ON THE DETERMINATION OF NUMBERS BY THEIR SUMS OF A FIXED ORDER

J. L. Selfridge and E. G. Straus

1. Introduction. We wish to treat the following problem (suggested by a problem of L. Moser [2]) :

Let $\{x\}=\left\{x_{1}, \cdots, x_{n}\right\}$ be a set of complex numbers (if one is interested in generality, one may consider them elements of an algebraically closed field of characteristic zero) and let $\{\sigma\}=\left\{\sigma_{1}, \cdots, \sigma_{\binom{n}{s}}\right\}$ be the set of sums of s distinct elements of $\{x\}$. To what extent is $\{x\}$ determined by $\{\sigma\}$ and what sets can be $\{\sigma\}$ sets ?

In § 2 we answer this question for $s=2$. In § 3 we treat the question for general s.
2. The case $s=2$.

Theorem 1. If $n \neq 2^{k}$ then the first n elementary symmetric functions of $\{\sigma\}$ can be prescribed arbitrarily and they determine $\{x\}$ uniquely.

Proof. Instead of the elementary symmetric functions we consider the sums of powers, setting

$$
\sum_{k}=\sum_{i=1}^{\binom{n}{2}} \sigma_{i}^{k}, \quad S_{k}=\sum_{i=1}^{n} x_{i}^{k}
$$

Then

$$
\begin{align*}
\sum_{k} & =\sum_{i=1}^{\substack{n \\
2 \\
2}} \sigma_{i}^{k}=\sum_{1 \leq i_{1}<i_{2} \leq n}\left(x_{i_{1}}+x_{i_{2}}\right)^{k}=\frac{1}{2} \sum_{\substack{i_{1}, i_{i}=1 \\
i_{1} \neq i_{2}}}^{n}\left(x_{i_{1}}+x_{i_{2}}\right)^{k} \tag{1}\\
& =\frac{1}{2}\left(\sum_{i_{1}, i_{2}=1}^{n}\left(x_{i_{1}}+x_{i_{2}}\right)^{k}-\sum_{i=1}^{n}\left(2 x_{i}\right)^{k}\right) .
\end{align*}
$$

Expanding the binomials and collecting like powers we obtain

$$
\begin{aligned}
\sum_{k} & =\frac{1}{2}\left(\sum_{l=0}^{k}\binom{k}{l} S_{l} S_{k-l}-2^{k} S_{k}\right) \\
& =\frac{1}{2}\left(2 n-2^{k}\right) S_{k}+\frac{1}{2} \sum_{l=1}^{k-1}\binom{k}{l} S_{l} S_{k-l}
\end{aligned}
$$

Thus, since the coefficient of S_{k} does not vanish, we can solve re-
Received May 16, 1958.
cursively for S_{k} in terms of $\sum_{1}, \cdots, \sum_{k}$. In particular $\sum_{1}, \cdots, \sum_{n}$ determine S_{1}, \cdots, S_{n}-and hence x_{1}, \cdots, x_{n}-uniquely.

THEOREM 2. If $n=2^{k}$ then $\sum_{1}, \cdots, \sum_{k+1}$ must satisfy a certain algebraic equation and $\{\sigma\}$ will not always determine $\{x\}$.

Proof. Equation (1) for \sum_{k+1} yields

$$
\begin{equation*}
\sum_{k+1}=\frac{1}{2} \sum_{l=1}^{k}\binom{k+1}{l} S_{l} S_{k+1-l} \tag{2}
\end{equation*}
$$

where S_{1}, \cdots, S_{k} are expressed by (1) as polynomials in $\Sigma_{1}, \cdots, \Sigma_{k}$.
To prove the second part of the theorem we proceed by induction.
Assume there are two different sets $\left\{x_{1}, \cdots, x_{2^{k-1}}\right\},\left\{y_{1}, \cdots, y_{2^{k-1}}\right\}$ which have the same $\{\sigma\}$. Then consider the two sets

$$
\begin{aligned}
& \{X\}=\left\{x_{1}+a, \cdots, x_{2^{k-1}}+a, y_{1}, \cdots, y_{2^{k-1}}\right\} \\
& \{Y\}=\left\{x_{1}, \cdots, x_{2^{k-1}}, y_{1}+a, \cdots, y_{2^{k-1}}+a\right\}
\end{aligned}
$$

Clearly every sum of two elements of $\{X\}$ is either σ_{i} or $\sigma_{i}+2 a$ or $x_{i}+y_{j}+a$ and the same holds for the sum of two elements of $\{Y\}$.

