The following Lemma can be derived in many ways. Euler proved it (see [2]) and it also
a special case of Equation 5.42 in [3]. We present a combinatorial proof due to [1].
(The lemma AFTER that is the one we wonder if it is known.)

Lemma 0.1 Let p € Z[z]| be a polynomial of degree <n — 1. Let s € N, s > 1. Then

gms r () v =0

Proof:
We first prove that, for any m,n,s € N with m < n,

Z(-W(Z‘) (s +14)™ = 0.

Consider the following problem:

How many ordered m-~tuples of elements of {1,...,n+s} are there such that each element
of {1,...,n} appears at least once?

This problem is as easy as it looks. The answer is 0.

However, we can also solve this problem a different way. We solve it by inclusion-
exclusion.

How many ordered tuples are there with no constraints: (s + n)™.

We subtract out those that do not use 1 or do not use 2 or --- or do not use n? There
are (7)(s+n—1)™ of these.

We then add back those that used two of {1,...,n}. There are (}

)(s+mn—2)™ of these.
We keep doing this to obtain
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If n is even this gives the result we seek. If n is odd then negate both sides and we obtain
the result we seek.

We now proof the Lemma.

Let
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Then
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By the above all of the inner sums are 0. Hence the entire sum is 0. |



Lemma 0.2 Let p(z) € Z[x] be a polynomial of degree n with constant term 0. Then
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Proof:
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The last equality holds by noting that ’% is a polynomial of degree n — 1 and applying
Lemma 0.1. 1

We thank Doron Zeilberger for pointing out reference [2] to us. We also thank the author
of [1] whoever that may be.
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