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1 Introduction

The following is a classic problem in streaming algorithms and often the first one taught.

Assume n is large and k is constant. Alice is going to say all but k of the numbers in the set

{1, 2, . . . , n} in some order. Bob will listen and try to discern what the k missing numbers are. If

Bob’s brain could easily store and access n bits then he would be able to store a bit vector and

mark each number as it came in, then scan the bit vector for the k missing numbers. But what if

Bob’s brain can only store m� n bits?

This can be presented as a fun math puzzle, and for k = 1 and even k = 2 the answer is fun. Is

it fun for k = 3? k ≥ 4? I leave that as an exercise for the reader. We present solutions for k = 1,

k = 2, k = 3 and k ≥ 4.

2 Find the Missing Number

Alice is going to say all but one of the numbers in the set {1, 2, . . . , n} in some order. Bob will

listen and try to discern what the missing number is. Alice says the numbers x1, x2, . . . , xn−1.

They are all distinct elements from {1, . . . , n} but one is missing. Let y1 be the missing number.
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Bob can do this problem storing just O(log n) bits. As Bob hears the numbers he maintains the

SUM. This takes just O(log n) bits. At the end he has
∑

1≤i≤n−1 xi.

2.1 Solution Using the Sum

Note that ∑
1≤i≤n−1

xi = (
∑

1≤i≤n

i)− y =
n(n+ 1)

2
− y1.

Bob finds the missing number is y1 =
n(n+1)

2
−
∑

1≤i≤n−1 xi.

Note 2.1 n(n+1)
2

has size ≤ d2 lg ne, hence this algorithm takes space ≤ d2 lg ne. Can we do

better? Yes! Realize that the final answer is between 1 and n. Hence if we did all calculations mod

n we would get the same answer (equating 0 with n). If n is odd then n(n+1)
2
≡ 0 (mod n). Hence

y1 is

n(n+ 1)

2
−

∑
1≤i≤n−1

xi =

(
n(n+ 1)

2
−

∑
1≤i≤n−1

xi

)
(mod n) = −

∑
1≤i≤n−1

xi (mod n).

Hence Bob can compute
∑

1≤i≤n−1 xi) (mod n) which takes dlg ne bits. He can then subtract

it from n (can this by done in lg n bits?) and get the answer, only using dlg ne bits.

If n is even then use mod n+ 1.

2.2 Solution Using XOR

An alternative solution: View the numbers x1, . . . , xn−1 as dlg ne-bit strings. After seeing the

x1, . . . , xL Bob maintains x1⊕ x2 · · · ⊕ xL. One can show that the final string Bob has, x1⊕ · · · ⊕

xn−1, IS the missing number.
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3 Find the Missing Two Numbers

Alice is going to say all but two of the numbers in the set {1, 2, . . . , n} in some order. Bob will

listen and try to discern which two numbers are missing. We denote the missing numbers y1, y2.

We give three solutions that use O(log n) bits.

3.1 Solution that Uses the Quadratic Formula

As Bob hears the numbers he maintains the SUM and SUM OF SQUARES. At the end Bob has

∑
1≤i≤n−2 xi∑
1≤i≤n−2 x

2
i

Since Bob can calculate and store∑
1≤i≤n−2 xi and

∑
1≤i≤n−2 x

2
i

he can deduce

s = y1 + y2 =
∑

1≤i≤n xi −
∑

1≤i≤n i

t = y21 + y22 =
∑

1≤i≤n x
2
i −

∑
1≤i≤n i

2

We derive y1, y2 from s, t as follows.

y2 = s− y1

t = y21 + (s− y1)
2 = 2y21 − 2sy1 + s2

2y21 − 2sy1 + s2 − t = 0

Now use the quadratic formula to find y1 and then y2 = s− y1 to find y2.

Note 3.1 The above solution takes 3 lg n + 2 lg n = 5 lg n space since we need to store a sum of

size O(n3) and a sum of size O(n2). We can do better! We can’t use mod n since the quadratic

might have more than 2 roots mod n. Let p be a prime such that n ≤ p ≤ 2n. Do all of the above

mod p works. This will take ≤ lg(2n) + lg(2n) ≤ 2 lg(n) +O(1).
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3.2 Solution that Uses Sums of Powers

This solution is identical to the one in Section 3.1 up until we find s, t. We then find y1y2 as

follows:

s2 − t

2
= y1y2.

Let s = y1 + y2 and p = y1y2. Form the polynomial

X2 − sX + p = X2 − (y1 + y2)X + y1y2 = (X − y1)(X − y2).

Find the roots of this polynomial.

We call this THE POLY-ROOTS TRICK throughout. Note that all we need is the symmetric

functions y1, y2. More generally we will need the symmetric functions of y1, y2, . . . , yk.