The sets $\{X\},\{Y\}$ will clearly be different for some a. To show that they are different for any $a \neq 0$, rearrange $\{x\}$ and $\{y\}$ so that $x_{i}=y_{i} ; i=1,2, \cdots, m ; m \geq 0$, and $x_{j} \neq y_{k}$ for $j, k>m$. Then since $y_{i}+a=x_{i}+a ; i=1,2, \cdots, m$, the sets $\{X\}$ and $\{Y\}$ will be different if $\left\{x_{j} \mid j>m\right\}$ is different from $\left\{x_{j}+a \mid j>m\right\}$. But this is clear for any $a \neq 0$.

Since $\{\sigma\}$ clearly does not determine $\{x\}$ for $n=2$ the proof is complete.

In a sense we have completed the answer of the question raised in the introduction for $s=2$, however there remain some unanswered questions in case $n=2^{k}$.

1. If $\{\sigma\}$ does not determine $\{x\}$ can there be more than two sets giving rise to same $\{\sigma\}$?

The answer is trivially " yes" for $k=0,1$ and is " no" for $k=2$. It seems probable that the answer is " no" for all $k \geq 2$, however we can see no simple way of proving this.
2. For what values of n does there exist for all (real) $\{x\}$ a transformation $y_{i}=f_{i}\left(x_{1}, \cdots, x_{n}\right)$, different from a permutation, so that $\{x\}$ and $\{y\}$ give rise to the same $\{\sigma\}$?

This question was suggested by T. S. Motzkin who gave the answer for $s=2$.

Lemma 1. If $n>s$ and the above functions f_{i} exist then they are linear.

Proof. The sets $\{y\},\{x\}$ are connected by a system of equations

$$
y_{i_{1}}+\cdots+y_{i_{s}}=x_{j_{1}}+\cdots+x_{j_{s}} .
$$

Here the indices i_{1}, \cdots, i_{s} are themselves functions of $\{x\}$. However, since they assume only a finite set of values, there exists a somewhere dense set of $\{x\}$ for which the indices are constant. We restrict our attention to that set. Let $\Delta_{k}^{(h)} y_{i}=f\left(x_{1}, \cdots, x_{k}+h, \cdots, x_{n}\right)-f_{i}\left(x_{1}, \cdots\right.$, x_{k}, \cdots, x_{n}) then we obtain

$$
\begin{equation*}
\Delta_{k}^{(h)} y_{i_{1}}+\cdots+\Delta_{k}^{(h)} y_{i_{s}}=0 \text { or } h . \tag{3}
\end{equation*}
$$

If we let u_{i} be the difference of $\Delta_{k}^{(h)} y_{i}$ for two different sets of values of $\{x\}$ then, since the right-hand side of (3) is independent of the choice of $\{x\}$, we obtain

$$
\begin{equation*}
u_{i_{1}}+\cdots+u_{i_{s}}=0 \tag{4}
\end{equation*}
$$

Summation over all sets $\left\{i_{1}, \cdots, i_{s}\right\} \subset\{1, \cdots, n\}$ yields

$$
\begin{equation*}
u_{1}+u_{2}+\cdots+u_{n}=0 \tag{5}
\end{equation*}
$$

Now let t be the least positive integer so that $u_{i_{1}}+\cdots+u_{i_{t}}=0$ for all $\left\{i_{1}, \cdots, i_{t}\right\} \subset\{1, \cdots, n\}$. Then $t \mid n$, for $n=m t+r$ with $0<r<t$ implies

$$
u_{i_{1}}+\cdots+u_{i_{r}}=u_{1}+u_{2}+\cdots+u_{n}-\Sigma\left(u_{j_{1}}+\cdots+u_{j_{t}}\right)=0
$$

for all $\left\{i_{1}, \cdots, i_{r}\right\} \subset\{1, \cdots, n\}$, contrary to hypothesis.
Since $n>s \geq t$ we must have $n \geq 2 t$. If $t>1$ then

$$
u_{j}=-\left(u_{i_{1}}+\cdots+u_{i_{t-1}}\right) \text { for every } j \notin\left\{i_{1}, \cdots, i_{t-1}\right\}
$$

