When is a set determined by its pairwise sums?

(Exposition)

William Gasarch *
Univ. of MD at College Park

1 Introduction

Everything in this exposition was told to me by Noga Alon; however, he does not claim to be the originator of it nor does he know who is. Selfridge and Straus [1] proved the main result originally with a different proof.

Def 1.1 If A is a set then

$$
\begin{aligned}
A+A & =\{x+y: x, y \in A\} \\
A+{ }^{*} A & =\{x+y: x, y \in A, x \neq y\}
\end{aligned}
$$

Let $A=\{x, y\} \in\binom{\mathrm{N}}{2}$. Does $A+^{*} A$ determine A ? NO- if $x+y=5$ then $\{x, y\}$ could be either $\{1,4\}$ or $\{2,3\}$.

Let $A=\{x, y, z\} \in\binom{\mathrm{N}}{3}$. Does $A+{ }^{*} A$ determine A ? YES:
First determine $S=((x+y)+(x+z)+(y+z)) / 2=x+y+z$.
Then determine
$x=S-(y+z)$

[^0]$y=S-(x+z)$
$z=S-(x+y)$.
Let $A=\{x, y, z, w\} \in\binom{\mathrm{N}}{4}$. Does $A+^{*} A$ determine A ? We will see soon.

Def 1.2 A number n is nice if, for all $A \in\binom{\mathbb{N}}{n}, A$ is completely determined by $A+{ }^{*} A$.

Which n are nice? Selfridge and Straus showed that n is nice iff n is not a power of two. The proof uses Generating Functions. I do not know of another way to do it.

2 The Main Theorem

Theorem $2.1 n$ is nice iff n is not a power of two.

Proof:

PART I:

We show that if n IS a power of 2 then there exists $A, B \in\binom{N}{n}$ such that $A+{ }^{*} A=B+{ }^{*} B$.
The proof is by induction on n (actually on $\lg n$).
If $n=2^{1}$ then take $A=\{1,4\}$ and $B=\{2,3\}$.
Assume that we have sets $A^{\prime}, B^{\prime} \in\binom{\left[2^{m}\right]}{2}$ such that $A^{\prime}+{ }^{*} A^{\prime}=B^{\prime}+^{*} B^{\prime}$. Let

$$
\begin{aligned}
& x=\max \left\{A^{\prime}, B^{\prime}\right\}+1 \\
& A=A^{\prime} \cup(B+x) \\
& B=B^{\prime} \cup(A+x)
\end{aligned}
$$

We leave it to the reader to show that $A+{ }^{*} A=B+{ }^{*} B$.

PART II:

We show that if there exists $A, B \in\binom{\mathrm{~N}}{n}$ with $A+{ }^{*} A=B+{ }^{*} B$ then n is a power of 2 . Let

$$
\begin{aligned}
& A(x)=\sum_{i \in A} x^{i} \\
& B(x)=\sum_{i \in B} x^{i}
\end{aligned}
$$

Clearly

$$
\begin{aligned}
& \sum_{i \in A^{*}+A} x^{i}=A(x)^{2}-A\left(x^{2}\right) \\
& \sum_{i \in B^{*}+B} x^{i}=B(x)^{2}-B\left(x^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
A(x)^{2}-A\left(x^{2}\right) & =B(x)^{2}-B\left(x^{2}\right) \\
(A(x)-B(x)(A(x)+B(x) & =A\left(x^{2}\right)-B\left(x^{2}\right) \text { MAIN EQUATION }
\end{aligned}
$$

Note that $A(1)-B(1)=n-n=0$. Hence there exists $m \geq 1$ and polynomial f such that $f(1) \neq 0$ and

$$
A(x)-B(x)=(x-1)^{m} f(x)
$$

Hence also note that

$$
A\left(x^{2}\right)-B\left(x^{2}\right)=\left(x^{2}-1\right)^{m} f\left(x^{2}\right)
$$

Using both of these in the MAIN EQUATION above yields

$$
\begin{aligned}
(x-1)^{m} f(x)(A(x)+B(x)) & =\left(x^{2}-1\right)^{m} f\left(x^{2}\right) \\
f(x)(A(x)+B(x)) & =(x+1)^{m} f\left(x^{2}\right)
\end{aligned}
$$

Plug in $x=1$ to obtain

$$
\begin{aligned}
f(1)(A(1)+B(1)) & =(1+1)^{m} f\left(1^{2}\right) \\
f(1) \times 2 n & =2^{m} f(1) \\
2 n & =2^{m}(\text { Can divide by } f(1) \text { since } f(1) \neq 0 .) \\
n & =2^{m-1}
\end{aligned}
$$

So we have that n is a power of 2 .
What did we use about the natural numbers in this proof? Not much - just that if p is a polynomial (so natural number exponents) and $p(1)=0$ then $p(x)=(x-1)^{m} h(x)$ where $h(1) \neq$ 0.

If instead of natural numbers we had real (complex) numbers we would need this to be true of the functions that are sums of terms of the form x^{r} where r is real (complex). There is a slight issue with the fact that (say) $x^{1 / 3}$ is not uniquely defined; however, we are confident this could be worked out and that the proof presented can be extended to the complex case.

References

[1] J. Selfridge and E. Straus. On the determination of numbers by their sums of a fixed order. Pacific Journal of Mathematics, 8(4):847-856, 1958. http://www.cs.umd.edu/~gasarch/ BLOGPAPERS/selfridgeorig.html.

[^0]: *University of Maryland, College Park, MD 20742, gasarch@cs.umd.edu