Note 3.2 Similar to the solution in Section 3.1, we can do all of this mod p and hence space

2 lg(n) +O(1).

3.3 Solution that uses Symmetric Functions Throughout

As Bob hears the numbers he maintains the SUM and the SUM OF PRODUCTS OF PAIRS. After

hearing the first L numbers he has in his head
∑

1≤i≤L xi AND
∑L

1≤i<j≤L xixj .

We need to show that he can actually do this. Let

sL0 (x1, . . . , xL) = 1( We don’t really need s0 but it will make the notation nice.)

sL1 (x1, . . . , xL) =
∑

1≤i≤L xi

sL2 (x1, . . . , xL) =
∑

1≤i<j≤L xixj

For notational convenience we use sLi to mean sLi (x1, . . . , xL)
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Assume Bob has sL−1
0 , sL−1

1 and sL−1
2 . And then Bob sees xL. Bob wants sL0 , sL1 , sL2 .

We explain all of this by expanding everything out

sL0 = 1. Thats easy.

sL1 = (x1 + · · ·+ xL−1) + xL = sL−2
1 + xL.

We rewrite this as

sL1 = (x1 + · · ·+ xL−1) + xL = sL−2
1 + xLs

L−1
0

since this way it will give all of he equations (and more so for the k = 3 and k ≥ 4 cases) look the

same.

sL2 =
∑

1≤i<j≤L

xixj

We break this sum up into two parts- those parts that use xL and those parts that do not. If a

product of two xi terms uses xL then it is of the form xixL. hence

sL2 =
∑

1≤i<j≤L−1

xixj + xL(x1 + · · ·+ xL−1).

AH- note that
∑

1≤i<j≤L−1 xixj + xL(x1 + · · · + xL−1) is sL−1
2 and x1 + · · · + xL−1 is sL−1

1 .

So we write this as

sL2 = SL−1
2 + xLs

L−1
1 .

We now write all of the equations together:
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sL0 = 1

sL1 = sL−1
1 + xLs

L−1
0

sL2 = sL−1
2 + xLs

L−1
1

Hence we can keep the counters s1 and s2 and update them easily, using only O(log n) space.

At the end we have sn−2
1 and sn−2

2 .

KEY: Bob can compute, before seeing any of the data:

sn1 =
∑

1≤i≤n xi =
∑

1≤i≤n i

sn2 =
∑

1≤i<j≤n xixj =
∑

1≤i<j≤n ij

We want to derive s21(y1, y2) = y1 + y2 and s22(y1, y2) = y1y2 and then finish up the proof as

we did in Section 3.2. For notational convenience we denote s21(y1, y2) by s21 and s22(y1, y2) by s22.

Note that

sn1 = sn−2
1 + s21

sn2 = sn−2
2 + sn−2

1 s21 + s22

Note that sn1 , sn2 , sn−2
1 , sn−2

2 are known. Hence s21 = (y1+y2) and s22 = y1y2 can be determined.

Now do the poly-root trick.

4 Find the Missing Three Numbers

Alice is going to say all but three of the numbers in the set {1, 2, . . . , n} in some order. Bob

will listen and try to discern which three numbers are missing. We denote the missing numbers

y1, y2, y3. We give two solutions.
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4.1 Solution Using Sums of Powers

Bob keeps track of the sum of terms, squares of terms, and cubes of terms. By subtracting them

from the known quantities
∑n

i=1 i, and
∑n

i=1 i
2, and

∑n
i=1 i

3 Bob obtains:

y1 + y2 + y3

y21 + y22 + y23

y31 + y32 + y33

Can he use these to determine y1, y2, y3?

We WANT to obtain:

y1 + y2 + y3 (thats easy!)

y1y2 + y1y3 + y2y3

y1y2y3

ONCE we have them we form the polynomial

X3 − (y1 + y2 + y3)X
2 + (y1y2 + y1y3 + y2y3)X − y1y2y3 = (X − y1)(X − y2)(X − y3).

Find its roots. Then you have y1, y2.y3.

OKAY, now to find those functions of y1, y2, y3.

We first try an intuitive thing:

(y1 + y2 + y3)
2 − (y21 + y22 + y23)

This is intuitive to try since we can already see that all of the square terms will drop out and

might leave us with something simple.

7



(y1 + y2 + y3)
2 − (y21 + y22 + y23) = 2y1y2 + 2y1y3 + 2y2y3 = 2(y1y2 + y1y3 + y2y3).

GREAT!- that last term is twice what we want. In other words:

y1y2 + y1y3 + y2y3 =
(y1 + y2 + y3)

2 − (y21 + y22 + y23)

2

NOW we want y1y2y3.

