Steinitz's Lemma

An Exposition by William Gasarch

1 Introduction

This exposition is based on Imre Barany's article [1].
Consider the following easy theorem:

Theorem 1.1 If $V=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{1},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq 1\right]$.

We will prove this in Section 2. How does this theorem generalize to R^{2} ? to R^{d} ? The absolute value signs now become magnitudes of vectors. Hence one might make the following conjecture:

Conjecture 1.2 If $V=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathrm{R}^{2},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq 1\right]$.

Alas this is not true. Take the 3 third roots of unity. The sum of any 2 has magnitude bigger than 1 . Hence we can never get $\left|w_{1}+w_{2}\right| \leq 1$. We leave it as an exercise to find, for all n, a counterexample.

What if we don't insist on 1 as an upper bound? What if we want to go to higher dimensions? The following are true:

1. If $V=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathrm{R}^{2},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq \sqrt{5} \sim 2.24\right]$.
2. If $V=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathrm{R}^{d},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq \sqrt{\left(4^{d}-1\right) / 3}\right]$.
3. If $V=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathrm{R}^{2},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq 2\right]$.
4. If $V=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathrm{R}^{2},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq d\right]$.

We will prove items 1 and 3. Item 2 has a similar proof as item 1, and Item 4 has a similar proof as item 3 .

2 The $d=1$ Case

To prove the $d=1$ case we first prove a lemma which will be helpful in the $d=2$ case.

Def 2.1 Let $A=\left(a_{1}, \ldots, a_{m}\right)$ and $B=\left(b_{1}, \ldots, b_{L}\right)$ An interleaving of A and B is an ordering on the elements $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{L}\right\}$ such that if $i<j$ then a_{i} will proceed a_{j} and b_{i} will proceed b_{j}. As an example, if $m=3$ and $L=4$ then $\left(a_{1}, b_{1}, b_{2}, b_{3}, a_{2}, a_{3}, b_{4}\right)$ is an interleaving of A and B.

Lemma 2.2 If $A=\left(a_{1}, \ldots, a_{m}\right) \in[0,1]^{m}, B=\left(b_{1}, \ldots, b_{L}\right) \in[-1,0]^{L}$, and $\sum_{x \in A \cup B} x=0$, then there exists an interleaving of A and $B,\left(w_{1}, \ldots, w_{m+L}\right)$ such that $(\forall k \leq m+L)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq\right.$ $1]$.

Proof: We define the reorder inductively.
Let

$$
w_{1}=a_{1} .
$$

Assume that w_{1}, \ldots, w_{p} are defined, $p<m+L$, and $(\forall k \leq p)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq 1\right]$.

1. Case 1: $\sum_{i=1}^{p} w_{i}<0$. There must exist an element of A to draw from since otherwise $\sum_{x \in A \cup B} x<0$. Let w_{p+1} be the next element of A. Clearly $\left|\sum_{i=1}^{p+1} w_{i}\right| \leq 1$.
2. Case 2: $\sum_{i=1}^{p} w_{i}>0$. There must exist an element of B to draw from since otherwise $\sum_{x \in A \cup B} x>0$. Let w_{p+1} be the next element of B. Clearly $\left|\sum_{i=1}^{p+1} w_{i}\right| \leq 1$.
3. Case 3: $\sum_{i=1}^{p} w_{i}=0$. If there is an element of A available to take let w_{p+1} be the next element of A. If not then if there is an element of B available. Clearly $\left|\sum_{i=1}^{p+1} w_{i}\right| \leq 1$.

Theorem 2.3 If $V=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathrm{R}^{1},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq 1\right]$.

Proof: Let A be the nonnegative elements in V. Let B be the negative elements in V. Apply Lemma 2.2.

3 The $d=2$ Case, First Proof

Theorem 3.1 If $V=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathrm{R}^{2},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\mid \sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq \sqrt{5}\right]$.

Proof:

Let $U \subseteq V$ be such that $\left|\sum_{u \in U} U\right|$ is maximized. Let $u^{*}=\sum_{u \in U} u$. We can assume that u^{*} is of the form $(0, a)$, so it points straight up.

