ON THE DETERMINATION OF NUMBERS BY THEIR SUMS OF A FIXED ORDER

J. L. SELFRIDGE AND E. G. STRAUS

1. Introduction. We wish to treat the following problem (suggested by a problem of L. Moser [2]):

Let $\{x\} = \{x_1, \dots, x_n\}$ be a set of complex numbers (if one is interested in generality, one may consider them elements of an algebraically closed field of characteristic zero) and let $\{\sigma\} = \{\sigma_1, \dots, \sigma_{\binom{n}{s}}\}$ be the set of sums of s distinct elements of $\{x\}$. To what extent is $\{x\}$ determined by $\{\sigma\}$ and what sets can be $\{\sigma\}$ sets ?

In §2 we answer this question for s = 2. In §3 we treat the question for general s.

2. The case s = 2.

THEOREM 1. If $n \neq 2^k$ then the first n elementary symmetric functions of $\{\sigma\}$ can be prescribed arbitrarily and they determine $\{x\}$ uniquely.

Proof. Instead of the elementary symmetric functions we consider the sums of powers, setting

$$\sum_k = \sum\limits_{i=1}^{\binom{n}{2}} \sigma_i^k$$
 , $S_k = \sum\limits_{i=1}^n x_i^k$.

Then

$$(1) \qquad \sum_{k} = \sum_{i=1}^{\binom{n}{2}} \sigma_{i}^{k} = \sum_{1 \le i_{1} < i_{2} \le n} (x_{i_{1}} + x_{i_{2}})^{k} = \frac{1}{2} \sum_{\substack{i_{1}, i_{2} = 1 \\ i_{1} \ne i_{2}}}^{n} (x_{i_{1}} + x_{i_{2}})^{k}$$
$$= \frac{1}{2} \left(\sum_{i_{1}, i_{2} = 1}}^{n} (x_{i_{1}} + x_{i_{2}})^{k} - \sum_{i=1}^{n} (2x_{i})^{k} \right).$$

Expanding the binomials and collecting like powers we obtain

$$egin{aligned} \sum_k &= rac{1}{2} \Big(\sum\limits_{l=0}^k {k \choose l} S_l S_{k-l} - 2^k S_k \Big) \ &= rac{1}{2} (2n-2^k) S_k + rac{1}{2} \sum\limits_{l=1}^{k-1} {k \choose l} S_l S_{k-l} \end{aligned}$$

Thus, since the coefficient of S_k does not vanish, we can solve re-Received May 16, 1958. cursively for S_k in terms of \sum_1, \dots, \sum_k . In particular \sum_1, \dots, \sum_n determine S_1, \dots, S_n —and hence x_1, \dots, x_n —uniquely.

THEOREM 2. If $n = 2^k$ then $\sum_1, \dots, \sum_{k+1}$ must satisfy a certain algebraic equation and $\{\sigma\}$ will not always determine $\{x\}$.

Proof. Equation (1) for \sum_{k+1} yields

......

(2)
$$\sum_{k+1} = \frac{1}{2} \sum_{l=1}^{k} \binom{k+1}{l} S_{l} S_{k+1-l}$$

where S_1, \dots, S_k are expressed by (1) as polynomials in $\sum_{i}, \dots, \sum_{k}$.

To prove the second part of the theorem we proceed by induction.

Assume there are two different sets $\{x_1, \dots, x_{2^{k-1}}\}, \{y_1, \dots, y_{2^{k-1}}\}$ which have the same $\{\sigma\}$. Then consider the two sets

$$\{X\} = \{x_1 + a, \cdots, x_{2^{k-1}} + a, y_1, \cdots, y_{2^{k-1}}\}$$

 $\{Y\} = \{x_1, \cdots, x_{2^{k-1}}, y_1 + a, \cdots, y_{2^{k-1}} + a\}$

Clearly every sum of two elements of $\{X\}$ is either σ_i or $\sigma_i + 2a$ or $x_i + y_j + a$ and the same holds for the sum of two elements of $\{Y\}$.

The sets $\{X\}$, $\{Y\}$ will clearly be different for some a. To show that they are different for any $a \neq 0$, rearrange $\{x\}$ and $\{y\}$ so that $x_i = y_i$; $i = 1, 2, \dots, m$; $m \ge 0$, and $x_j \neq y_k$ for j, k > m. Then since $y_i + a = x_i + a$; $i = 1, 2, \dots, m$, the sets $\{X\}$ and $\{Y\}$ will be different if $\{x_j \mid j > m\}$ is different from $\{x_j + a \mid j > m\}$. But this is clear for any $a \neq 0$.