But there are more than t such j, say j_{1}, \cdots, j_{1}. Hence

$$
u_{j_{1}}+\cdots+u_{j_{t}}=-t\left(u_{i_{1}}+\cdots+u_{i_{t-1}}\right)=0
$$

or $u_{i_{1}}+\cdots+u_{i_{t-1}}=0$ for every $\left\{i_{1}, \cdots, i_{t-1}\right\} \subset\{1, \cdots, n\}$ contrary to hypothesis. Thus $t=1$ and

$$
u_{1}=u_{2}=\cdots=u_{n}=0
$$

In other words $\Delta_{k}^{(h)} y_{i}=a_{i k}^{(h)}=\mathrm{const}$. Thus $\Delta_{k}^{\left(h_{1}\right)} y_{i}+\Lambda_{k}^{\left(h_{2}\right)} y_{i}=\Delta_{k}^{\left(h_{1}+h_{2}\right)} y_{i}$ so that $a_{i k}^{(h)}=a_{i k} h$ and

$$
y_{i}=\sum_{k} a_{i k} x_{k}
$$

Theorem 3. If $n>s$ and there exists a nontrivial transformation $y_{i}=f_{i}\left(x_{1}, \cdots, x_{n}\right)$ which preserves $\{\sigma\}$ then $n=2 s$ and the transformation is linear with matrix (up to permutations)

$$
\left(\begin{array}{cccc}
-\frac{s-1}{s} & \frac{1}{s} & \cdots & \frac{1}{s} \\
\frac{1}{s} & -\frac{s-1}{s} & \cdots & \frac{1}{s} \\
\vdots & \vdots & & \vdots \\
\frac{1}{s} & \frac{1}{s} & \cdots & s-1
\end{array}\right)
$$

Proof. We know by Lemma 1 that the transformation must be linear. Let $y_{i}=\sum_{k} a_{i k} x_{k}$ then

$$
\begin{equation*}
y_{i_{1}}+\cdots+y_{i_{s}}=\sum_{k}\left(a_{i_{1} k}+\cdots+\alpha_{i_{s} k}\right) x_{k}=x_{j_{1}}+\cdots+x_{j_{s}} . \tag{6}
\end{equation*}
$$

Hence, for fixed k, we have

$$
a_{i_{1} k}+\cdots+a_{i_{s} k}=\left\{\begin{array}{l}
0 \text { for }\binom{n-1}{s} \text { sets }\left\{i_{1}, \cdots, i_{s}\right\} \tag{7}\\
1 \text { for }\binom{n-1}{s-1} \text { sets }\left\{i_{1}, \cdots, i_{s}\right\}
\end{array}\right.
$$

Since $n>s$ two elements $a_{i k}, a_{j k}$ in the same column satisfy

$$
a_{i k}+a_{i_{1} k}+\cdots+a_{i_{s-1} k}=0 \text { or } 1 ; a_{j k}+a_{i_{1} k}+\cdots+a_{i_{s-1} k}=0 \text { or } 1
$$

where $\left\{i_{1}, \cdots, i_{s-1}\right\} \subseteq\{1, \cdots, n\}-\{i, j\}$.
Hence

$$
a_{i k}=a_{j k} \text { or } a_{i k}=a_{j k} \pm 1
$$

Let the two values assumed by terms in the k th column be a_{k} and $1+a_{k}$. From (6) we see that both values must occur. On the other hand if both a_{k} and $1+a_{k}$ would occur more than once then $\max \left(a_{i_{1} k}+\cdots+a_{i_{s} k}\right)-\min \left(\alpha_{i_{1} k}+\cdots+a_{i_{s} k}\right) \geq 2$ in contradiction to (7). If $1+a_{k}$ is assumed only once, say $a_{k k}=1+a_{k}$, then $0=s a_{k}$ or

$$
a_{i k}= \begin{cases}1 & i=k \tag{9}\\ 0 & i \neq k\end{cases}
$$

According to (6) we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{i_{1} k}+\cdots+a_{i_{s} k}\right)=s \quad\left\{i_{1}, \cdots, i_{s}\right\} \subset\{1, \cdots, n\} . \tag{10}
\end{equation*}
$$