The following facts are easily verified:

1. Every vector in V that is above or on the x-axis is in V. (If not then add that vector to U to form a U^{\prime} with $\left.\left|\sum_{u \in U} u\right|<\left|\sum_{u \in U^{\prime}} u\right|.\right)$
2. The sum of the x-coordinates of the vectors in U is zero (since $u^{*}=(0, a)$.
3. Every vector in V that is below the x-axis is in \bar{U}. (If not then remove that vector from U to form a U^{\prime} with $\left|\sum_{u \in U} u\right|<\left|\sum_{u \in U^{\prime}} u\right|$.)
4. The sum of the x-coordinates of the vectors in \bar{U} is zero (Since $\sum_{u \in U} u+\sum_{u \in \bar{U}} u=0$ and $\sum_{u \in \bar{U}}=0$.

Let $U=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)\right\}$ and $\bar{U}=\left\{\left(c_{1}, d_{1}\right), \ldots,\left(c_{L}, d_{L}\right)\right\}$. By items 2 and 4 we have $\sum_{i=1}^{m} a_{i}=0$ and $\sum_{i=1}^{L} c_{i}=0$. Apply Theorem 2.3 to both $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{c_{1}, \ldots, c_{L}\right\}$. By renumbering we can assume that

- $(\forall k \leq m)\left[\left|\sum_{i=1}^{k} a_{i}\right| \leq 1\right]$, and
- $(\forall k \leq L)\left[\left|\sum_{i=1}^{k} c_{i}\right| \leq 1\right]$

By items 1 and $3(\forall i \leq m)\left[b_{i} \geq 0\right]$ and $(\forall i \leq L)\left[d_{i} \leq 0\right]$. Since $\sum_{i=1}^{n} v_{i}=0$ we know that $\sum_{i=1}^{m} b_{i}+\sum_{i=1}^{L} d_{i}=0$. By Lemma 2.2 there is an interlacing $\left(b_{1}, \ldots, b_{m}\right)$ and $\left(d_{1}, \ldots, d_{L}\right)$ so that any initial partial sum has absolute value ≤ 1.

We use this ordering. Let it be

$$
\begin{gathered}
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) . \\
\sum_{i=1}^{k}\left(x_{i}, y_{i}\right)=\left(\sum_{i=1}^{k} x_{i}, \sum_{i=1}^{k} y_{i}\right) .
\end{gathered}
$$

Since $\left|\sum_{i=1}^{k} x_{i}\right|$ is the sum of a partial initial sums of the a_{i} 's and of the b_{i} 's by the triangle inequality this quantity is ≤ 2.

Since we used Lemma $2.2\left|\sum_{i=1}^{k} y_{i}\right| \leq 1$.
Note that in the above few lines we used $|\cdots|$ to mean absolute value. We now use it to mean distance in R^{2}.

$$
\left|\sum_{i=1}^{k}\left(x_{i}, y_{i}\right)\right|=\left|\left(\sum_{i=1}^{k} x_{i}, \sum_{i=1}^{k} y_{i}\right)\right|=\sqrt{\left(\sum_{i=1}^{k} x_{i}\right)^{2}+\left(\sum_{i=1}^{k} y_{i}\right)^{2}} \leq \sqrt{2^{2}+1^{2}}=\sqrt{5}
$$

Using the same technique one can show the following:

Theorem 3.2 Let $d \geq 1$. If $V=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathrm{R}^{d},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq \sqrt{\frac{4^{d}-1}{3}}\right]$.

4 The $d=2$ Case, Second Proof

Theorem 4.1 If $V=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathrm{R}^{2},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq 2\right]$.