Since $\{\sigma\}$ clearly does not determine $\{x\}$ for n = 2 the proof is complete.

In a sense we have completed the answer of the question raised in the introduction for s = 2, however there remain some unanswered questions in case $n = 2^{k}$.

1. If $\{\sigma\}$ does not determine $\{x\}$ can there be more than two sets giving rise to same $\{\sigma\}$?

The answer is trivially "yes" for k = 0, 1 and is "no" for k = 2. It seems probable that the answer is "no" for all $k \ge 2$, however we can see no simple way of proving this.

2. For what values of n does there exist for all (real) $\{x\}$ a transformation $y_i = f_i(x_1, \dots, x_n)$, different from a permutation, so that $\{x\}$ and $\{y\}$ give rise to the same $\{\sigma\}$?

This question was suggested by T. S. Motzkin who gave the answer for s = 2.

LEMMA 1. If n > s and the above functions f_i exist then they are linear.

Proof. The sets $\{y\}$, $\{x\}$ are connected by a system of equations

$$y_{i_1} + \cdots + y_{i_s} = x_{j_1} + \cdots + x_{j_s}$$
.

Here the indices i_1, \dots, i_s are themselves functions of $\{x\}$. However, since they assume only a finite set of values, there exists a somewhere dense set of $\{x\}$ for which the indices are constant. We restrict our attention to that set. Let $\mathcal{A}_k^{(h)}y_i = f_i(x_1, \dots, x_k + h, \dots, x_n) - f_i(x_1, \dots, x_k, \dots, x_n)$ then we obtain

If we let u_i be the difference of $\mathcal{A}_k^{(h)}y_i$ for two different sets of values of $\{x\}$ then, since the right-hand side of (3) is independent of the choice of $\{x\}$, we obtain

$$(4) u_{i_1} + \cdots + u_{i_n} = 0.$$

Summation over all sets $\{i_1, \dots, i_s\} \subset \{1, \dots, n\}$ yields

$$(5) u_1+u_2+\cdots+u_n=0.$$

Now let t be the least positive integer so that $u_{i_1} + \cdots + u_{i_t} = 0$ for all $\{i_1, \dots, i_t\} \subset \{1, \dots, n\}$. Then $t \mid n$, for n = mt + r with 0 < r < t implies

$$u_{i_1} + \cdots + u_{i_r} = u_1 + u_2 + \cdots + u_n - \sum (u_{j_1} + \cdots + u_{j_l}) = 0$$

for all $\{i_1, \dots, i_r\} \subset \{1, \dots, n\}$, contrary to hypothesis.

Since $n > s \ge t$ we must have $n \ge 2t$. If t > 1 then

$$u_j = -(u_{i_1} + \cdots + u_{i_{t-1}})$$
 for every $j \notin \{i_1, \cdots, i_{t-1}\}$.

But there are more than t such j, say j_1, \dots, j_t . Hence

$$u_{j_1} + \cdots + u_{j_t} = -t(u_{i_1} + \cdots + u_{i_{t-1}}) = 0$$

or $u_{i_1} + \cdots + u_{i_{t-1}} = 0$ for every $\{i_1, \cdots, i_{t-1}\} \subset \{1, \cdots, n\}$ contrary to hypothesis. Thus t = 1 and

$$u_1=u_2=\cdots=u_n=0.$$

In other words $\Delta_k^{(h)} y_i = a_{ik}^{(h)} = \text{const.}$ Thus $\Delta_k^{(h_1)} y_i + \Lambda_k^{(h_2)} y_i = \Delta_k^{(h_1+h_2)} y_i$ so that $a_{ik}^{(h)} = a_{ik}h$ and

$$y_i = \sum_k a_{ik} x_k$$

THEOREM 3. If n > s and there exists a nontrivial transformation $y_i = f_i(x_1, \dots, x_n)$ which preserves $\{\sigma\}$ then n = 2s and the transformation is linear with matrix (up to permutations)