We now repeat the argument that led to equation (8). Since $n>\mathrm{s}$
we can write for any pair (i, j)

$$
\sum_{k=1}^{n}\left(a_{i_{1} k}+\cdots+\alpha_{i_{s-1} k}\right)+\sum_{k=1}^{n} a_{i k}=\sum_{k=1}^{n}\left(a_{i_{1} k}+\cdots+\alpha_{i_{s-1} k}\right)+\sum_{k=1}^{n} a_{j k}=s
$$

where $\left\{i_{1}, \cdots, i_{s-1}\right\} \subset\{1, \cdots, n\}-\{i, j\}$. Hence $\sum_{k=1}^{n} a_{i k}=\sum_{k=1}^{n} a_{j k}$ and according to (10), $s \sum_{k=1}^{n} a_{i k}=s$ so that

$$
\begin{equation*}
\sum_{k=1}^{n} a_{i k}=1 \tag{11}
\end{equation*}
$$

$$
i=1, \cdots, n
$$

Combining (9) and (11) we obtain

$$
a_{k j}= \begin{cases}1 & j=k \tag{12}\\ 0 & j \neq k\end{cases}
$$

In other words, every column contains 0 and therefore $a_{k}=0$ for $k=1, \cdots, n$. Thus the transformation is a permutation.

The only nontrivial case arises therefore if the value a_{k} occurs only once, say $a_{k k}=a_{k}$. Then $s-1+s a_{k}=0$ and

$$
a_{i k}= \begin{cases}-(s-1) / s & i=k \tag{13}\\ 1 / s & i \neq k .\end{cases}
$$

Combining (11) and (13) we obtain

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{i=1}^{n} a_{i k}=n=\frac{n(n-1)}{s}-n_{s}^{s-1}=\frac{n}{s}(n-s) \tag{14}
\end{equation*}
$$

and hence $n=2 s$. It is now clear from (11) that each row and column contains exactly one term $-(s-1) / s$ and that the matrix (up to permutation) is the one given in the theorem.
3. General s. The procedure which led to Theorem 1 can be generalized. First we define, for every s, a function which is a polynomial in $n, 2^{k}, 3^{k}, \cdots, s^{k}$. Let

$$
\begin{equation*}
f(n, k)=\frac{1}{s} \sum_{P}(-1)^{s-t} n^{\iota-1} \sum_{i=1}^{r} a_{i} i^{k} \tag{15}
\end{equation*}
$$

where the outer summation is over all permutations P on s marks, each permutation being composed of $a_{i} i$-cycles $i=1, \cdots, r$, and $t=$ $a_{1}+\cdots+a_{r}$. Thus

$$
\begin{align*}
f(n, k) & =n^{s-1}-\frac{1}{2}(s-1)\left(2^{k}+s-2\right) n^{s-2}+(s-1)(s-2)\left[\frac{1}{3}\left(3^{k}+s-3\right)\right. \tag{16}\\
& \left.+\frac{1}{8}(s-3)\left(2^{k+1}+s-4\right)\right] n^{s-3}-\cdots+(-1)^{s}(s-1)!\left(\sum_{i=1}^{s-1} \frac{i^{k-1}}{s-i}\right) n \\
& -(-1)^{s}(s-1)!s^{k-1}
\end{align*}
$$

Theorem 4. For every s consider the system of Diophantine equations $f(n, k)=0 \quad k=1,2, \cdots, n$. If n satisfies none of these then the first n elementary symmetric functions of $\{\sigma\}$ can be prescribed arbitrarily and they determine $\{x\}$ uniquely. If $f(n, k)=0$, then the first k elementary symmetric functions of $\{\sigma\}$ must satisfy an algebraic equation.

Proof. In the notation of Theorem 1 we have

$$
\begin{equation*}
\sum_{k}=\sum_{1 \leq i_{1}<\cdots<i_{s} \leq n}\left(x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{s}}\right)^{k}=\frac{1}{s!} \sum_{D(s)}\left(x_{i_{1}}+\cdots+x_{i_{s}}\right)^{k} \tag{17}
\end{equation*}
$$

where by $D(t)$ is meant summation over all sets of subscripts i_{j} at least t of which are distinct. Hence

$$
\begin{array}{r}
s!\sum_{k}=\sum_{D(s-1)}\left(x_{i_{1}}+\cdots+x_{i_{s}}\right)^{k}-\binom{s}{2} \sum_{D(s-1)}\left(2 x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{s-1}}\right)^{k} \\
\quad=\sum_{D(s-2)}\left(x_{i_{1}}+\cdots+x_{i_{s}}\right)^{k}-\binom{s}{2} \sum_{D(s-2)}\left(2 x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{s-1}}\right)^{k} \\
+2\binom{s}{3}_{D(s-2)} \sum_{\sum_{1}}\left(3 x_{i_{1}}+x_{i_{2}} \cdots+x_{i_{s-2}}\right)^{k}+3\binom{s}{4}_{D(s-2)}\left(2 x_{i_{1}}+2 x_{i_{2}}+x_{i_{3}}+\cdots+x_{i_{s-2}}\right)^{k} .
\end{array}
$$

