Steinitz's Lemma

An Exposition by William Gasarch

1 Introduction

This exposition is based on Imre Barany's article [1].

Consider the following easy theorem:

Theorem 1.1 If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^1$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq 1]$.

We will prove this in Section 2. How does this theorem generalize to R^2 ? to R^d ? The absolute value signs now become magnitudes of vectors. Hence one might make the following conjecture:

Conjecture 1.2 If $V = \{v_1, \ldots, v_n\} \in \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq 1]$.

Alas this is not true. Take the 3 third roots of unity. The sum of any 2 has magnitude bigger than 1. Hence we can never get $|w_1 + w_2| \le 1$. We leave it as an exercise to find, for all n, a counterexample.

What if we don't insist on 1 as an upper bound? What if we want to go to higher dimensions? The following are true:

- 1. If $V = \{v_1, \ldots, v_n\} \in \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq \sqrt{5} \sim 2.24]$.
- 2. If $V = \{v_1, \ldots, v_n\} \in \mathbb{R}^d$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq \sqrt{(4^d 1)/3}].$
- 3. If $V = \{v_1, \ldots, v_n\} \in \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq 2]$.

4. If $V = \{v_1, \ldots, v_n\} \in \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq d]$.

We will prove items 1 and 3. Item 2 has a similar proof as item 1, and Item 4 has a similar proof as item 3.

2 The d = 1 Case

To prove the d = 1 case we first prove a lemma which will be helpful in the d = 2 case.

Def 2.1 Let $A = (a_1, \ldots, a_m)$ and $B = (b_1, \ldots, b_L)$ An *interleaving of* A and B is an ordering on the elements $\{a_1, \ldots, a_m, b_1, \ldots, b_L\}$ such that if i < j then a_i will proceed a_j and b_i will proceed b_j . As an example, if m = 3 and L = 4 then $(a_1, b_1, b_2, b_3, a_2, a_3, b_4)$ is an interleaving of A and B.

Lemma 2.2 If $A = (a_1, \ldots, a_m) \in [0, 1]^m$, $B = (b_1, \ldots, b_L) \in [-1, 0]^L$, and $\sum_{x \in A \cup B} x = 0$, then there exists an interleaving of A and B, (w_1, \ldots, w_{m+L}) such that $(\forall k \leq m+L)[|\sum_{i=1}^k w_i| \leq 1]$.

Proof: We define the reorder inductively.

Let

$$w_1 = a_1.$$

Assume that w_1, \ldots, w_p are defined, p < m + L, and $(\forall k \le p) [\left| \sum_{i=1}^k w_i \right| \le 1].$

- 1. Case 1: $\sum_{i=1}^{p} w_i < 0$. There must exist an element of A to draw from since otherwise $\sum_{x \in A \cup B} x < 0$. Let w_{p+1} be the next element of A. Clearly $\left|\sum_{i=1}^{p+1} w_i\right| \le 1$.
- 2. Case 2: $\sum_{i=1}^{p} w_i > 0$. There must exist an element of *B* to draw from since otherwise $\sum_{x \in A \cup B} x > 0$. Let w_{p+1} be the next element of *B*. Clearly $\left|\sum_{i=1}^{p+1} w_i\right| \le 1$.

3. Case 3: $\sum_{i=1}^{p} w_i = 0$. If there is an element of A available to take let w_{p+1} be the next element of A. If not then if there is an element of B available. Clearly $\left|\sum_{i=1}^{p+1} w_i\right| \le 1$.

Theorem 2.3 If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^1$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq 1]$.

Proof: Let A be the nonnegative elements in V. Let B be the negative elements in V. Apply Lemma 2.2.

3 The d = 2 Case, First Proof

Theorem 3.1 If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $|\sum_{i=1}^n v_i| = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq \sqrt{5}]$.

Proof:

Let $U \subseteq V$ be such that $\left|\sum_{u \in U} U\right|$ is maximized. Let $u^* = \sum_{u \in U} u$. We can assume that u^* is of the form (0, a), so it points straight up.

The following facts are easily verified:

- Every vector in V that is above or on the x-axis is in V. (If not then add that vector to U to form a U' with | ∑_{u∈U} u| < | ∑_{u∈U'} u|.)
- 2. The sum of the x-coordinates of the vectors in U is zero (since $u^* = (0, a)$.
- Every vector in V that is below the x-axis is in U. (If not then remove that vector from U to form a U' with | ∑_{u∈U} u | < | ∑_{u∈U'} u |.)
- 4. The sum of the x-coordinates of the vectors in \overline{U} is zero (Since $\sum_{u \in U} u + \sum_{u \in \overline{U}} u = 0$ and $\sum_{u \in \overline{U}} u = 0$.

Let $U = \{(a_1, b_1), \dots, (a_m, b_m)\}$ and $\overline{U} = \{(c_1, d_1), \dots, (c_L, d_L)\}$. By items 2 and 4 we have $\sum_{i=1}^m a_i = 0$ and $\sum_{i=1}^L c_i = 0$. Apply Theorem 2.3 to both $\{a_1, \dots, a_m\}$ and $\{c_1, \dots, c_L\}$. By renumbering we can assume that

- $(\forall k \le m) [\left| \sum_{i=1}^{k} a_i \right| \le 1]$, and
- $(\forall k \le L) [\left| \sum_{i=1}^{k} c_i \right| \le 1]$

By items 1 and 3 $(\forall i \leq m)[b_i \geq 0]$ and $(\forall i \leq L)[d_i \leq 0]$. Since $\sum_{i=1}^n v_i = 0$ we know that $\sum_{i=1}^m b_i + \sum_{i=1}^L d_i = 0$. By Lemma 2.2 there is an interlacing (b_1, \ldots, b_m) and (d_1, \ldots, d_L) so that any initial partial sum has absolute value ≤ 1 .