Proof: Rewrite $\sum_{i=1}^{n} v_{i}=0$ as

$$
\sum_{i=1}^{n}\left(\frac{n-2}{n}\right) v_{i}=0
$$

and note that

$$
\sum_{i=1}^{n} \frac{n-2}{n}=n-2 .
$$

We restate this in a less informative way in order to generalize it:
$\exists \alpha_{1}, \ldots, \alpha_{n}$ such that

- $(\forall i)\left[0 \leq \alpha_{i} \leq 1\right]$.
- $\sum_{i=1}^{n} \alpha_{i} v_{i}=0$
- $\sum_{i=1}^{n} \alpha_{i}=n-2$

We want to derive re-order the v_{i} 's (but we still call them v_{1}, \ldots, v_{n}), remove v_{n} from the list, and have the following:
$\left.\exists \beta_{1}, \ldots, \beta_{n}\right)$ such that

- $(\forall i)\left[0 \leq \beta_{i} \leq 1\right]$.
- $\sum_{i=1}^{n-1} \beta_{i} v_{i}=0$
- $\sum_{i=1}^{n-1} n \beta_{i}=n-3$

We first look at n-tuples of β_{i} 's and then see if we can make one of them 0 . Let

$$
\text { TEMP } \left.=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} \beta_{i} v_{i}=0 \wedge \sum_{i=1}^{n} \beta_{i}=n-3\right] .\right\}
$$

Note that

- $\left(\frac{n-3}{n-2} \alpha_{1}, \ldots, \frac{n-3}{n-2} \alpha_{n}\right) \in T E M P$. In particular TEMP $\neq \emptyset$.
- TEMP is a convex polytope that is a subset of $[0,1]^{n}$.
- There is an $n \times 3$ matrix A and a vector $b \in \mathrm{R}^{3}$ such that

$$
\left.T E M P=\left\{\left(\beta_{1}, \ldots, \beta_{n}\right) \in[0,1]^{n}: A x \leq b\right] .\right\}
$$

We need a Lemma

Lemma 4.2 Let A be an $n \times e$ matrix and $b \in \mathrm{R}^{e}$. Let

$$
B=\left\{x \in[0,1]^{n}: A x=b\right\} .
$$

If B is nonempty then there exists a point in B with $\geq n-e$ of the variables in $\{0,1\}$

Proof sketch: Take an extreme point of B.
TEMP satisfies the condition of B in Lemma 4.2 with $e=3$. Hence there is a point in TEMP with $\geq n-3$ coordinates in $\{0,1\}$. One of the equations is

$$
\beta_{1}+\cdots+\beta_{n}=n-3 .
$$

Hence there must be an i with $\beta_{i}=0$. Reorder to make that β_{n}. We are done.
We can keep doing this to obtain, for all $1 \leq k \leq n$, there exists $\beta_{1}, \ldots, \beta_{i}$ with

- $\sum_{i=1}^{k} \beta_{i} v_{i}=0$
- $\sum_{i=1}^{k} \beta_{i}=k-2$

This give us a reordering of v_{1}, \ldots, v_{n} (though we still call it v_{1}, \ldots, v_{n}). We are concerned with $\left|\sum_{i=1}^{k} v_{i}\right|$.

First note that

$$
\sum_{i=1}^{k} v_{i}=\sum_{i=1}^{k} v_{i}-\sum_{i=1}^{k} \beta_{i} v_{i}=\sum_{i=1}^{k}\left(1-\beta_{i}\right) v_{i}
$$

Hence

$$
\begin{aligned}
& \left|\sum_{i=1}^{k} v_{i}\right|=\left|\sum_{i=1}^{k}\left(1-\beta_{i}\right) v_{i}\right| \leq \sum_{i=1}^{k}\left|1-\beta_{i}\right|\left|v_{i}\right| \leq \sum_{i=1}^{k}\left|1-\beta_{i}\right|=\sum_{i=1}^{k} 1-\beta_{i}=k-\sum_{i=1}^{k} \beta_{i}=k-(k-2) \\
& \quad=2
\end{aligned}
$$

Using the same technique one can show the following:

Theorem 4.3 Let $d \geq 1$. If $V=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathrm{R}^{d},(\forall i)\left[\left|v_{i}\right| \leq 1\right]$, and $\sum_{i=1}^{n} v_{i}=0$ then there exists a reordering w_{1}, \ldots, w_{n} of V such that $(\forall k)\left[\left|\sum_{i=1}^{k} w_{i}\right| \leq d\right.$.

References

[1] I. Barany. On the power of linear depenencies. In Building bridges between math and computer science (Bolyai society mathematical studies number 19), pages 31-45. Springer, 2008. www. renyi.hu/~barany/cikkek/steinitz.pdf.