Continue cancelling terms until each summation is over $D(1)$. The coefficient of $\sum\left(m_{1} x_{i_{1}}+\cdots+m_{t} x_{i_{t}}\right)^{k}$ is just $(-1)^{s-t}$ times the number of permutations on s marks which are conjugate to one having cycles of length m_{1}, \cdots, m_{t}. This can be shown by a method quite similar to that used by Frobenius [1]. Hence we may write

$$
\begin{equation*}
s!\sum_{k}=\sum_{P}(-1)^{s-t} \sum_{D(1)}\left(m_{1} x_{i_{1}}+\cdots+m_{t} x_{i_{t}}\right)^{k} \tag{18}
\end{equation*}
$$

where the outer summation is over all permutations P on s marks, and m_{1}, \cdots, m_{t} are the lengths of the cycles of P. Now from the multinomial expansion we have

$$
\sum_{D(1)}\left(m_{1} x_{i_{1}}+\cdots+m_{t} x_{i_{t}}\right)^{k}=\sum_{\substack{l_{1}+\cdots,++l_{t}=k \\ l_{i} \geq 0}} \frac{k!}{l_{1}!\cdots l_{t}!} m_{1}^{l_{1}} \cdots m_{t}^{l_{t}} S_{l_{1}} \cdots S_{l_{t}}
$$

and the coefficient of S_{k} is $\left(m_{1}^{k}+\cdots+m_{t}^{k}\right) S_{0}^{t-1}$. Substituting in (18) and using (15), we obtain

$$
\begin{equation*}
(s-1)!\sum_{k}=f(n, k) S_{k}+\cdots \tag{19}
\end{equation*}
$$

where the terms indicated by dots do not involve S_{k}. Thus, if $f(n, k) \neq 0$ for $k=1, \cdots, n$, then (19) can be solved recursively for S_{1}, \cdots, S_{n} in terms of $\sum_{1}, \cdots, \sum_{n}$.

On the other hand, if $f(n, k)=0$ and $f(n, j) \neq 0$ for $j=1, \cdots, k-1$ then (17) expresses \sum_{k} as a polynomial in S_{1}, \cdots, S_{k-1} which in turn are polynomials in $\sum_{1}, \cdots, \sum_{k-1}$.

Corollary. If $f(n, k)=0$ then n divides $(s-1)!s^{n-1}$.
Thus $\{x\}$ will always be determined by $\{\sigma\}$ if s is less then the greatest prime factor of n.

Example 1. $s=3$. Here (18) becomes

$$
6 \sum_{k}=\sum_{i_{1}, i_{2}, i_{3}=1}^{n}\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}}\right)^{k}-3 \sum_{i_{1}, i_{2}=1}^{n}\left(2 x_{i_{1}}+x_{i_{2}}\right)^{k}+2 \sum_{i=1}^{n}\left(3 x_{i}\right)^{k} .
$$

Expanding and collecting the coefficient of S_{k}, we get

$$
f(n, k)=n^{2}-\left(2^{k}+1\right) n+2 \cdot 3^{k-1}
$$

This has obvious zeros at $n=1, k=1 ; n=2, k=1,2 ; n=3, k=2,3$. Also, as we know from Theorem 3, there are zeros at $n=6, k=3,5$. For all these values of n the set $\{\sigma\}$ does not, in general, determine $\{x\}$ uniquely.

In addition we observe that $f(n, k)=0$ has the solutions $n=27$, $k=5,9$ and $n=486, k=9$. We do not know whether for these values of n the set $\{\sigma\}$ determines $\{x\}$ uniquely or not. However we do know that these are the only cases left in doubt.

Theorem 5. If $s=3$ then $f(n, k)=0$ has solutions only for $k=$ $1,2,3,5,9$.

