Steinitz’s Lemma
An Exposition by William Gasarch

1 Introduction

This exposition is based on Imre Barany’s article [1].

Consider the following easy theorem:

Theorem 1.1 If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^1 \), \((\forall i)|v_i| \leq 1\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)|\sum_{i=1}^{k} w_i| \leq 1\).

We will prove this in Section 2. How does this theorem generalize to \(\mathbb{R}^2 \)? to \(\mathbb{R}^d \)? The absolute value signs now become magnitudes of vectors. Hence one might make the following conjecture:

Conjecture 1.2 If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2 \), \((\forall i)|v_i| \leq 1\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)|\sum_{i=1}^{k} w_i| \leq 1\).

Alas this is not true. Take the 3 third roots of unity. The sum of any 2 has magnitude bigger than 1. Hence we can never get \(|w_1 + w_2| \leq 1\). We leave it as an exercise to find, for all \(n \), a counterexample.

What if we don’t insist on 1 as an upper bound? What if we want to go to higher dimensions? The following are true:

1. If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2 \), \((\forall i)|v_i| \leq 1\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)|\sum_{i=1}^{k} w_i| \leq \sqrt{5} \approx 2.24\).

2. If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d \), \((\forall i)|v_i| \leq 1\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)|\sum_{i=1}^{k} w_i| \leq \sqrt{(4^d - 1)/3}\).

3. If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2 \), \((\forall i)|v_i| \leq 1\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)|\sum_{i=1}^{k} w_i| \leq 2\).
4. If $V = \{v_1, \ldots, v_n\} \in \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^{n} v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[\sum_{i=1}^{k} w_i \leq d]$.

We will prove items 1 and 3. Item 2 has a similar proof as item 1, and Item 4 has a similar proof as item 3.

2 The $d = 1$ Case

To prove the $d = 1$ case we first prove a lemma which will be helpful in the $d = 2$ case.

Def 2.1 Let $A = (a_1, \ldots, a_m)$ and $B = (b_1, \ldots, b_L)$ An *interleaving of A and B* is an ordering on the elements $\{a_1, \ldots, a_m, b_1, \ldots, b_L\}$ such that if $i < j$ then a_i will proceed a_j and b_i will proceed b_j. As an example, if $m = 3$ and $L = 4$ then $(a_1, b_1, b_2, b_3, a_2, a_3, b_4)$ is an interleaving of A and B.

Lemma 2.2 If $A = (a_1, \ldots, a_m) \in [0, 1]^m$, $B = (b_1, \ldots, b_L) \in [-1, 0]^L$, and $\sum_{x \in A \cup B} x = 0$, then there exists an interleaving of A and B, (w_1, \ldots, w_{m+L}) such that $(\forall k \leq m+L)[\sum_{i=1}^{k} w_i] \leq 1$.

Proof: We define the reorder inductively.

Let

$$w_1 = a_1.$$

Assume that w_1, \ldots, w_p are defined, $p < m + L$, and $(\forall k \leq p)[\sum_{i=1}^{k} w_i] \leq 1$.

1. **Case 1:** $\sum_{i=1}^{p} w_i < 0$. There must exist an element of A to draw from since otherwise $\sum_{x \in A \cup B} x < 0$. Let w_{p+1} be the next element of A. Clearly $|\sum_{i=1}^{p+1} w_i| \leq 1$.

2. **Case 2:** $\sum_{i=1}^{p} w_i > 0$. There must exist an element of B to draw from since otherwise $\sum_{x \in A \cup B} x > 0$. Let w_{p+1} be the next element of B. Clearly $|\sum_{i=1}^{p+1} w_i| \leq 1$.
3. **Case 3:** \(\sum_{i=1}^{p} w_i = 0 \). If there is an element of \(A \) available to take let \(w_{p+1} \) be the next element of \(A \). If not then if there is an element of \(B \) available. Clearly \[\left| \sum_{i=1}^{p+1} w_i \right| \leq 1. \]

Theorem 2.3 If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^1 \), \((\forall i) [\left| v_i \right| \leq 1]\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)[\left| \sum_{i=1}^{k} w_i \right| \leq 1]\).

