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1 Introduction

The following is a classic problem in streaming algorithms and often the first one taught.

Assume n is large and k is constant. Alice is going to say all but k of the numbers in the set
{1,2,...,n} in some order. Bob will listen and try to discern what the k missing numbers are. If
Bob’s brain could easily store and access n bits then he would be able to store a bit vector and
mark each number as it came in, then scan the bit vector for the k missing numbers. But what if
Bob’s brain can only store m < n bits?

This can be presented as a fun math puzzle, and for £ = 1 and even k = 2 the answer is fun. Is
it fun for £ = 3?7 k£ > 47 I leave that as an exercise for the reader. We present solutions for £ = 1,

k=2,k=3and k > 4.
2 Find the Missing Number

Alice is going to say all but one of the numbers in the set {1,2,...,n} in some order. Bob will
listen and try to discern what the missing number is. Alice says the numbers x1, zo, ..., Tp_1.

They are all distinct elements from {1, ..., n} but one is missing. Let y; be the missing number.
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Bob can do this problem storing just O(log n) bits. As Bob hears the numbers he maintains the

SUM. This takes just O(log n) bits. At the end he has »,_,,, | Zi.

2.1 Solution Using the Sum

Note that
: n(n+1)
S = (X 0-y="0r0
1<i<n—1 1<i<n
Bob finds the missing number is y; = @ — D i<i<n_1 Ti-

Note 2.1 @ has size < [2lgn], hence this algorithm takes space < [2lgn]. Can we do
better? Yes! Realize that the final answer is between 1 and n. Hence if we did all calculations mod

n we would get the same answer (equating 0 with n). If n is odd then w =0 (mod n). Hence

Y118

n(n2+1)_ > xi:(@_ > :1:1> (modn)=— > x; (modn).

1<i<n—1 1<i<n—1 1<i<n—1

Hence Bob can compute » ,_,,,_, #;) (mod n) which takes [lgn| bits. He can then subtract
it from n (can this by done in lg n bits?) and get the answer, only using [lgn] bits.

If n is even then use mod n + 1.

2.2 Solution Using XOR

An alternative solution: View the numbers x1,...,z, 1 as [lgn]-bit strings. After seeing the
x1,...,r; Bob maintains z; & x5 - - - @ x . One can show that the final string Bob has, 1 @ - - - &

ZTp—1, IS the missing number.



3 Find the Missing Two Numbers

Alice is going to say all but two of the numbers in the set {1,2,...,n} in some order. Bob will
listen and try to discern which two numbers are missing. We denote the missing numbers ¥, yo.

We give three solutions that use O(logn) bits.

3.1 Solution that Uses the Quadratic Formula

As Bob hears the numbers he maintains the SUM and SUM OF SQUARES. At the end Bob has

El§i§n72 Li
Z1gz‘§n—2 ;7

Since Bob can calculate and store

2
Z1gign72 ; and 219‘9%2 Ty

he can deduce

S =YY= 1cicnTi — Di<icn
t =yitys = > i<i<n 7 — > i<i<n i
We derive vy, yo from s, ¢ as follows.
Y2=5—U
t=yi+(s—y)*=2yi — 2591 + 5°
2y? — 2sy; + 82—t =10

Now use the quadratic formula to find y; and then y» = s — y; to find ys.

Note 3.1 The above solution takes 31gn + 21gn = 51lgn space since we need to store a sum of
size O(n?®) and a sum of size O(n?). We can do better! We can’t use mod n since the quadratic
might have more than 2 roots mod n. Let p be a prime such that n < p < 2n. Do all of the above

mod p works. This will take < lg(2n) +1g(2n) < 21g(n) + O(1).



3.2 Solution that Uses Sums of Powers

This solution is identical to the one in Section 3.1 up until we find s,¢. We then find y;y- as

follows:

s —t
2

= Y1Y2.

Let s = y; + y2 and p = y;y>. Form the polynomial

X=X +p=X>— (1 + )X + y1ve = (X — 1) (X — o).

