The following Lemma can be derived in many ways. Euler proved it (see [2]) and it also a special case of Equation 5.42 in [3]. We present a combinatorial proof due to [1].
(The lemma AFTER that is the one we wonder if it is known.)
Lemma 0.1 Let $p \in \mathbb{Z}[x]$ be a polynomial of degree $\leq n-1$. Let $s \in \mathbb{N}, s \geq 1$. Then

$$
\sum_{i=0}^{n} p(s+i)\binom{n}{i}(-1)^{i}=0
$$

Proof:

We first prove that, for any $m, n, s \in \mathbb{N}$ with $m<n$,

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(s+i)^{m}=0
$$

Consider the following problem:
How many ordered m-tuples of elements of $\{1, \ldots, n+s\}$ are there such that each element of $\{1, \ldots, n\}$ appears at least once?

This problem is as easy as it looks. The answer is 0 .
However, we can also solve this problem a different way. We solve it by inclusionexclusion.

How many ordered tuples are there with no constraints: $(s+n)^{m}$.
We subtract out those that do not use 1 or do not use 2 or \cdots or do not use n ? There are $\binom{n}{1}(s+n-1)^{m}$ of these.

We then add back those that used two of $\{1, \ldots, n\}$. There are $\binom{n}{2}(s+n-2)^{m}$ of these.
We keep doing this to obtain
$0=(s+n)^{n}+(-1)^{1}\binom{n}{1}(s+n-1)^{m}+(-1)^{2}\binom{n}{2}(s+n-2)^{m}+\cdots+(-1)^{n}\binom{n}{n}(s+n-n)^{m}$
If n is even this gives the result we seek. If n is odd then negate both sides and we obtain the result we seek.

We now proof the Lemma.
Let

$$
p(x)=\sum_{j=0}^{n-1} a_{j} x_{j}
$$

Then

$$
\begin{aligned}
\sum_{i=0}^{n} p(s+i)\binom{n}{i}(-1)^{i} & =\sum_{i=0}^{n} \sum_{j=0}^{n-1} a_{j}(s+i)^{j}\binom{n}{i}(-1)^{i} \\
& =\sum_{j=0}^{n-1} a_{j} \sum_{i=0}^{n}(s+i)^{j}\binom{n}{i}(-1)^{i}
\end{aligned}
$$

By the above all of the inner sums are 0 . Hence the entire sum is 0 . 】

Lemma 0.2 Let $p(x) \in \mathbb{Z}[x]$ be a polynomial of degree n with constant term 0 . Then

$$
p(s)-\sum_{k=1}^{n}\binom{s+k-1}{k} \sum_{i=0}^{k-1}\binom{k-1}{i}(-1)^{i}(p(s+i+1)-p(s+i))=0 .
$$

Proof:

$$
\begin{aligned}
& p(s)-\sum_{k=1}^{n}\binom{s+k-1}{k} \sum_{i=0}^{k-1}\binom{k-1}{i}(-1)^{i}(p(s+i+1)-p(s+i)) \\
= & p(s)+\sum_{k=1}^{n}\binom{s+k-1}{k} \sum_{i=0}^{k}\binom{k}{i}(-1)^{i} p(s+i) \\
= & \sum_{k=0}^{n}\binom{s+k-1}{k} \sum_{i=0}^{k}\binom{k}{i}(-1)^{i} p(s+i) \\
= & \sum_{i=0}^{n} \sum_{j=i}^{n}(-1)^{i} p(s+i)\binom{s-1+j}{j}\binom{j}{i} \quad \text { collecting the } p(s+i) \text { terms together, for fixed } i \\
= & \sum_{i=0}^{n}(-1)^{i} p(s+i) \sum_{j=i}^{n}\binom{s-1+j}{j}\binom{j}{i} \\
= & \sum_{i=0}^{n}(-1)^{i} p(s+i) \sum_{j=i}^{n}\binom{s-1+j}{s-1+i}\binom{s-1+i}{i} \quad \text { by a version of trinomial revision } \\
= & \sum_{i=0}^{n}(-1)^{i} p(s+i)\binom{s-1+i}{i} \sum_{j=i}^{n}\binom{s-1+j}{s-1+i} \\
= & \sum_{i=0}^{n}(-1)^{i} p(s+i)\binom{s-1+i}{i} \sum_{j=0}^{n-i}\binom{s-1+i+j}{s-1+i} \\
= & \sum_{i=0}^{n}(-1)^{i} p(s+i)\binom{s-1+i}{i} \sum_{j=0}^{n-i}\binom{s-1+i+j}{j} \\
= & \sum_{i=0}^{n}(-1)^{i} p(s+i)\binom{s-1+i}{i}\binom{s-1+i+(n-i+1)}{n-i} \quad \text { by parallel summation }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{n}(-1)^{i} p(s+i)\binom{s-1+i}{s-1}\binom{s+n}{n-i} \\
& =\sum_{i=0}^{n}(-1)^{i} p(s+i) \frac{s}{s+i}\binom{s+i}{s}\binom{s+n}{n-i} \quad \text { by extraction } \\
& =\sum_{i=0}^{n}(-1)^{i} p(s+i) \frac{s}{s+i}\binom{s+i}{s}\binom{s+n}{s+i} \\
& =\sum_{i=0}^{n}(-1)^{i} p(s+i) \frac{s}{s+i}\binom{n}{i}\binom{s+n}{n} \\
& =\binom{s+n}{n} s \sum_{i=0}^{n} \frac{p(s+i)}{s+i}\binom{n}{i}(-1)^{i} \\
& =0 \quad \text { by trinomial revision } \\
& =0.1
\end{aligned}
$$

The last equality holds by noting that $\frac{p(s+i)}{s+i}$ is a polynomial of degree $n-1$ and applying Lemma 0.1.

We thank Doron Zeilberger for pointing out reference [2] to us. We also thank the author of [1] whoever that may be.

References

[1] Anonymous. Comment 6 on complexity blog: an interesting summation-new?, 2008. http://blog.computationalcomplexity.org/2008/07/interesting-summation-n\% ew.html.
[2] H. Gould. Euler's formula for $n^{\text {th }}$ differences of powers. The American Mathematical Monthly, 85(6):450-467, 1978. http://www.jstor.org/.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: a foundation for computer science. Addison-Wesley, 1989.

