A Complete High School Proof of Schur's Theorem on Making Change of n cents

William Gasarch *
Univ. of MD at College Park

1 Introduction

Let $a_{1}, a_{2}, \ldots, a_{L}$ be coin denominations. Assume you have an unlimited number of each coin. How many ways can you make n cents with these coins? Schur's theorem gives the answer asymptotically and also yields the coefficient of the dominant term. We state it:

Theorem 1.1 Let $a_{1}<\cdots<a_{L} \in \mathrm{~N}$ be relatively prime. Think of them as coin denominations. As n goes to infinity the number of ways to make change of n cents is $\frac{n^{L-1}}{(L-1)!a_{1} a_{2} \cdots a_{L}}+O\left(n^{L-2}\right)$.

I volunteered to present a proof of Schur's theorem to high school students taking pre-calculus. I then realized that the proof of Schur's theorem I knew, from Wilf's wonderful book on generating functions [1], uses generating function, roots of unity, partial fractions, and the Taylor series for $\frac{1}{(1-x)^{L}}$.

The material on generating functions and roots of unity is such that I could prove and use just what was needed. Partial fractions could certainly be taught to high school students; however, I wanted to prove they worked, not show them a cook book way to decompose. I then realized that

[^0]I had never seen a proof that they worked; however, I doubt this would be hard to obtain. Getting a Taylor series without calculus for $\frac{1}{(1-x)^{L}}$ seemed like an interesting challenge.

I succeeded in my goals. We present a complete high school proof of Schur's theorem, essentially Wilf's proof, with the following features:

1. We prove the partial fractions decomposition that we need. The result is standard; however, our proof is short and makes our treatment self contained. We doubt our proof is new though we have not been able to find a reference.
2. We obtain the Taylor series of $\frac{1}{(1-x)^{L}}$ without calculus. We doubt our proof is new though we have not been able to find a reference.
3. We obtain that for all $1 \leq r \leq M-1$ where $M=\operatorname{LCM}\left(a_{1}, \ldots, a_{L}\right)$ there is a polynomial h_{r} of degree $L-1$ such that if $n \equiv r(\bmod M)$ then $h_{r}(n)$ is the number of ways to make change of n. We doubt the result is new though we have not been able to find a reference.

2 Induction Proof of Partial Fractions Decomposition

Lemma 2.1

1. For all $n \in \mathrm{~N}$, for all $c, d \in \mathrm{C}, c \neq d$, there exists A, A_{1}, \ldots, A_{n} such that

$$
\frac{1}{(1-c x)(1-d x)^{n}}=\frac{A}{1-c x}+\sum_{k=1}^{n} \frac{A_{k}}{(1-d x)^{k}} .
$$

2. For all $n_{1}, \ldots, n_{L} \in \mathrm{~N}$, for all $c_{1}, \ldots, c_{L} \in \mathrm{C}$, distinct complex numbers, there exists $A_{i, j}$ such that

$$
\prod_{i=1}^{L} \frac{1}{\left(1-c_{i} x\right)^{n_{i}}}=\sum_{i=1}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}}{\left(1-c_{i} x\right)^{j}} .
$$

Proof:

1) We prove this by induction on n.

Base Case: $n=1$. We need to solve for A, A_{1} in this equation:
$\frac{1}{1-c x} \frac{1}{1-d x}=\frac{A}{1-c x}+\frac{A_{1}}{1-d x}$.
$1=A(1-d x)+A_{1}(1-c x)$, so $1=\left(A+A_{1}\right)-\left(d A+c A_{1}\right) x$. Hence
$A+A_{1}=1$ and $d A+c A_{1}=0$. These can be easily solved to yield $A=\frac{c}{c-d}$ and $A_{1}=\frac{-d}{c-d}$.
Note that we are using $c \neq d$.
Induction Hypothesis (IH): We assume the lemma is true for $n-1$.
By the IH there exists $A^{\prime}, A_{2}, \ldots, A_{n}$ (we purposely make these off by one so that later they will be what we want) such that

$$
\frac{1}{(1-c x)(1-d x)^{n-1}}=\frac{A^{\prime}}{1-c x}+\sum_{k=1}^{n-1} \frac{A_{k+1}}{(1-d x)^{k}} .
$$

