Deriving $\sum_{i=1}^{n} i^{k}$ Formula

Exposition by William Gasarch
(This is well known but I do not know a reference or an original reference. If you know one then please email it to me.)

The identity $\sum_{i=1}^{n} i=n(n+1) / 2$ has a well known deriviation. We present a deriviation of any $\sum_{i=1}^{n} i^{k}$ if you know the prior sums.

For $1 \leq j \leq k-1$ let $S_{j}=\sum_{i=1}^{n} i^{j}$.
Note the following

$$
\sum_{i=1}^{n}(i+1)^{k+1}-i^{k+1}=\left(2^{k+1}-1^{k+1}\right)+\cdots+\left((n+1)^{k+1}-n^{k+1}\right)=(n+1)^{k+1}-1
$$

We derive a different expression for this sum and will then equate the two.

$$
\begin{aligned}
\sum_{i=1}^{n}(i+1)^{k+1}-i^{k+1} & =\sum_{i=1}^{n}\left(\sum_{j=0}^{k+1}\binom{k+1}{j} i^{j}\right)-i^{k+1} \\
& =\sum_{i=1}^{n} \sum_{j=0}^{k}\binom{k+1}{j} i^{j} \\
& =\sum_{j=0}^{k}\binom{k+1}{j} \sum_{i=1}^{n} i^{j} \\
& =\sum_{j=0}^{k}\binom{k+1}{j} S_{j} \\
& =\binom{k+1}{k} S_{k}+\sum_{j=0}^{k-1}\binom{k+1}{j} S_{j} \\
& =(k+1) S_{k}+\sum_{j=0}^{k-1}\binom{k+1}{j} S_{j}
\end{aligned}
$$

Hence

$$
\begin{gathered}
(k+1) S_{k}+\sum_{j=0}^{k-1}\binom{k+1}{j} S_{j}=(n+1)^{k+1}-1 . \\
S_{k}=\frac{1}{k+1}\left((n+1)^{k+1}-1-\sum_{j=0}^{k-1}\binom{k+1}{j} S_{j}\right) .
\end{gathered}
$$