Proof: Let \(A \) be the nonnegative elements in \(V \). Let \(B \) be the negative elements in \(V \). Apply Lemma 2.2.

3 The \(d = 2 \) Case, First Proof

Theorem 3.1 If \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2 \), \((\forall i) [\left| v_i \right| \leq 1]\), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k)[\left| \sum_{i=1}^{k} w_i \right| \leq \sqrt{5}]\).

Proof:

Let \(U \subseteq V \) be such that \(\left| \sum_{u \in U} u \right| \) is maximized. Let \(u^* = \sum_{u \in U} u \). We can assume that \(u^* \) is of the form \((0, a)\), so it points straight up.

The following facts are easily verified:

1. Every vector in \(V \) that is above or on the \(x \)-axis is in \(V \). (If not then add that vector to \(U \) to form a \(U' \) with \(\left| \sum_{u \in U'} u \right| < \left| \sum_{u \in U} u \right| \).)

2. The sum of the \(x \)-coordinates of the vectors in \(U \) is zero (since \(u^* = (0, a) \)).

3. Every vector in \(V \) that is below the \(x \)-axis is in \(\overline{U} \). (If not then remove that vector from \(U \) to form a \(U' \) with \(\left| \sum_{u \in U'} u \right| < \left| \sum_{u \in U} u \right| \).)

4. The sum of the \(x \)-coordinates of the vectors in \(\overline{U} \) is zero (Since \(\sum_{u \in U} u + \sum_{u \in \overline{U}} u = 0 \) and \(\sum_{u \in \overline{U}} = 0 \)).
Let $U = \{(a_1, b_1), \ldots, (a_m, b_m)\}$ and $\bar{U} = \{(c_1, d_1), \ldots, (c_L, d_L)\}$. By items 2 and 4 we have $\sum_{i=1}^m a_i = 0$ and $\sum_{i=1}^L c_i = 0$. Apply Theorem 2.3 to both $\{a_1, \ldots, a_m\}$ and $\{c_1, \ldots, c_L\}$. By renumbering we can assume that

- $(\forall k \leq m)[|\sum_{i=1}^k a_i| \leq 1]$, and
- $(\forall k \leq L)[|\sum_{i=1}^k c_i| \leq 1]

By items 1 and 3 $(\forall i \leq m)[b_i \geq 0]$ and $(\forall i \leq L)[d_i \leq 0]$. Since $\sum_{i=1}^n v_i = 0$ we know that $\sum_{i=1}^m b_i + \sum_{i=1}^L d_i = 0$. By Lemma 2.2 there is an interlacing (b_1, \ldots, b_m) and (d_1, \ldots, d_L) so that any initial partial sum has absolute value ≤ 1.

We use this ordering. Let it be

$$(x_1, y_1), \ldots, (x_n, y_n).$$

$$\sum_{i=1}^k (x_i, y_i) = (\sum_{i=1}^k x_i, \sum_{i=1}^k y_i).$$

Since $|\sum_{i=1}^k x_i|$ is the sum of a partial initial sums of the a_i’s and of the b_i’s by the triangle inequality this quantity is ≤ 2.

Since we used Lemma 2.2 $|\sum_{i=1}^k y_i| \leq 1$.

Note that in the above few lines we used $\cdot \cdot \cdot$ to mean absolute value. We now use it to mean distance in \mathbb{R}^2.

$$\left|\sum_{i=1}^k (x_i, y_i)\right| = \left|\sum_{i=1}^k x_i, \sum_{i=1}^k y_i\right| = \sqrt{(\sum_{i=1}^k x_i)^2 + (\sum_{i=1}^k y_i)^2} \leq \sqrt{2^2 + 1^2} = \sqrt{5}.$$
Theorem 3.2 Let $d \geq 1$. If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^{n} v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[\sum_{i=1}^{k} w_i \leq \sqrt{\frac{(d-1)^2}{3}}]$.

4 The $d = 2$ Case, Second Proof

Theorem 4.1 If $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^2$, $(\forall i)[|v_i| \leq 1]$, and $\sum_{i=1}^{n} v_i = 0$ then there exists a reordering w_1, \ldots, w_n of V such that $(\forall k)[\sum_{i=1}^{k} w_i \leq 2]$.