Find the roots of this polynomial.
We call this THE POLY-ROOTS TRICK throughout. Note that all we need is the symmetric

functions v, y>. More generally we will need the symmetric functions of vy, yo, . . . , Y.

Note 3.2 Similar to the solution in Section 3.1, we can do all of this mod p and hence space

21g(n) + O(1).

3.3 Solution that uses Symmetric Functions Throughout

As Bob hears the numbers he maintains the SUM and the SUM OF PRODUCTS OF PAIRS. After
hearing the first L numbers he has in his head } ,_,.; z; AND ZngKng LT

We need to show that he can actually do this. Let

sf(x1,...,x) = 1( We don’t really need s, but it will make the notation nice.)
L _
51 ($1>"'7xL) _Zlgingi
L _
sy (wy,...,0p) = Zl§i<j§L Ly j
For notational convenience we use s” to mean s”(z1,...,xp)
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Assume Bob has 557!, s/ and sZ~!. And then Bob sees 1. Bob wants sf, s¥, s%.

We explain all of this by expanding everything out

s& = 1. Thats easy.

st =(x1+ - +xp)+r, =57+

‘We rewrite this as

L L2 L1
sy =(r1+-+zp1)+x, =57 "+xL5

since this way it will give all of he equations (and more so for the £ = 3 and £ > 4 cases) look the

same.

L _ E
S9 = T

1<i<j<L
We break this sum up into two parts- those parts that use z; and those parts that do not. If a

product of two z; terms uses x, then it is of the form x;z . hence

851: Z xixj+xL(x1+---+xL_1).

1<i<j<L—1

. L1 . L1
AH- note that Zl§i<j§L—1 zix; +ap(r 4+ +ap)issktand zy + - 4 gy is sEL
So we write this as

L L—1 L—-1

We now write all of the equations together:



L _
sy =1

L _ -1 L-1
sT =87 Tt xS

L _ -1 L-1
Sy =8y xSy

Hence we can keep the counters s; and s, and update them easily, using only O(log n) space.

At the end we have s7 2 and s 2.

KEY: Bob can compute, before seeing any of the data:

st = Z1gi§n Li = Zlgigni
sy = Zl§i<j§n Tilj = Zl§i<j§n ij
We want to derive s2(y1,v2) = y1 + y2 and s3(y1,%2) = y19» and then finish up the proof as

we did in Section 3.2. For notational convenience we denote s2(yy, y2) by s? and s3(y1, y2) by s3.

Note that
n __ ,n—2 2
R W T
spo= sy 4 818t 4 3

Note that s7, s3, 5772, 5572 are known. Hence s? = (y; +¥3) and s2 = y,3» can be determined.

Now do the poly-root trick.
4 Find the Missing Three Numbers

Alice is going to say all but three of the numbers in the set {1,2,...,n} in some order. Bob

will listen and try to discern which three numbers are missing. We denote the missing numbers

Y1, Y2, y3. We give two solutions.



4.1 Solution Using Sums of Powers

Bob keeps track of the sum of terms, squares of terms, and cubes of terms. By subtracting them
from the known quantities > , 4, and Y ;" 4%, and Y, i* Bob obtains:

Y1+ y2+ys

v+ s + 3

vi+ys+ i

Can he use these to determine ¥, Y2, y3?

We WANT to obtain:

Y1 + y2 + ys3 (thats easy!)

Y1y2 + Y1y3 + Y2y3

Y1Y2Y3

ONCE we have them we form the polynomial

X2 — (1 +y2 + ) X2+ (11y2 + 11y + 12y3) X — yiyeys = (X — 1) (X — 1) (X — y3).

Find its roots. Then you have y1, y2.y3.
OKAY, now to find those functions of 1, ys, y3.

We first try an intuitive thing:

(i +ye+ys)® — (i +y5+v3)

This is intuitive to try since we can already see that all of the square terms will drop out and

might leave us with something simple.



(1 + 92 +u3)* — (U5 + U5 +43) = 2u1ya + 20193 + 2y2y3 = 2(Y192 + Y1Y3 + Yays3).