Hence

$$
\begin{aligned}
\frac{1}{(1-c x)(1-d x)^{n}} & =\frac{1}{1-d x}\left[\frac{A^{\prime}}{1-c x}+\sum_{k=1}^{n-1} \frac{A_{k+1}}{(1-d x)^{k}}\right]=\frac{A^{\prime}}{(1-c x)(1-d x)}+\sum_{k=2}^{n} \frac{A_{k}}{(1-d x)^{k}} \\
& =\frac{A}{1-c x}+\frac{A_{1}}{1-d x}+\sum_{k=2}^{n} \frac{A_{k}}{(1-d x)^{k}} \quad(\text { by the } n=1 \text { case }) \\
& =\frac{A}{1-c x}+\sum_{k=1}^{n} \frac{A_{k}}{(1-d x)^{j}}
\end{aligned}
$$

2) We prove this by induction on $\sum_{i=1}^{L} n_{i}$.

Base Case: $\sum_{i=1}^{L} n_{i}=1$. This only happens when $L=1$ and $n_{1}=1$ which is trivial.
Induction Hypothesis (IH): Assume the lemma is true for all $\left(n_{1}^{\prime}, \ldots, n_{L}^{\prime}\right)$ with $\sum_{i=1}^{L} n_{i}^{\prime}<$ $\sum_{i=1}^{L} n_{i}$.

Clearly

$$
\prod_{i=1}^{L} \frac{1}{\left(1-c_{i} x\right)^{n_{i}}}=\frac{1}{1-c_{1} x}\left[\frac{1}{\left(1-c_{1} x\right)^{n_{1}-1}} \prod_{i=2}^{L} \frac{1}{\left(1-c_{i}\right)^{n_{i}}}\right]
$$

We rewrite what is in the square brackets as

$$
\frac{1}{\left(1-c_{1} x\right)^{n_{1}-1}} \frac{1}{\left(1-c_{2}\right)^{n_{2}}} \frac{1}{\left(1-c_{3}\right)^{n_{3}}} \cdots \frac{1}{\left(1-c_{L}\right)^{n_{L}}}
$$

This is in the exact form of the lemma we are proving though note that the sum of the exponents is $\left(\sum_{i=1}^{L} n_{i}\right)-1<\sum_{i=1}^{L} n_{i}$. Hence by the IH there exists $A_{1, j+1}$ (we purposely make these off by one so that later they will be what we want) and $A_{i, j}^{\prime}$ such that the expression in square brackets is the following (we seperate out the first term for notationaly convinence).

$$
\sum_{j=1}^{n_{1}-1} \frac{A_{1, j+1}}{\left(1-c_{1} x\right)^{j}}+\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}^{\prime}}{\left(1-c_{i} x\right)^{j}}
$$

Hence our original product, $\prod_{i=1}^{L} \frac{1}{\left(1-c_{i} x\right)^{n_{i}}}$, is

$$
\frac{1}{1-c_{1} x}\left[\sum_{j=1}^{n_{1}-1} \frac{A_{1, j+1}}{\left(1-c_{1} x\right)^{j}}+\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}^{\prime}}{\left(1-c_{i} x\right)^{j}}\right]=\left[\sum_{j=1}^{n_{1}-1} \frac{A_{1, j+1}}{\left(1-c_{1} x\right)^{j+1}}+\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}^{\prime}}{\left(1-c_{i} x\right)^{j}}\right]
$$

We can re-index the first summation to get:

$$
=\sum_{j=2}^{n_{1}} \frac{A_{1, j}}{\left(1-c_{1} x\right)^{j}}+\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}^{\prime}}{\left(1-c_{1} x\right)\left(1-c_{i} x\right)^{j}}
$$

By Part 1 there exists constants $A_{i, j}^{\prime \prime}$ and $A_{i, j, k}$ such that

$$
\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}^{\prime}}{\left(1-c_{1} x\right)\left(1-c_{i} x\right)^{j}}=\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}^{\prime \prime}}{1-c_{1} x}+\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \sum_{k=1}^{j} \frac{A_{i, j, k}}{\left(1-c_{i} x\right)^{k}}
$$

Let $\sum_{i=2}^{L} \sum_{j=1}^{n_{1}} A_{i, j}^{\prime \prime}=A_{1,1}$. Then

$$
\sum_{i=2}^{L} \sum_{j=1}^{n_{1}} \frac{A_{i, j}^{\prime \prime}}{1-c_{1} x}=\frac{A_{1,1}}{1-c_{1} x} .
$$