The next equation is harder to motivate so I won’t even try (though its a special case of New-

ton’s identity which I will discuss when doing the general k case):

y1y2y3 =
(y1y2 + y1y3 + y2y3)(y1 + y2 + y3)− (y1 + y2 + y3)(y

2
1 + y22 + y23) + (y31 + y32 + y33)

3
.

Great! Now that we have y1 + y2 + y3, y1y2 + y1y3 + y2y3, y1y2y3

4.2 Solution that uses Symmetric Functions Throughout

This solution is due to Y. Minsky, A. Trachtenberg, and R. Zippel [1].

The KEY to the solution in the last section was that we used the sums-of-powers to obtain the

symmetric functions y1+y2+y3, y1y2+y1y3+y2y3, y1y2y3. In this solution we get the symmetric

functions more directly.

As Bob hears the first L numbers x1, . . . , xL he maintains:

•
∑

1≤i≤L xi.

•
∑L

1≤i<j≤L xixj .

•
∑L

1≤i<j<k≤L xixjxk.
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We need to show that he can actually do this. Let

sL0 (x1, . . . , xL) = 1 (We have this just so the equations look nice.)

sL1 (x1, . . . , xL) =
∑

1≤i≤L xi

sL2 (x1, . . . , xL) =
∑

1≤i<j≤L xixj

sL3 (x1, . . . , xL) =
∑

1≤i<j<k≤L xixjxk

For notational convenience we use sLi to mean sLi (x1, . . . , xL)

We need to show that Bob can easily get sL0 , sL1 , sL2 , sL3 from sL−1
0 , sL−1

1 , sL−1
2 , sL−1

3 and xL.

sL0 = 1 so thats easy.

sL1 = (x1 + · · ·+ xL−1) + xL = sL−1
1 + xL = sL−1

1 + xLs
L−1
0 .

SO we now have sL1 in terms of stuff Bob knows.

Consider sL2 =
∑

1≤i<j≤L xixj We separate out the pairs the involve xL from the ones that

don’t. The ones that don’t involve xL are just sL−1
2 =

∑
1≤i<j≤L−1 xixj . The ones that DO involve

xL involve just xL and some xi with i < L. Thats just

x1xL + x2xL + · · ·+ xL−1xL = xL(x1 + · · ·+ xL−1) = xLs
L−1
1

Hence

sL2 = sL−1
2 + xLs

L−1
1

SO we now have sL2 in terms of stuff Bob knows.

sL3 is similar and we leave it to the reader. To summarize we have:
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sL0 = 1

sL1 = sL−1
1 + xLs

L−1
0

sL2 = sL−1
2 + xLs

L−1
1

sL3 = sL−1
3 + xLs

L−1
2

Hence we can keep the counters s1, s2, s3 and update them easily, using only O(log n) space.

At the end we have sn−3
1 and sn−3

2 and sn−3
3 .

KEY: Bob can compute, before seeing any of the data:

sn0 = 1

sn1 =
∑

1≤i≤n xi =
∑

1≤i≤n i

sn2 =
∑

1≤i<j≤n xixj =
∑

1≤i<j≤n ij

sn3 =
∑

1≤i<j<k≤n xixjxk =
∑

1≤i<j<k≤n ijk

We want to derive s31(y1, y2, y3) = y1 + y2 + y3 and s32(y1, y2, y3) = y1y2 + y1y3 + y2y3 and

s33(y1, y2, y3) = y1y2y3. We can then finish up the proof using the poly-roots trick. For notational

convenience we denote s3i (y1, y2) by s3i . Note that

For s1 it is easy to relate sn1 , sn−3
1 , and s31 since

sn1 (x1 . . . , xn) = x1 + · · ·+ xn = (x1 + · · ·+ xn−3) + (y1 + y2 + y3) = sn−3
1 + s31.

Hence we can derive s31 from sn1 and sn−3
1 , both of which we know.

Consider sn2 =
∑

1≤i<j≤n xixj . We break this into pieces. Some pairs use NO elements of

y1, y2, y3. That would be sn−3
2 =

∑
1≤i<j≤n−3 xixj . Some pairs use y1 and some element of

{x1, . . . , xn−3}. That would be
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y1(x1 + · · ·+ xn−3) = y1s
n−3
1

Some pairs use y2 and some element of {x1, . . . , xn−3}. That would be

y2(x1 + · · ·+ xn−3) = y2s
n−3
1

Some pairs use y3 and some element of {x1, . . . , xn−3}. That would be

y3(x1 + · · ·+ xn−3) = y3s
n−3
1

The sum of the last three cases is

(y1 + y2 + y3)(x1 + · · ·+ xn−3) = (x1 + · · ·+ xn−3)(y1 + y2 + y3) = sn−3
1 s31

Some pairs use two elements from {y1, y2, y3}. That would be

y1y2 + y1y3 + y2y3 = s32.