Proof: Rewrite $\sum_{i=1}^{n} v_i = 0$ as

$$\sum_{i=1}^{n} \left(\frac{n-2}{n} \right) v_i = 0$$

and note that

$$\sum_{i=1}^{n} \frac{n-2}{n} = n - 2.$$

We restate this in a less informative way in order to generalize it:

$\exists \alpha_1, \ldots, \alpha_n$ such that

- $(\forall i)[0 \leq \alpha_i \leq 1]$.
- $\sum_{i=1}^{n} \alpha_i v_i = 0$
- $\sum_{i=1}^{n} \alpha_i = n - 2$

We want to derive re-order the v_i’s (but we still call them v_1, \ldots, v_n), remove v_n from the list, and have the following:

$\exists \beta_1, \ldots, \beta_n$ such that

- $(\forall i)[0 \leq \beta_i \leq 1]$.
- $\sum_{i=1}^{n-1} \beta_i v_i = 0$
- $\sum_{i=1}^{n-1} n\beta_i = n - 3$
We first look at n-tuples of β_i’s and then see if we can make one of them 0. Let

$$TEMP = \{ x \in [0, 1]^n : \sum_{i=1}^n \beta_i v_i = 0 \land \sum_{i=1}^n \beta_i = n - 3 \}. \}$$

Note that

- $(\frac{n-3}{n-2} \alpha_1, \ldots, \frac{n-3}{n-2} \alpha_n) \in TEMP$. In particular $TEMP \neq \emptyset$.
- $TEMP$ is a convex polytope that is a subset of $[0, 1]^n$.
- There is an $n \times 3$ matrix A and a vector $b \in \mathbb{R}^3$ such that

$$TEMP = \{ (\beta_1, \ldots, \beta_n) \in [0, 1]^n : Ax \leq b \}. \}$$

We need a Lemma

Lemma 4.2 Let A be an $n \times e$ matrix and $b \in \mathbb{R}^e$. Let

$$B = \{ x \in [0, 1]^n : Ax = b \}. \}$$

If B is nonempty then there exists a point in B with $\geq n - e$ of the variables in $\{0, 1\}$

Proof sketch: Take an extreme point of B.

$TEMP$ satisfies the condition of B in Lemma 4.2 with $e = 3$. Hence there is a point in $TEMP$ with $\geq n - 3$ coordinates in $\{0, 1\}$. One of the equations is

$$\beta_1 + \cdots + \beta_n = n - 3.$$

Hence there must be an i with $\beta_i = 0$. Reorder to make that β_n. We are done.

We can keep doing this to obtain, for all $1 \leq k \leq n$, there exists β_1, \ldots, β_i with
• \(\sum_{i=1}^{k} \beta_i v_i = 0 \)

• \(\sum_{i=1}^{k} \beta_i = k - 2 \)

This gives us a reordering of \(v_1, \ldots, v_n \) (though we still call it \(v_1, \ldots, v_n \)). We are concerned with \(| \sum_{i=1}^{k} v_i |\).

First note that

\[
\sum_{i=1}^{k} v_i = \sum_{i=1}^{k} v_i - \sum_{i=1}^{k} \beta_i v_i = \sum_{i=1}^{k} (1 - \beta_i) v_i.
\]

Hence

\[
| \sum_{i=1}^{k} v_i | = | \sum_{i=1}^{k} (1 - \beta_i) v_i | \leq \sum_{i=1}^{k} |1 - \beta_i| | v_i | \leq \sum_{i=1}^{k} |1 - \beta_i | = \sum_{i=1}^{k} 1 - \beta_i = k - \sum_{i=1}^{k} \beta_i = k - (k - 2) = 2.
\]

Using the same technique one can show the following:

Theorem 4.3 Let \(d \geq 1 \). If \(V = \{ v_1, \ldots, v_n \} \subseteq \mathbb{R}^d \), \((\forall i) | v_i | \leq 1 \), and \(\sum_{i=1}^{n} v_i = 0 \) then there exists a reordering \(w_1, \ldots, w_n \) of \(V \) such that \((\forall k) | \sum_{i=1}^{k} w_i | \leq d \).

References