For $2 \leq i \leq L$ and $1 \leq j \leq n_{i}$ let $A_{i, j}=\sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} A_{i, j, k}$. Then

$$
\sum_{i=2}^{L} \sum_{j=1}^{n_{i}} \sum_{k=1}^{j} \frac{A_{i, j, k}}{\left(1-c_{i} x\right)^{k}}=\sum_{i=2}^{L} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \frac{A_{i, j, k}}{\left(1-c_{i} x\right)^{k}}=\sum_{i=2}^{L} \sum_{k=1}^{n_{i}} \frac{A_{i, j}}{\left(1-c_{i} x\right)^{k}}
$$

Hence our original product, $\prod_{i=1}^{L} \frac{1}{\left(1-c_{i} x\right)^{n_{i}}}$, is

$$
\sum_{j=2}^{n_{1}} \frac{A_{1, j}}{\left(1-c_{1} x\right)^{j}}+\frac{A_{1,1}}{1-c_{1} x}+\sum_{i=2}^{L} \sum_{k=1}^{n_{i}} \frac{A_{i, j}}{\left(1-c_{i} x\right)^{k}}=\sum_{i=1}^{L} \sum_{j=1}^{n_{i}} \frac{A_{i, j}}{\left(1-c_{i} x\right)^{j}} .
$$

The usual theorem about partial fraction decomposition that is used in calculus starts with a polynomial over the reals and factors it into linear and quadratic polynomials over the reals. This version can easily be derived from Lemma 2.1

3 Non Calculus Proof of the Taylor Series for $\frac{1}{(1-x)^{n}}$

We obtain the Taylor expansion for $\frac{1}{(1-x)^{L}}$ via combinatorics, not calculus.

Def 3.1

1. If $n \in \mathbf{N}$ then $[n]$ is the set $\{1, \ldots, n\}$.
2. An L-set of X is a subset of X of size L.

Lemma 3.2 For all $n, L, \sum_{i=0}^{n}\binom{L-1+i}{L-1}=\binom{L+n}{L}$.
Proof: The term L-set will mean L-set of $\{1, \ldots, L+n\}$ throughout.
We solve the following problem two ways: How many L-sets are there? Clearly the answer is $\binom{L+n}{L}$.

Another way to solve this problem is to partition the L-sets based on the set's largest element. The largest element in any L-set is of the form $L+i$ where $0 \leq i \leq n$. The number of L-sets with
largest element $L+i$ is the number of $(L-1)$-sets of $\{1, \ldots, L-1+i\}$, namely $\binom{L-1+i}{L-1}$. Hence the number of L-sets is $\sum_{i=0}^{n}\binom{L-1+i}{L-1}$. This yields our result.

Lemma 3.3 For all $L, \frac{1}{(1-x)^{L}}=\sum_{n=0}^{\infty}\binom{L-1+n}{L-1} x^{n}$.
Proof: We prove this by induction on L.
Base Case: $L=1$. This is the well known geometric series $\frac{1}{1-x}=\sum_{i=0}^{\infty} x^{i}$.
Induction Hypothesis (IH): Assume the lemma is true for $L-1$:

$$
\frac{1}{(1-x)^{L-1}}=\sum_{i=0}^{\infty}\binom{L-2+i}{L-2} x^{i}
$$

From the IH we obtain:

$$
\begin{gathered}
\frac{1}{(1-x)^{L}}=\frac{1}{(1-x)^{L-1}} \frac{1}{1-x}=\left(\sum_{i=0}^{\infty}\binom{L-2+i}{L-2} x^{i}\right)\left(\sum_{j=0}^{\infty} x^{j}\right) \\
=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\binom{L-2+i}{L-2} x^{i+j}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\binom{L-2+i}{L-2}\right) x^{n}=\sum_{n=0}^{\infty}\binom{L-1+n}{L-1} x^{n}
\end{gathered}
$$

This last equality used Lemma 3.2

4 Lemma about Roots of Unity

Lemma 4.1 If $0 \leq x \leq y \leq 2 \pi, \cos (x)=\cos (y)$, and $\sin (x)=\sin (y)$ then $x=y$.

Proof: \quad Since $\cos (x)=\cos (y)$ either $x=y$ or $x+y=2 \pi$. Since $\sin (x)=\sin (y)$ either $x=y$ or $x+y \in\{\pi, 3 \pi\}$. Since $2 \pi \notin\{\pi, 3 \pi\}, x=y$.