GREAT!- that last term is twice what we want. In other words:

(1 + 12 +us)”> — (Y7 +v5 +13)
2

Y1Y2 + Y3 + Y2u3 =

NOW we want y192y3.
The next equation is harder to motivate so I won’t even try (though its a special case of New-

ton’s identity which I will discuss when doing the general £ case):

iy — 12 YLYs T Y2ys) (1 + Y2 ys) = (91 v2  us) (i + 43 95) + (7 05+ 43)
3 .

Great! Now that we have y; + y2 + y3, y1y2 + Y1y3 + Y293, Y192Y3

4.2 Solution that uses Symmetric Functions Throughout

This solution is due to Y. Minsky, A. Trachtenberg, and R. Zippel [1].

The KEY to the solution in the last section was that we used the sums-of-powers to obtain the
symmetric functions y; +y2 + y3, y1y2 + ¥1Y3 + Y2¥3, y1y2y3. In this solution we get the symmetric
functions more directly.

As Bob hears the first L numbers x4, . . ., x7, he maintains:
i 21951: Li-

L
. 21§i<j§L Lilyg-

L
i Z1§i<j<k§L LiLj -



We need to show that he can actually do this. Let

sb(z1,...,2y) =1 (We have this just so the equations look nice.)
L _

sy(@1,. .. 00) = 219‘9: Li

sk (x xrr) =y, T,
2\4Fy e bL) — 1<i<j<L 2]
L _ e

s3 (1, ..., 2L) _Zlgi<j<k§Lx1IJIk

E ional - L L
or notational convenience we use s; to mean s; (21, ..., xr)

We need to show that Bob can easily get sf, s¥, s&, sk from s5*, s, s57, st~ and .

s& = 1 so thats easy.

L -1 -1 -1
st =(x1+-+apq)taL=s7 +axr =8 +aLsy .

SO we now have s in terms of stuff Bob knows.
Consider s§ = >, <icj<r, Ti®; We separate out the pairs the involve z, from the ones that
don’t. The ones that don’t involve x, are just s~ = > 1<icj<r1Tix;. The ones that DO involve

21, involve just x;, and some z; with ¢ < L. Thats just

L

-1
1

v+ rox, + -+ rparp =xL(v + - Fxpo) =218

Hence

L _ L1 L1
Sy =8y T+ xSy

SO we now have sk in terms of stuff Bob knows.

sk is similar and we leave it to the reader. To summarize we have:



st =1

SIL = le_l + :pLsé_l
s = sk st
sko=sl T+ apsh!

Hence we can keep the counters s1, s2, s3 and update them easily, using only O(logn) space.
At the end we have s and s, and s>,

KEY: Bob can compute, before seeing any of the data:

s =1

sy = Z1§z’§n Ti = Zlgigni

sy = Zl§i<j§n Lilj = Zl§i<j§n ij

sy = Zl§i<j<lc§n LiLjLg = Zl§i<j<k:§n ijk

We want to derive s5(y1, Y2, y3) = Y1 + yo + y3 and s3(y1, Y2, ¥3) = y1y2 + Y1ys + y2ys and

s3(y1, Y2, Y3) = y192y3. We can then finish up the proof using the poly-roots trick. For notational

convenience we denote s?(yi, y2) by s;. Note that

For s, it is easy to relate s7, s7°, and s? since

St(@r.. @) =@ 4z = (@1 + Tooz) + (1 + Y2 +ys) = s77° + 55

Hence we can derive s? from s7 and 57>, both of which we know.
. n . . .
Consider sj = >, ;_;, Zir;. We break this into pieces. Some pairs use NO elements of
n—3 __ .
Y1,Y2,y3. That would be s57° = 219 <j<n—3TiTj. Some pairs use y; and some element of

{z1,...,2,_3}. That would be
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yi(xg+ -+ xp_3) = y18?_3

Some pairs use yo and some element of {z1, ..., x,_3}. That would be

yo(x1 + -+ xp3) = 928?73

Some pairs use y3 and some element of {1, ..., x, 3}. That would be

ys(x1+ -+ xp_3) = y38?_3

The sum of the last three cases is

(i +ye+ys) (@4 +an3) =@+ +To3) (Y1 +y2 +y3) = 78]

Some pairs use two elements from {y1, y2, y3}. That would be

Y1Y2 + Y193 + Yoy = Ss.