Proof. If $f(n, k)=0$ then

$$
\begin{equation*}
n=2^{a} \cdot 3^{b} \text { with } a=0 \text { or } 1 \tag{20}
\end{equation*}
$$

Substituting (20) in $f(n, k)=0$ we obtain

$$
\begin{equation*}
2^{a} \cdot 3^{b}+2^{1-a} 3^{k-b-1}=2^{k}+1 \tag{21}
\end{equation*}
$$

Let n be the smaller zero of $f(n, k)$ for a fixed k. Then the other zero is $n^{\prime}=2^{1-a} 3^{k-b-1}$ and $b \leq k-b-1$. Hence

$$
\begin{equation*}
2^{k} \equiv-1\left(\bmod 3^{b}\right) \tag{22}
\end{equation*}
$$

and since 2 is a primitive root of 3^{b},

$$
\begin{equation*}
k \equiv 3^{b-1}\left(\bmod 2 \cdot 3^{b-1}\right) \tag{23}
\end{equation*}
$$

But by (21) we have

$$
3^{k-b-1} \leq 2^{k}<3^{2 k / 3} \text { or } k<3(b+1)
$$

so that

$$
3^{b-1} \leq k<3(b+1) \text { and hence } b<4
$$

If $b=3$ then $k \equiv 9(\bmod 18)$ and $k<12$ so $k=9$.
If $b=2$ then $k \equiv 3(\bmod 6)$ and $k<9$ so $k=3$.
If $b=1$ then $k \equiv 1(\bmod 2)$ and $k<6$ so $k=1,3,5$.
If $b=0$ then $k<3$.
Example 2. $s=4$. Here (18) becomes

$$
\begin{align*}
24 \sum_{k} & =\sum_{i_{1}, i_{2}, i_{3}, i_{4}}\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}}+x_{i_{4}}\right)^{k} \tag{24}\\
& -6 \sum_{i_{1}, i_{2}, i_{3}}\left(2 x_{i_{1}}+x_{i_{2}}+x_{i_{3}}\right)^{k}+8 \sum_{i_{1}, i_{2}}\left(3 x_{i_{1}}+x_{i_{2}}\right)^{k} \\
& +3 \sum_{i_{1}, i_{2}}\left(2 x_{i_{1}}+2 x_{i_{2}}\right)^{k}-6 \sum_{i}\left(4 x_{i}\right)^{k} .
\end{align*}
$$

Hence $f(n, k)=0$ becomes

$$
\begin{equation*}
n^{3}-3\left(2^{k-1}+1\right) n^{2}+\left(2\left(3^{k}+1\right)+3 \cdot 2^{k-1}\right) n-3 \cdot 2^{2 k-1}=0 . \tag{25}
\end{equation*}
$$

We first note that this has solutions $n=1, k=1 ; n=2, k=1,2$; $n=3, k=1,2,3 ; n=4, k=2,3,4 ; n=8, k=3,5,7$. For these values of n, the set $\{\sigma\}$ does not generally determine $\{x\}$. When $n=12, k=6$ is a solution, and this case is left in doubt.

Theorem 6. If $s=4$ then $f(n, k)=0$ has solutions only for $n=$ $1,2,3,4,8,12$.

Proof. Let $n=3^{a} \cdot 2^{b}$ where $a=0$ or 1 . Now if $n \geq 3\left(2^{k-1}+1\right)$ then $2 \cdot 3^{k} n>3^{k+1} \cdot 2^{k}>3 \cdot 2^{3 k-1}$ and the left side of (25) is positive. Hence $n<3\left(2^{k-1}+1\right)<2^{k+1}$ if $k>3$ and so $b \leq k$. (For $k \leq 3$ we have listed all solutions of (25)). If k is even then $2\left(3^{k}+1\right) \equiv 4(\bmod 8)$ and if $k \geq 4$ then $8 n$ divides the other terms unless $b \leq 2$. Similarly if k is odd then $2\left(3^{k}+1\right) \equiv 8(\bmod 16)$ and if $k \geq 5$ then $b \leq 3$. So $b \leq 3$ in all cases. Now suppose $a=1$. Then (25) becomes

$$
2 n-3 \cdot 2^{2 k-1} \equiv 0(\bmod 9)
$$

or

$$
2^{b+1} \equiv 2^{2 k-1} \equiv 2(\bmod 3)
$$

and b is even. Thus n must be $1,2,3,4,8$, or 12 . It is easy to check that none of these is a root for $k>7$.