/	s-1	1	1
	8	S	8
	1	$- \frac{s-1}{}$	1
	8	8	8
	•	•	:
	1	1	-s-1
	8	8	$s \mid$

Proof. We know by Lemma 1 that the transformation must be linear. Let $y_i = \sum_k a_{ik} x_k$ then

(6)
$$y_{i_1} + \cdots + y_{i_s} = \sum_k (a_{i_1k} + \cdots + a_{i_sk}) x_k = x_{j_1} + \cdots + x_{j_s}$$

Hence, for fixed k, we have

(7)
$$a_{i_1k} + \dots + a_{i_sk} = \begin{cases} 0 \text{ for } \binom{n-1}{s} \text{ sets } \{i_1, \dots, i_s\} \\ 1 \text{ for } \binom{n-1}{s-1} \text{ sets } \{i_1, \dots, i_s\} \end{cases}$$

Since n > s two elements a_{ik} , a_{jk} in the same column satisfy

$$a_{ik} + a_{i_1k} + \cdots + a_{i_{s-1}k} = 0$$
 or 1; $a_{jk} + a_{i_1k} + \cdots + a_{i_{s-1}k} = 0$ or 1

where $\{i_1, \dots, i_{s-1}\} \subseteq \{1, \dots, n\} - \{i, j\}$. Hence

(8)
$$a_{ik} = a_{jk} \text{ or } a_{ik} = a_{jk} \pm 1.$$

Let the two values assumed by terms in the kth column be a_k and $1 + a_k$. From (6) we see that both values must occur. On the other hand if both a_k and $1 + a_k$ would occur more than once then $\max(a_{i_1k} + \cdots + a_{i_sk}) - \min(a_{i_1k} + \cdots + a_{i_sk}) \ge 2$ in contradiction to (7).

If $1 + a_k$ is assumed only once, say $a_{kk} = 1 + a_k$, then $0 = sa_k$ or

According to (6) we have

(10)
$$\sum_{k=1}^{n} (a_{i_1k} + \cdots + a_{i_sk}) = s \qquad \{i_1, \cdots, i_s\} \subset \{1, \cdots, n\}$$

We now repeat the argument that led to equation (8). Since n > s

we can write for any pair (i, j)

$$\sum_{k=1}^{n} (a_{i_{1}k} + \cdots + a_{i_{s-1}k}) + \sum_{k=1}^{n} a_{ik} = \sum_{k=1}^{n} (a_{i_{1}k} + \cdots + a_{i_{s-1}k}) + \sum_{k=1}^{n} a_{jk} = s$$

where $\{i_1, \dots, i_{s-1}\} \subset \{1, \dots, n\} - \{i, j\}$. Hence $\sum_{k=1}^n a_{ik} = \sum_{k=1}^n a_{jk}$ and according to (10), $s \sum_{k=1}^n a_{ik} = s$ so that

(11)
$$\sum_{k=1}^{n} a_{ik} = 1$$
 $i = 1, \dots, n$.

Combining (9) and (11) we obtain

(12)
$$a_{kj} = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

In other words, every column contains 0 and therefore $a_k = 0$ for $k = 1, \dots, n$. Thus the transformation is a permutation.

The only nontrivial case arises therefore if the value a_k occurs only once, say $a_{kk} = a_k$. Then $s - 1 + sa_k = 0$ and

(13)
$$a_{ik} = \begin{cases} -(s-1)/s & i=k \\ 1/s & i \neq k \end{cases}$$

Combining (11) and (13) we obtain

(14)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} = n = \frac{n(n-1)}{s} - n \frac{s-1}{s} = \frac{n}{s} (n-s)$$

and hence n = 2s. It is now clear from (11) that each row and column contains exactly one term -(s-1)/s and that the matrix (up to permutation) is the one given in the theorem.