If you put this all together you get:

sn2 = sn−3
2 s30 + sn−3

1 s31 + sn−3
0 s32.

A similar equation for sn3 can also be derived; however, we leave that for the reader.

To summarize we have in total:

sn1 = sn−3
1 s30 + sn−3

0 s31

sn2 = sn−3
2 s30 + sn−3

1 s31 + sn−3
0 s32

sn3 = sn−3
3 s30 + sn−3

2 s31 + sn−3
1 s32 + sn−3

3 s30
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Note that sn1 , sn2 , sn3 , sn−3
1 , sn−3

2 , sn−3
2 , sn−3

0 , s30 are known. Hence s31, s
3
2, s

3
3 can all be derived.

Now we can do the poly-roots trick.

5 General k

We’ll need the symmetric functions for both solutions.

Notation 5.1
sL0 (x1, . . . , xL) = 1

sL1 (x1, . . . , xL) =
∑

1≤i≤L xi

sL2 (x1, . . . , xL) =
∑

1≤i1<i2≤L xi1xi2

sL3 (x1, . . . , xL) =
∑

1≤i1<i2<i3≤L xi1xi2xi3

... =
...

sLk (x1, . . . , xL) =
∑

1≤i1<···<ik≤L xi1 · · ·xik

We often leave out the arguments for notational convenience.

We give two solutions. The arguments used here are similar to the ones used in the k = 3 case

so we omit them.

5.1 Solution Using Sums of Powers

Bob keeps track of the sums of powers, up to the kth power. At the end he has

•
∑n−k

i=1 xi,

•
∑n−k

i=1 x2
i ,

•
...

•
∑n−k

i=1 xk
i .

From these Bob can easily derive
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•
∑k

i=1 yi,

•
∑k

i=1 y
2
i ,

•
...

•
∑k

i=1 y
k
i .

We find the symmetric functions FROM these. How? By using Newton’s identities. We

abbreviate skm(y1, . . . , yk) by skm. We abbreviate
∑k

i=1 y
p
i by pk.

mskm(y1, . . . , yk) =
m∑
i=1

(−1)i−1snm−i(y1, . . . , yk)
k∑

j=1

yij

mskm =
m∑
i=1

(−1)i−1snm−i(y1, . . . , yk)
k∑

j=1

yij

5.2 Solution Using Symm Functions Throughout

This algorithm is essentially from a paper by Yaron Minksy, Ari Trachtenberg, Richard Zippel [1].

Using an argument similar to the one in Section 3.3 we can obtain:

Lemma 5.2
sL0 = 1

sL1 = sL−1
1 + xLs

L−1
0

sL2 = sL−1
2 + xLs

L−1
1

sL3 = sL−1
3 + xLs

L−1
2

... =
...

sLk = sL−1
k + xLs

L−1
k

Hence if Bob has sL−1
1 , . . . , sL−1

k , and then sees xL, you will be able to calculate sL1 , . . . , sLk . If all

of the xi are in {1, . . . , n} then you can do all of this in space O(k log n). Therefore Bob can find

sn−k
1 , . . ., sn−k

k .
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KEY: Bob can compute the following independent of the data. He will do this after he knows

sn−k
1 , . . . , sn−k

k , and use them one-at-a-time below to save space.

sn1 =
∑

1≤i≤n i

sn2 =
∑

1≤i1<i2≤n ij

sn3 =
∑

1≤i1<i2<i3≤n xixjxk =
∑

1≤i1<i2<i3≤n ijk

... =
...

snk =
∑

1≤i1<···<ik
xi1 · · ·xik =

∑
1≤i1<···<ik≤n i1i2 · · · ik

We seek, for all 1 ≤ i ≤ k, ski (y1, . . . , yk). We denote these ski for notational convenience. The

following are easily seen to be true:

sn1 = sn−k
1 sk0 + sk1s

n−k
0

sn2 = sn−k
2 sk0 + sn−k

1 sk1 + sn−k
0 sk2

sn3 = sn−k
3 sk0 + sn−k

2 sk1 + sn−k
1 sk2 + sn−k

0 sk3
... =

...

sni = sn−k
i sk0 + sn−k

i−1 s
k
1 + si−21

n−ksk2 + · · · sn−k
0 ski

... =
...

snk = sn−k
k sk0 + sn−k

k−1s
k
1 + sk−21

n−ksk2 + · · · sn−k
0 skk

Note that Bob knows sni , sn−k
i , sk0, sn−k

0 . Hence Bob can use these equations to, one at a time

(to save space) find sk1,sk2, . . ., skk. Bob forms the polynomial

Xk − sk1X
k−1 + sk2X

k−2 + · · ·+ (−1)kskk = (X − y1)(X − y2) · · · (X − yk).

Find the roots.
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