1 The Background and the Problem

I am sure everything in this writeup is known. When I posted the question on my blog someone gave the answer below, though without proof.

Consider the following language:
1. There are first order variables that range over elements of the domain.
2. There is a symbol + and it obeys the usual axioms- commutative and associative.
3. We have all of the logical symbols: ∧, ∨, ¬, ∀, ∃. The ∀ and ∃ range over the domain.

We can define terms, formulas, and statements.

Definition 1.1 A term is any expression of the form \(x_1 + \cdots + x_n \) where the \(x_i \) are variables.

Definition 1.2 A formula is defined as follows.
1. If \(t_1 \) and \(t_2 \) are terms then \((t_1 = t_2) \) is a formula.
2. If \(f_1 \) and \(f_2 \) are formulas then \((f_1 \lor f_2), (f_1 \land f_2) \) and \(\neg f_1 \) are formulas.
3. If \(f(x) \) is a formula with free variable \(x \) then \((\exists x)[f(x)] \) and \((\forall x)[f(x)] \) are formulas.

Definition 1.3 A sentence is a formula without free variables.

We give a statement in the second order language of + that is true in \((R, +)\) but false in \((Q, +)\).

We first give it in English.

There exists sets \(A, B \) such that both \((A, +)\) and \((B, +)\) are groups but \(A \cap B = \{0\} \).

We now give this as statement in second order +. We need some subformulas first.

1. \(NT(A) \) be the formula

\[
(\exists x)(\exists y)[x \neq y \land x \in A \land y \in A].
\]

This says that \(A \) has at least two distinct elements in it.

2. Let \(Z(x) \) be the formula

\[
(\forall y)[x + y = y].
\]

This says that \(x = 0 \). Note that \((\exists x)[Z(x)]\) is true in both \(R \) and \(Q \) and in both cases the \(x \) is 0.
3. Let $ZI(A, B)$ be the formula

$$(\forall x)((x \in A \land x \in B) \implies Z(x)).$$

This says that the only element in $A \cap B$ is 0.

4. Let $CL(A)$ be the formula

$$(\forall x)(\forall y)((x \in A \land y \in A) \implies x + y \in A].$$

This says that A is closed under addition.

5. Let $INV(A)$ be the formula

$$(\forall x)(\exists y)(x \in A \implies Z(x + y])$$

This says that A is closed under additive inverses.

6. Let $GR(A)$ be the formula

$$CL(A) \land INV(A) \land NT(A).$$

This says that A is a group with at least two elements.

Theorem 1.4 Let ψ be the following sentence in the second order language of $+$.

$$\psi = (\exists A)(\exists B)[GR(A) \land GR(B) \land ZI(A, B)].$$

Then

1. $(\mathbb{R}, +) \models \phi,$

2. $(\mathbb{Q}, +) \models \neg \phi.$

Proof:

We first show that the statement is true in \mathbb{R}.

Let

$$A = \{q\pi \mid q \in \mathbb{Q}\}.$$

$$B = \mathbb{Q}.$$

Clearly both A and B are groups with at least two elements in them. One can easily show that if $x \in A \cap B$ then $x = 0$ (else $\pi \in \mathbb{Q}$).

We now show that the statement is false in \mathbb{Q}. Assume, by way of contradiction, that the statement is true in \mathbb{Q}. Since A and B must have at least two elements, they each must have at least one
nonzero element. Since A and B are closed under additive inverses they must each have a positive element.

Let \(\frac{p_1}{q_1} \in A \cap \mathbb{Q}^+ \) and \(\frac{p_2}{q_2} \in B \cap \mathbb{Q}^+ \). Since A is closed under addition, for all \(n_1 \in \mathbb{N} \), \(\frac{n_1 p_1}{q_1} \in A \). Since B is closed under addition, for all \(n_2 \in \mathbb{N} \), \(\frac{n_2 p_2}{q_2} \in B \). Let \(n_1 = q_1 p_2 \) and \(n_2 = q_2 p_1 \). This yields that \(p_1 p_2 \in A \) and \(p_1 p_2 \in B \). Hence there is a nonzero element in $A \cap B$. This is a contradiction.

Note that we have a statement of the form

\[(\exists A)(\exists B) \text{ first order stuff } \]

that is true of \mathbb{R} but not of \mathbb{Q}. Is there a statement of the form \((\exists A)[(\exists A) \text{ first order stuff }] \) that is true of \mathbb{R} but not of \mathbb{Q}. YES- we can state that there exists two groups that overlap only at 0 with just one second order quantifier.

Intuitively A will be the union of the two groups. We will have \(x, y \in A \) such that \(x + y \notin A \) and then use

\[A_x = \{ c \in A : x + c \in A \} \]

and

\[A_y = \{ c \in A : y + c \in A \} \]

as our two subgroups.

We leave it to the reader to work out the exact sentence of the form \((\exists A)[\text{ first order stuff }] \) that suffices.

2 Acknowledgments

I would like to thank Chris Lastowski and James Pinkerton for helpful discussion.