3. General s. The procedure which led to Theorem 1 can be generalized. First we define, for every s, a function which is a polynomial in $n, 2^k, 3^k, \dots, s^k$. Let

(15)
$$f(n, k) = \frac{1}{s} \sum_{p} (-1)^{s-i} n^{i-1} \sum_{\substack{i=1\\j \\ i = 1}}^{r} a_i i^k$$

where the outer summation is over all permutations P on s marks, each permutation being composed of a_i *i*-cycles $i = 1, \dots, r$, and $t = a_1 + \dots + a_r$. Thus

(16)
$$f(n,k) = n^{s-1} - \frac{1}{2}(s-1)(2^k + s - 2)n^{s-2} + (s-1)(s-2) \left[\frac{1}{3}(3^k + s - 3) + \frac{1}{8}(s-3)(2^{k+1} + s - 4) \right] n^{s-3} - \dots + (-1)^s(s-1)! \left(\sum_{i=1}^{s-1} \frac{i^{k-1}}{s-i} \right) n^{s-2} - (-1)^s(s-1)! s^{k-1}.$$

THEOREM 4. For every s consider the system of Diophantine equations f(n, k) = 0 $k = 1, 2, \dots, n$. If n satisfies none of these then the first n elementary symmetric functions of $\{\sigma\}$ can be prescribed arbitrarily and they determine $\{x\}$ uniquely. If f(n, k) = 0, then the first k elementary symmetric functions of $\{\sigma\}$ must satisfy an algebraic equation.

Proof. In the notation of Theorem 1 we have

(17)
$$\sum_{k} = \sum_{1 \le i_1 < \cdots < i_s \le n} (x_{i_1} + x_{i_2} + \cdots + x_{i_s})^k = \frac{1}{s!} \sum_{D(s)} (x_{i_1} + \cdots + x_{i_s})^k$$

where by D(t) is meant summation over all sets of subscripts i_j at least t of which are distinct. Hence

$$s ! \sum_{k} = \sum_{D(s-1)} (x_{i_1} + \dots + x_{i_s})^k - {\binom{s}{2}} \sum_{D(s-1)} (2x_{i_1} + x_{i_2} + \dots + x_{i_{s-1}})^k$$

= $\sum_{D(s-2)} (x_{i_1} + \dots + x_{i_s})^k - {\binom{s}{2}} \sum_{D(s-2)} (2x_{i_1} + x_{i_2} + \dots + x_{i_{s-1}})^k$
+ $2{\binom{s}{3}} \sum_{D(s-2)} (3x_{i_1} + x_{i_2} \dots + x_{i_{s-2}})^k + 3{\binom{s}{4}} \sum_{D(s-2)} (2x_{i_1} + 2x_{i_2} + x_{i_3} + \dots + x_{i_{s-2}})^k$.

Continue cancelling terms until each summation is over D(1). The coefficient of $\sum (m_1 x_{i_1} + \cdots + m_i x_{i_t})^k$ is just $(-1)^{s-t}$ times the number of permutations on s marks which are conjugate to one having cycles of length m_1, \dots, m_t . This can be shown by a method quite similar to that used by Frobenius [1]. Hence we may write

(18)
$$s ! \sum_{k} = \sum_{P} (-1)^{s-t} \sum_{D(1)} (m_{1}x_{i_{1}} + \cdots + m_{i}x_{i_{t}})^{k}$$

where the outer summation is over all permutations P on s marks, and m_1, \dots, m_t are the lengths of the cycles of P. Now from the multinomial expansion we have

$$\sum_{D(1)} (m_1 x_{i_1} + \dots + m_i x_{i_i})^k = \sum_{\substack{l_1 + \dots + l_t = k \ l_t \ge 0}} \frac{k \; !}{l_1 \; ! \; \dots \; l_t \; !} \; m_1^{l_1} \cdots m_t^{l_t} S_{l_1} \cdots S_{l_t}$$

and the coefficient of S_k is $(m_1^k + \cdots + m_i^k)S_0^{k-1}$. Substituting in (18) and using (15), we obtain

(19)
$$(s-1)! \sum_{k} = f(n, k)S_{k} + \cdots$$

where the terms indicated by dots do not involve S_k . Thus, if $f(n, k) \neq 0$ for $k = 1, \dots, n$, then (19) can be solved recursively for S_1, \dots, S_n in terms of $\sum_{i_1}, \dots, \sum_{i_n}$.

On the other hand, if f(n, k) = 0 and $f(n, j) \neq 0$ for $j = 1, \dots, k-1$ then (17) expresses \sum_k as a polynomial in S_1, \dots, S_{k-1} which in turn are polynomials in $\sum_1, \dots, \sum_{k-1}$.

COROLLARY. If f(n, k) = 0 then n divides $(s - 1)! s^{n-1}$.

Thus $\{x\}$ will always be determined by $\{\sigma\}$ if s is less than the greatest prime factor of n.