If you put this all together you get:

n _ ,n—-3_.3 n—3.3 n—3 .3
Sy = Sg "Sp+ S “S]+ S8y "S5

A similar equation for s5 can also be derived; however, we leave that for the reader.

To summarize we have in total:

n _ .n—3.3 n—3 .3
S7 =8y syt Sy TSy
n _ n—3.3 n—3 .3 n—3 .3
Sy =8y "Sgt sy ST+ Sy TS
S0 =033 4 st Psd 4 s 33 4 50 s]
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Note that s7, s5, s, s772, s572, sh73, s07°, st are known. Hence s3, s3, s can all be derived.

Now we can do the poly-roots trick.
S General k&

We’ll need the symmetric functions for both solutions.

Notation 5.1

si(xy,...,op) =1

sp(zy, ... xL) = Z1gigL Li

5§<I17 7$L) = 21§i1<i2§L Liy Liy
3§<x1a ,TL) = Zlgi1<1‘2<i3gL Liy LiyLig
sﬁ(ml, ) = Zl§i1<~~<ik§L Liy * Ty,

We often leave out the arguments for notational convenience.
We give two solutions. The arguments used here are similar to the ones used in the £ = 3 case

so we omit them.

5.1 Solution Using Sums of Powers

Bob keeps track of the sums of powers, up to the kth power. At the end he has

—k
i Z?:l xf

From these Bob can easily derive
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b Z?:l Yis
hd Z§:1 yzz’

k
> Y
We find the symmetric functions FROM these. How? By using Newton’s identities. We

abbreviate s (y1, ..., yx) by s* . We abbreviate Zle y? by pg.

msfn(yb s ayk) = Z(_l)iil yh s Yk Z

m k
msh, = > (=1)"sh (v Z

=1
5.2 Solution Using Symm Functions Throughout

This algorithm is essentially from a paper by Yaron Minksy, Ari Trachtenberg, Richard Zippel [1].

Using an argument similar to the one in Section 3.3 we can obtain:

Lemma 5.2
L _
sy =1
s L1
st = + 218y
-1
s =si 4oy st
L1
sko=sk 4 aps)
-1
sk =st tapst
Hence if Bob has s¥7*, ..., 5,?’1, and then sees x1, you will be able to calculate s¥, ..., sk. If all

of the z; are in {1,... ,n} then you can do all of this in space O(klogn). Therefore Bob can find
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KEY: Bob can compute the following independent of the data. He will do this after he knows

s’f"“, R sz_k , and use them one-at-a-time below to save space.

n .

1 = Z1§z‘gn b
no .

Sy = Zl§i1<i2§n ]
n pu— . . — S

S3 = Zl§i1<i2<i3§n Liljl = 21§i1<z‘2<i3§n ijk
n - . .

S = 21§i1<---<ik Liy w o Tgy, = El§i1<---<ik§n b1l

We seek, forall 1 < i < k, s¥(yy, ..., yx). We denote these s for notational convenience. The

following are easily seen to be true:

S'T — 8717, k k + Sk: n—=k
83 _ n k k + Sn k k + Sn k k
o n k k n—k _k —k Jk n—k _k
sy =8 "sgtsiys) sl TSy 87
n n—~k k 17— k n—k k
Sy =S ' So+ S 131+3k 2 b5y sy

Note that Bob knows s?, s7*, sk, si~*. Hence Bob can use these equations to, one at a time

(to save space) find s¥,s5, ..., s¥. Bob forms the polynomial

Xk —s’ka_l +s]§Xk_2 4+ -+ (—1)’“5’,: = (X —y)(X —y2) - (X — ).

Find the roots.
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