Lemma 4.2 Let $a_{1}<\cdots<a_{L} \in \mathrm{~N}$ be relatively prime. Let $g(x)=\left(x^{a_{1}}-1\right) \cdots\left(x^{a_{L}}-1\right)$. When $g(x)$ is factored completely into linear terms the factor $(x-1)$ occurs L times and all of the other linear factors occur $\leq L-1$ times.

Proof: Clearly $x-1$ occurs in all L of the polynomials $\left(x^{a_{i}}-1\right)$ and hence occurs L times. Each polynomial $\left(x^{a_{i}}-1\right)$ has distinct roots, so if another linear term occurs L times it has to occur as a factor in each $\left(x^{a_{i}}-1\right)$.

Assume that there exists $\omega \neq 1$ such that $(x-\omega)$ divides each $\left(x^{a_{i}}-1\right)$. We will show that a_{1}, \ldots, a_{L} have a nontrivial common factor and hence are not relatively prime. For all $1 \leq i \leq L$ let ω_{i} be the primitive i th root of unity. For all i, since $x-\omega$ divides $x^{a_{1}}-1, \omega$ is an a_{i} th root of unity. In particular there exists $1 \leq A \leq a_{1}-1$ such that $\omega_{1}^{A}=\omega$. Since $A \leq a_{1}-1, a_{1}$ does not divide A. Hence there is some prime power p^{c} that divides a_{1} but does not divide A.

Let $2 \leq i \leq L$. We show that p divides a_{i}. Since ω is an a_{i} th root of unity there exists $1 \leq B \leq a_{i}-1$ such that $\omega_{1}^{A}=\omega=\omega_{i}^{B}$. Hence

$$
\begin{gathered}
\omega_{1}^{A}=\omega_{i}^{B} \\
\cos \frac{2 \pi A}{a_{1}}+\sqrt{-1} \sin \frac{2 \pi A}{a_{1}}=\cos \frac{2 \pi B}{a_{i}}+\sqrt{-1} \sin \frac{2 \pi B}{a_{i}}
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \cos \frac{2 \pi A}{a_{1}}=\cos \frac{2 \pi B}{a_{i}} \\
& \sin \frac{2 \pi A}{a_{1}}=\sin \frac{2 \pi B}{a_{i}}
\end{aligned}
$$

By Lemma 4.1 $A / a_{1}=B / a_{i}$. Therefore $A a_{i}=B a_{1}$, hence a_{1} must divide $A a_{i}$. Since p^{c} divides a_{1} but not A, p must divide a_{i}.

5 Schur's Theorem

Theorem 5.1 Let $a_{1}<\cdots<a_{L} \in \mathrm{~N}$ be relatively prime. Think of them as coin denominations.

1. Let $M=\operatorname{LCM}\left(a_{1}, \ldots, a_{L}\right)$. Let $0 \leq r \leq M-1$. There is a polynomial h_{r} of degree $L-1$
such that if $n \equiv r(\bmod M)$ then $h_{r}(n)$ is the number of ways to make change of n cents.
2. For all $0 \leq r \leq M-1$ the coefficient of of n^{L-1} in h_{r} is $\frac{1}{(L-1)!a_{1} a_{2} \cdots a_{L}}$. Note that the coefficient does not depend on r.
3. (This follows from Parts 1 and 2.) The number of ways to make change of n cents is

$$
\frac{n^{L-1}}{(L-1)!a_{1} a_{2} \cdots a_{L}}+O\left(n^{L-2}\right) .
$$

Proof:

We get a formula for the number of ways to make change of n cents and then prove Parts 1 and 2. Part 3 follows from Parts 1 and 2.

The number of ways to make change of n cents is the coefficient of x^{n} in

$$
\begin{aligned}
f(x) & =\left(1+x^{a_{1}}+x^{2 a_{1}}+\cdots\right)\left(1+x^{a_{2}}+x^{2 a_{2}}+\cdots\right) \cdots\left(1+x^{a_{L}}+x^{2 a_{L}}+\cdots\right) \\
& =\frac{1}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right) \cdots\left(1-x^{a_{L}}\right)}
\end{aligned}
$$