EXAMPLE 1. s = 3. Here (18) becomes

$$6 \sum_{k} = \sum_{i_{1}, i_{2}, i_{3}=1}^{n} (x_{i_{1}} + x_{i_{2}} + x_{i_{3}})^{k} - 3 \sum_{i_{1}, i_{2}=1}^{n} (2x_{i_{1}} + x_{i_{2}})^{k} + 2 \sum_{i=1}^{n} (3x_{i})^{k}.$$

Expanding and collecting the coefficient of S_k , we get

$$f(n, k) = n^2 - (2^k + 1)n + 2 \cdot 3^{k-1}$$
.

This has obvious zeros at n = 1, k = 1; n = 2, k = 1, 2; n = 3, k = 2, 3. Also, as we know from Theorem 3, there are zeros at n = 6, k = 3, 5. For all these values of n the set $\{\sigma\}$ does not, in general, determine $\{x\}$ uniquely.

In addition we observe that f(n, k) = 0 has the solutions n = 27, k = 5, 9 and n = 486, k = 9. We do not know whether for these values of n the set $\{\sigma\}$ determines $\{x\}$ uniquely or not. However we do know that these are the only cases left in doubt.

THEOREM 5. If s = 3 then f(n, k) = 0 has solutions only for k = 1, 2, 3, 5, 9.

Proof. If f(n, k) = 0 then

(20)
$$n = 2^a \cdot 3^b \text{ with } a = 0 \text{ or } 1$$

Substituting (20) in f(n, k) = 0 we obtain

(21)
$$2^a \cdot 3^b + 2^{1-a} \cdot 3^{k-b-1} = 2^k + 1 .$$

Let n be the smaller zero of f(n, k) for a fixed k. Then the other zero is $n' = 2^{1-a} 3^{k-b-1}$ and $b \le k-b-1$. Hence

$$(22) 2^k \equiv -1 \pmod{3^b}$$

and since 2 is a primitive root of 3^{\flat} ,

(23)
$$k \equiv 3^{b-1} \pmod{2 \cdot 3^{b-1}}$$
.

But by (21) we have

$$3^{k-b-1} \le 2^k < 3^{2k/3}$$
 or $k < 3(b+1)$

so that

$$3^{b-1} \le k < 3(b+1)$$
 and hence $b < 4$.

If b = 3 then $k \equiv 9 \pmod{18}$ and k < 12 so k = 9. If b = 2 then $k \equiv 3 \pmod{6}$ and k < 9 so k = 3. If b = 1 then $k \equiv 1 \pmod{2}$ and k < 6 so k = 1, 3, 5. If b = 0 then k < 3.

EXAMPLE 2. s = 4. Here (18) becomes

Hence f(n, k) = 0 becomes

$$(25) \qquad n^3 - 3(2^{k-1}+1)n^2 + (2(3^k+1)+3\cdot 2^{k-1})n - 3\cdot 2^{2k-1} = 0.$$

We first note that this has solutions n = 1, k = 1; n = 2, k = 1, 2; n = 3, k = 1, 2, 3; n = 4, k = 2, 3, 4; n = 8, k = 3, 5, 7. For these values of n, the set $\{\sigma\}$ does not generally determine $\{x\}$. When n = 12, k = 6 is a solution, and this case is left in doubt.

THEOREM 6. If s = 4 then f(n, k) = 0 has solutions only for n = 1, 2, 3, 4, 8, 12.

Proof. Let $n = 3^a \cdot 2^b$ where a = 0 or 1. Now if $n \ge 3(2^{k-1} + 1)$ then $2 \cdot 3^k n > 3^{k+1} \cdot 2^k > 3 \cdot 2^{2k-1}$ and the left side of (25) is positive. Hence $n < 3(2^{k-1} + 1) < 2^{k+1}$ if k > 3 and so $b \le k$. (For $k \le 3$ we have listed all solutions of (25)). If k is even then $2(3^k + 1) \equiv 4 \pmod{8}$ and if $k \ge 4$ then 8n divides the other terms unless $b \le 2$. Similarly if k is odd then $2(3^k + 1) \equiv 8 \pmod{16}$ and if $k \ge 5$ then $b \le 3$. So $b \le 3$ in all cases. Now suppose a = 1. Then (25) becomes

$$2n-3\cdot 2^{2k-1}\equiv 0 \pmod{9}$$

or

$$2^{b+1} \equiv 2^{2k-1} \equiv 2 \pmod{3}$$

and b is even. Thus n must be 1, 2, 3, 4, 8, or 12. It is easy to check that none of these is a root for k > 7.