The corollary to Theorem 4 shows that exceptional pairs (s, n) are in a certain sense quite rare. Of course it is trivial to remark that if (s, n) is exceptional, then $(n-s, n)$ is exceptional. Hence the remarks for $s=2$ apply equally well to $s=n-2$ and we obtain the exceptional pairs $(6,8),(14,16),(30,32), \cdots$. But there are other cases with $n>2 s$ which our method leaves in doubt.

TheOrem 7. We can construct arbitrarily large values of such that $f(n, k)=0$ for some $n>2 s$.

Proof. If $n<s$ then $\sum_{k}=0$ but S_{1}, \cdots, S_{n} may be prescribed arbitrarily. Hence the coefficient of S_{k} in the expansion of \sum_{k} must be zero if $k \leq n$. If $n=s$ then $\sum_{k}=S_{1}^{k}$ but S_{2}, \cdots, S_{n} may be prescribed arbitrarily. Hence $n=s$ is a zero of $f(n, k)$ for $k=2, \cdots, n$. Thus $f(n, 1)=\prod_{i=1}^{s-1}(n-i) ; f(n, 2)=\prod_{i=2}^{s}(n-i)$ and $f(n, 3)=(n-2 s) \prod_{i=3}^{s}(n-i)$. If we divide $f(n, 4)$ by its known factors then we obtain for $s>2$

$$
\begin{equation*}
f(n, 4)=\left[n^{2}-(6 s-1) n+6 s^{2}\right] \prod_{i=4}^{s}(n-i) \tag{26}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
n^{2}-(6 s-1) n+6 s^{2}=0 \tag{27}
\end{equation*}
$$

can be rewritten

$$
(2 n-6 s+1)^{2}-3(2 s-1)^{2}=-2
$$

The Pell equation $u^{2}-3 v^{2}=-2$ has the general solution

$$
u+v \sqrt{3}= \pm(1+\sqrt{3})(2+\sqrt{3})^{r} \quad r=0, \pm 1, \cdots .
$$

Since u and v are odd, n and s are integers. It is interesting that all positive solutions are obtained in the following simple way. When $k=4,(s, n)=(2,8)$ is a solution. Hence $(6,8)$ is a solution and putting $s=6$ in (27) yields (6,27). Continuing in this way, we obtain (21,27), (21, 98), (77, 98), (77, 363), \cdots.

In a similar manner we obtain for $s>3$

$$
\begin{equation*}
f(n, 5)=\left[n^{2}-(12 s-5) n+12 s^{2}\right](n-2 s) \prod_{i=5}^{s}(n-i) \tag{28}
\end{equation*}
$$

and all integer roots of the quadratic factor may be obtained with the aid of the general solution of the Pell equation $u^{2}-6 v^{2}=75$. Or we could start with $(2,16)$ and obtain successively $(14,147),(133,1444), \cdots$. Starting with $(3,27)$ yields $(24,256),(232,2523), \cdots$.
4. Concluding remarks. If we let $\{\tau\}=\left\{\tau_{1}, \cdots, \tau_{n s}\right\}$ be the set of sums of s not necessarily distinct elements of $\{x\}$, then $\{x\}$ is always determined by $\{\tau\}$. A method similar to the proof of Theorem 4 applies with the coefficient of S_{k} always positive. Alternatively, if the x_{i} are real, $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, we may determine them successively by a simple induction procedure.

Our method is applicable to the case of weighted sums $\sigma_{i_{1} \cdots i_{s}}=$
$\sum_{j=1}^{s} a_{j} x_{i_{j}}$. The resulting Diophantine equations will however be of a rather different nature. Thus, if the a_{j} are all distinct then the analogue to $f(n, k)=0$ is

$$
\begin{equation*}
\left(a_{1}^{k}+a_{2}^{k}+\cdots+a_{s}^{k}\right) n^{s-1}=0 \tag{29}
\end{equation*}
$$

In other words the uniqueness condition is independent of n and depends on the a_{i} alone. For example if $a_{1}+a_{2}+\cdots+a_{s}=0$ then $\{\sigma\}$ remains unchanged if we add the same constant to all x. It is not as easy to see what happens if (29) holds for some $k>1$.

References

1. G. Frobenius, Ueber die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad. Wiss. Berlin, (1900), 516-534.
2. L. Moser, Problem E 1248, Amer. Math. Monthly (1957), 507.

University of California, Los Angeles

