power pc that divides a1 but does not divide A.

Let 2 ≤ i ≤ L. We show that p divides ai. Since ω is an aith root of unity there exists

1 ≤ B ≤ ai − 1 such that ωA1 = ω = ωBi . Hence

ωA1 = ωBi

cos 2πA
a1

+
√
−1 sin 2πA

a1
= cos 2πB

ai
+
√
−1 sin 2πB

ai

Hence
cos 2πA

a1
= cos 2πB

ai

sin 2πA
a1

= sin 2πB
ai

By Lemma 4.1 A/a1 = B/ai. Therefore Aai = Ba1, hence a1 must divide Aai. Since pc

divides a1 but not A, p must divide ai.

5 Schur’s Theorem

Theorem 5.1 Let a1 < · · · < aL ∈ N be relatively prime. Think of them as coin denominations.

1. Let M = LCM(a1, . . . , aL). Let 0 ≤ r ≤M − 1. There is a polynomial hr of degree L− 1
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such that if n ≡ r (mod M) then hr(n) is the number of ways to make change of n cents.

2. For all 0 ≤ r ≤ M − 1 the coefficient of of nL−1 in hr is 1
(L−1)!a1a2···aL

. Note that the

coefficient does not depend on r.

3. (This follows from Parts 1 and 2.) The number of ways to make change of n cents is

nL−1

(L− 1)!a1a2 · · · aL
+O(nL−2).

Proof:

We get a formula for the number of ways to make change of n cents and then prove Parts 1 and

2. Part 3 follows from Parts 1 and 2.

The number of ways to make change of n cents is the coefficient of xn in

f(x) = (1 + xa1 + x2a1 + · · · )(1 + xa2 + x2a2 + · · · ) · · · (1 + xaL + x2aL + · · · )

= 1
(1−xa1 )(1−xa2 )···(1−xaL )

For all 1 ≤ i ≤ L, 1 ≤ j ≤ ai− 1, let αi,j be the jth aith roots of unity (we think of 1 as being

the 0th root of unity). Formally αi,j = cos 2πj
ai

+
√
−1 sin 2πj

ai
. Let ni,j be the number of times the

factor (1 − αi,jx) appears in (1 − xa1)(1 − xa2) · · · (1 − xaL). By Lemma 4.2 ni,j ≤ L − 1. We

rewrite f(x) and use Lemma 2.1 and 3.3 to obtain

f(x) =
1

(1− x)L
∏L

i=1

∏ai−1
j=1 (1− αi,jx)ni,j

=
L∑
i=1

Ai
(1− x)i

+
L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

Ai,j,k
(1− αi,jx)k

.

=
L∑
i=1

∞∑
n=0

Ai

(
i− 1 + n

i− 1

)
xn +

L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

∞∑
n=0

Ai,j,k

(
k − 1 + n

k − 1

)
αni,jx

n.
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=
∞∑
n=0

( L∑
i=1

Ai

(
i− 1 + n

i− 1

)
+

L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

Ai,j,k

(
k − 1 + n

k − 1

)
αni,j

)
xn.

1) Since αi,j is an ith root of unity, αni,j = αn mod M
i,j . Hence if n ≡ r (mod M) then the coefficient

of xn in f(x), which is the answer we seek, is

hr(n) =
L∑
i=1

Ai

(
i− 1 + n

i− 1

)
+

L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

Ai,j,k

(
k − 1 + n

k − 1

)
αri,j

Clearly this is a polynomial in n of degree L− 1.

2) We need to find AL.

1

(1− xa1)(1− xa2) · · · (1− xaL)
=

L∑
i=1

Ai
(1− x)i

+
L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

Ai,j,k
(1− αi,jx)k

.

Multiply both sides by (1− x)L

(1− x)L

(1− xa1)(1− xa2) · · · (1− xaL)
= AL +

L−1∑
i=1

Ai(1− x)L−i +
L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

Ai,j,k(1− xL)
(1− αi,jx)k

.

The left hand side can be rewritten as

1

(1 + x+ x2 + · · ·+ xa1−1)(1 + x+ x2 + · · ·+ xa2−1) · · · (1 + x+ x2 + · · ·+ xaL−1)

As x approaches 1 (from the left) the LHS approaches 1
a1a2···aL

and the RHS approaches AL.

Hence AL = 1
a1a2···aL

. Therefore
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hr(n) =
(n+ 1)(n+ 2) · · · (n+ L− 1)

(L− 1)!a1a2 · · · aL
+
L−1∑
i=1

Ai

(
i− 1 + n

i− 1

)
+

L∑
i=1

ai−1∑
j=1

ni,j∑
k=1

Ai,j,k

(
k − 1 + n

k − 1

)
αri,j

Since all ni,j ≤ L− 1

hr(n) =
nL−1

(L− 1)!a1a2 · · · aL
+O(nL−2).

6 Acknowledgment

We would like to thank Daniel Smolyak, Larry Washington, Sam Zbarsky for proofreading and

discussion.

References

[1] H. Wilf. Generatingfunctionology. Academic Press, Waltham, MA, 1994.

10