The corollary to Theorem 4 shows that exceptional pairs (s, n) are in a certain sense quite rare. Of course it is trivial to remark that if (s, n) is exceptional, then (n - s, n) is exceptional. Hence the remarks for s = 2 apply equally well to s = n - 2 and we obtain the exceptional pairs (6, 8), (14, 16), (30, 32), \cdots . But there are other cases with n > 2swhich our method leaves in doubt. THEOREM 7. We can construct arbitrarily large values of s such that f(n, k) = 0 for some n > 2s.

Proof. If n < s then $\sum_{k} = 0$ but S_1, \dots, S_n may be prescribed arbitrarily. Hence the coefficient of S_k in the expansion of \sum_k must be zero if $k \le n$. If n = s then $\sum_k = S_1^k$ but S_2, \dots, S_n may be prescribed arbitrarily. Hence n = s is a zero of f(n, k) for $k = 2, \dots, n$. Thus $f(n, 1) = \prod_{i=1}^{s-1} (n-i); f(n, 2) = \prod_{i=2}^{s} (n-i)$ and $f(n, 3) = (n-2s) \prod_{i=3}^{s} (n-i)$. If we divide f(n, 4) by its known factors then we obtain for s > 2

(26)
$$f(n, 4) = [n^2 - (6s - 1)n + 6s^2] \prod_{i=4}^{s} (n - i)$$

and the equation

$$(27) n^2 - (6s - 1)n + 6s^2 = 0$$

can be rewritten

$$(2n-6s+1)^2 - 3(2s-1)^2 = -2$$
 .

The Pell equation $u^2 - 3v^2 = -2$ has the general solution

$$u + v\sqrt{3} = \pm (1 + \sqrt{3})(2 + \sqrt{3})^r$$
 $r = 0, \pm 1, \cdots$

Since u and v are odd, n and s are integers. It is interesting that all positive solutions are obtained in the following simple way. When k = 4, (s, n) = (2, 8) is a solution. Hence (6, 8) is a solution and putting s = 6 in (27) yields (6, 27). Continuing in this way, we obtain (21, 27), (21, 98), (77, 98), (77, 363), \cdots .

In a similar manner we obtain for s > 3

(28)
$$f(n, 5) = [n^2 - (12s - 5)n + 12s^2](n - 2s) \prod_{i=5}^{s} (n - i)$$

and all integer roots of the quadratic factor may be obtained with the aid of the general solution of the Pell equation $u^2 - 6v^2 = 75$. Or we could start with (2, 16) and obtain successively (14, 147), (133, 1444), \cdots . Starting with (3, 27) yields (24, 256), (232, 2523), \cdots .

4. Concluding remarks. If we let $\{\tau\} = \{\tau_1, \dots, \tau_{n^s}\}$ be the set of sums of s not necessarily distinct elements of $\{x\}$, then $\{x\}$ is always determined by $\{\tau\}$. A method similar to the proof of Theorem 4 applies with the coefficient of S_k always positive. Alternatively, if the x_i are real, $x_1 \leq x_2 \leq \cdots \leq x_n$, we may determine them successively by a simple induction procedure.

Our method is applicable to the case of weighted sums $\sigma_{i_1 \cdots i_n} =$

 $\sum_{j=1}^{s} a_j x_{i_j}$. The resulting Diophantine equations will however be of a rather different nature. Thus, if the a_j are all distinct then the analogue to f(n, k) = 0 is

(29)
$$(a_1^k + a_2^k + \cdots + a_s^k)n^{s-1} = 0 .$$

In other words the uniqueness condition is independent of n and depends on the a_i alone. For example if $a_1 + a_2 + \cdots + a_s = 0$ then $\{\sigma\}$ remains unchanged if we add the same constant to all x. It is not as easy to see what happens if (29) holds for some k > 1.

References

1. G. Frobenius, Ueber die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad. Wiss. Berlin, (1900), 516-534.

2. L. Moser, Problem E 1248, Amer. Math. Monthly (1957), 507.

UNIVERSITY OF CALIFORNIA, LOS ANGELES