When are both $x^{2}+3 y$ and $y^{2}+3 x$ Squares

Exposition by William Gasarch

1 Introduction

I was the following problem in a book of math contest problems. The solution was not provided and I was unable to do it, so I posted asking for a solution. I got two. I present the problem and both solutions, and what I found out by trying to solve the problem.

For which (x, y), positive naturals, is both $x^{2}+3 y$ and $y^{2}+3 x$, squares?

2 My Failed Attempt but a Question About it

If $x^{2}+3 y$ is a square then $x^{2}+3 y \geq(x+1)^{2}=x^{2}+2 x+1$. Hence $y \geq \frac{2 x+1}{3}$.
By symmetry we also get $x \geq \frac{2 y+1}{3}$ which we rewrite as $\frac{3 x-1}{2} \geq y$.
So we have $\frac{2 x+1}{3} \leq y \leq \frac{3 x-1}{2}$.
I then had a grad student, Daniel Smolyak, write a program look at all (x, y) with $1 \leq x, y \leq$ 1000 and $\frac{2 x+1}{3} \leq y \leq \frac{3 x-1}{2}$.
trying to find a case where $x^{2}+3 y$ and $y^{2}+3 x$ are both squares. He found three: $(1,1),(11,16)$, $(16,11)$.

We suspected these were the only pairs.

3 Solution provided by Marzio De Biasi

Let $a, b \geq 1$ be such that

$$
\begin{aligned}
& x^{2}+3 y=(x+a)^{2}=x^{2}+2 a x+a^{2}, \text { so } y=\frac{2 a x+a^{2}}{3} . \\
& y^{2}+3 x=(y+b)^{2}=y^{2}+2 b x+b^{2}, \text { so } x=\frac{2 b y+b^{2}}{3} .
\end{aligned}
$$

Take the equation for y and put the x in:
Lets be careful:

$$
2 a x+a^{2}=2 a\left(\frac{2 b y+b^{2}}{3}\right)+a^{2}=\frac{4 a b y+2 a b^{2}+3 a^{2}}{3} .
$$

SO

$$
\begin{gathered}
y=\frac{2 a x+a^{2}+3 a^{2}}{3}=\frac{4 a b y+2 a b^{2}+3 a^{2}}{9} \\
9 y=4 a b y+2 a b^{2}+3 a^{2} \\
(9-4 a b) y=2 a b^{2}+3 a^{2} \\
y=\frac{2 a b^{2}+3 a^{2}}{9-4 a b}
\end{gathered}
$$

Since $a, b \geq 1$, the numerator is positive. Since $y \geq 1$ then denominator has to be positive. The only pairs of positive naturals (a, b) such that $9-4 a b \geq 1$ are $(a, b)=(1,1),(1,2),(2,1)$. We leave the rest to you.

4 Solution by xxx

Since this solution is by xxx I assume its anonymous.
Assume $y \leq x$. Then
$3 y<4 x+4$ (an overestimation but you will soon see why we make it)
Hence

$$
x^{2}+3 y<x^{2}+4 x+4=(x+2)^{2} .
$$

The only square that $x^{2}+3 y$ can be is $(x+1)^{2}$. So

$$
x^{2}+3 y=(x+1)^{2}=x^{2}+2 x+1
$$

$$
3 y=2 x+1
$$

So y is odd, let $y=2 a+1$. Then $x=3 a+1$.
Since $y^{2}+3 x$ is a square the following is a square:

$$
(2 a+1)^{2}+3(3 a+1)=4 a^{2}+13 a+4
$$

Note that
$(2 a+2)^{2}=4 a^{2}+8 a+4$ is to small.
$(2 a+4)^{2}=4 a^{2}+16 a+16$ is too big.
Hence

$$
4 a^{2}+13 a+4=(2 a+3)^{2}=4 a^{2}+12 a+9
$$

$a=5$. We leave the rest to you.

5 The Question this Raises

Is the following solvable: given $p, q \in \mathbf{Z}[x, y]$

1. Determine if there is an infinite number of (x, y) such that $p(x, y)$ and $q(x, y)$ are both squares.
2. If there are a finite number of values find them. (Or find how many there are, which is equivalent.)

One can replace square with the image of any $r \in \mathbf{Z}[x]$ (or even $r \in \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$).