We use this ordering. Let it be

$$(x_1, y_1), \ldots, (x_n, y_n).$$

$$\sum_{i=1}^{k} (x_i, y_i) = (\sum_{i=1}^{k} x_i, \sum_{i=1}^{k} y_i).$$

Since $\left|\sum_{i=1}^{k} x_i\right|$ is the sum of a partial initial sums of the a_i 's and of the b_i 's by the triangle inequality this quantity is ≤ 2 .

Since we used Lemma 2.2 $\left|\sum_{i=1}^{k} y_i\right| \leq 1$.

I

Note that in the above few lines we used $|\cdots|$ to mean absolute value. We now use it to mean distance in \mathbb{R}^2 .

$$\left|\sum_{i=1}^{k} (x_i, y_i)\right| = \left|\left(\sum_{i=1}^{k} x_i, \sum_{i=1}^{k} y_i\right)\right| = \sqrt{\left(\sum_{i=1}^{k} x_i\right)^2 + \left(\sum_{i=1}^{k} y_i\right)^2} \le \sqrt{2^2 + 1^2} = \sqrt{5}$$

Using the same technique one can show the following:

Theorem 3.2 Let $d \ge 1$. If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$, $(\forall i)[|v_i| \le 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \le \sqrt{\frac{4^d-1}{3}}]$.

4 The d = 2 Case, Second Proof

Theorem 4.1 If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \leq 2]$.

Proof: Rewrite $\sum_{i=1}^{n} v_i = 0$ as

$$\sum_{i=1}^{n} \left(\frac{n-2}{n}\right) v_i = 0$$

and note that

$$\sum_{i=1}^{n} \frac{n-2}{n} = n-2.$$

We restate this in a less informative way in order to generalize it:

 $\exists \alpha_1, \ldots, \alpha_n$ such that

- $(\forall i)[0 \le \alpha_i \le 1].$
- $\sum_{i=1}^{n} \alpha_i v_i = 0$
- $\sum_{i=1}^{n} \alpha_i = n-2$

We want to derive re-order the v_i 's (but we still call them v_1, \ldots, v_n), remove v_n from the list, and have the following:

 $\exists \beta_1, \ldots, \beta_n$) such that

- $(\forall i)[0 \le \beta_i \le 1].$
- $\sum_{i=1}^{n-1} \beta_i v_i = 0$
- $\sum_{i=1}^{n-1} n\beta_i = n-3$

We first look at *n*-tuples of β_i 's and then see if we can make one of them 0. Let

$$TEMP = \{ x \in [0,1]^n : \sum_{i=1}^n \beta_i v_i = 0 \land \sum_{i=1}^n \beta_i = n-3]. \}$$

Note that

- $\left(\frac{n-3}{n-2}\alpha_1, \ldots, \frac{n-3}{n-2}\alpha_n\right) \in TEMP$. In particular $TEMP \neq \emptyset$.
- TEMP is a convex polytope that is a subset of $[0, 1]^n$.
- There is an $n \times 3$ matrix A and a vector $b \in \mathsf{R}^3$ such that

$$TEMP = \{(\beta_1, \dots, \beta_n) \in [0, 1]^n : Ax \le b].\}$$

We need a Lemma

Lemma 4.2 Let A be an $n \times e$ matrix and $b \in \mathsf{R}^e$. Let

$$B = \{ x \in [0,1]^n : Ax = b \}.$$

If B is nonempty then there exists a point in B with $\geq n - e$ of the variables in $\{0, 1\}$

Proof sketch: Take an extreme point of *B*.

TEMP satisfies the condition of B in Lemma 4.2 with e = 3. Hence there is a point in TEMP with $\geq n - 3$ coordinates in $\{0, 1\}$. One of the equations is

$$\beta_1 + \dots + \beta_n = n - 3.$$

Hence there must be an i with $\beta_i=0.$ Reorder to make that $\beta_n.$ We are done.

We can keep doing this to obtain, for all $1 \le k \le n$, there exists β_1, \ldots, β_i with

- $\sum_{i=1}^k \beta_i v_i = 0$
- $\sum_{i=1}^k \beta_i = k-2$

This give us a reordering of v_1, \ldots, v_n (though we still call it v_1, \ldots, v_n). We are concerned with $\left|\sum_{i=1}^k v_i\right|$.

First note that

$$\sum_{i=1}^{k} v_i = \sum_{i=1}^{k} v_i - \sum_{i=1}^{k} \beta_i v_i = \sum_{i=1}^{k} (1 - \beta_i) v_i.$$

Hence

$$\left|\sum_{i=1}^{k} v_{i}\right| = \left|\sum_{i=1}^{k} (1-\beta_{i})v_{i}\right| \le \sum_{i=1}^{k} \left|1-\beta_{i}\right| \left|v_{i}\right| \le \sum_{i=1}^{k} \left|1-\beta_{i}\right| = \sum_{i=1}^{k} 1-\beta_{i} = k-\sum_{i=1}^{k} \beta_{i} = k-(k-2)$$
$$= 2.$$

Using the same technique one can show the following:

Theorem 4.3 Let $d \ge 1$. If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$, $(\forall i)[|v_i| \le 1]$, and $\sum_{i=1}^n v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[|\sum_{i=1}^k w_i| \le d$.

References

[1] I. Barany. On the power of linear dependencies. In Building bridges between math and computer science (Bolyai society mathematical studies number 19), pages 31-45. Springer, 2008. www.renyi.hu/~barany/cikkek/steinitz.pdf.