For all $1 \leq i \leq L, 1 \leq j \leq a_{i}-1$, let $\alpha_{i, j}$ be the j th a_{i} th roots of unity (we think of 1 as being the 0 th root of unity). Formally $\alpha_{i, j}=\cos \frac{2 \pi j}{a_{i}}+\sqrt{-1} \sin \frac{2 \pi j}{a_{i}}$. Let $n_{i, j}$ be the number of times the factor $\left(1-\alpha_{i, j} x\right)$ appears in $\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right) \cdots\left(1-x^{a_{L}}\right)$. By Lemma $4.2 n_{i, j} \leq L-1$. We rewrite $f(x)$ and use Lemma 2.1 and 3.3 to obtain

$$
\begin{aligned}
f(x)= & \frac{1}{(1-x)^{L} \prod_{i=1}^{L} \prod_{j=1}^{a_{i}-1}\left(1-\alpha_{i, j} x\right)^{n_{i, j}}}=\sum_{i=1}^{L} \frac{A_{i}}{(1-x)^{i}}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} \frac{A_{i, j, k}}{\left(1-\alpha_{i, j} x\right)^{k}} . \\
& =\sum_{i=1}^{L} \sum_{n=0}^{\infty} A_{i}\binom{i-1+n}{i-1} x^{n}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} \sum_{n=0}^{\infty} A_{i, j, k}\binom{k-1+n}{k-1} \alpha_{i, j}^{n} x^{n} .
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty}\left(\sum_{i=1}^{L} A_{i}\binom{i-1+n}{i-1}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} A_{i, j, k}\binom{k-1+n}{k-1} \alpha_{i, j}^{n}\right) x^{n} .
$$

1) Since $\alpha_{i, j}$ is an i th root of unity, $\alpha_{i, j}^{n}=\alpha_{i, j}^{n} \bmod M$. Hence if $n \equiv r(\bmod M)$ then the coefficient of x^{n} in $f(x)$, which is the answer we seek, is

$$
h_{r}(n)=\sum_{i=1}^{L} A_{i}\binom{i-1+n}{i-1}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} A_{i, j, k}\binom{k-1+n}{k-1} \alpha_{i, j}^{r}
$$

Clearly this is a polynomial in n of degree $L-1$.
2) We need to find A_{L}.

$$
\frac{1}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right) \cdots\left(1-x^{a_{L}}\right)}=\sum_{i=1}^{L} \frac{A_{i}}{(1-x)^{i}}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} \frac{A_{i, j, k}}{\left(1-\alpha_{i, j} x\right)^{k}} .
$$

Multiply both sides by $(1-x)^{L}$

$$
\frac{(1-x)^{L}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right) \cdots\left(1-x^{a_{L}}\right)}=A_{L}+\sum_{i=1}^{L-1} A_{i}(1-x)^{L-i}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} \frac{A_{i, j, k}\left(1-x^{L}\right)}{\left(1-\alpha_{i, j} x\right)^{k}} .
$$

The left hand side can be rewritten as

$$
\frac{1}{\left(1+x+x^{2}+\cdots+x^{a_{1}-1}\right)\left(1+x+x^{2}+\cdots+x^{a_{2}-1}\right) \cdots\left(1+x+x^{2}+\cdots+x^{a_{L}-1}\right)}
$$

As x approaches 1 (from the left) the LHS approaches $\frac{1}{a_{1} a_{2} \cdots a_{L}}$ and the RHS approaches A_{L}. Hence $A_{L}=\frac{1}{a_{1} a_{2} \cdots a_{L}}$. Therefore

$$
h_{r}(n)=\frac{(n+1)(n+2) \cdots(n+L-1)}{(L-1)!a_{1} a_{2} \cdots a_{L}}+\sum_{i=1}^{L-1} A_{i}\binom{i-1+n}{i-1}+\sum_{i=1}^{L} \sum_{j=1}^{a_{i}-1} \sum_{k=1}^{n_{i, j}} A_{i, j, k}\binom{k-1+n}{k-1} \alpha_{i, j}^{r}
$$

Since all $n_{i, j} \leq L-1$

$$
h_{r}(n)=\frac{n^{L-1}}{(L-1)!a_{1} a_{2} \cdots a_{L}}+O\left(n^{L-2}\right)
$$

6 Acknowledgment

We would like to thank Daniel Smolyak, Larry Washington, Sam Zbarsky for proofreading and discussion.

References

[1] H. Wilf. Generatingfunctionology. Academic Press, Waltham, MA, 1994.

[^0]: *University of Maryland, College Park, MD 20742, gasarch@cs.umd.edu

