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1 Introduction

It is well known that
∑

p≤n
1
p

= ln(ln(n)) + O(1) where p goes over the primes. We
give several known proofs of this.

We first present a proof that
∑

p≤n
1
p
≥ ln(ln(n)) +O(1). This is based on Euler’s

proof that
∑

p
1
p

diverges. We then present three proofs that
∑

p≤n
1
p
≤ ln(ln(n)) +

O(1). The first one, essentially due to Mertens, does not use the prime number
theorem. The second and third one do use the prime number theorem and hence are
shorter.

For a complete treatment of Merten’s proof that
∑

p
1
p

diverges, and how it com-

pares with modern treatments, see the scholarly work of Villarino [4].

2 Euler’s Proof that
∑

p≤n
1
p ≥ ln(ln(n)) +O(1)

The proof here follows the one in [1].

Lemma 2.1 For 0 ≤ x ≤ 1/2, − ln(1− x) ≤ x+ x2.

Proof: − ln(1− x) =
∫ x
0

1
1−tdt. For 0 ≤ t ≤ 1/2, 1

1−t ≤ 1 + 2t. Hence

− ln(1− x) =

∫ x

0

1

1− t
dt ≤

∫ x

0

(1 + 2t)dt = x+ x2.

Theorem 2.2
∑

p≤n
1
p
≥ ln(ln(n)) +O(1).

Proof: Clearly

∞∑
j=1

1

j
= (1− 1

2
+

1

22
+ · · · )(1− 1

3
+

1

32
+ · · · ) · · · = 1

1− 2−1
× 1

1− 3−1
× · · ·

which we rewrite as
∞∑
j=1

1

j
=
∏
p

(1− p−1)−1

We need a finite version of this statement. Let Sn be the set of natural numbers
whose prime factors p are all ≤ n. Then∑

j∈Sn

1

j
=
∏
p≤n

(1− p−1)−1.
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Clearly
∑

j≤n
1
j
≤
∑

j∈Sn

1
j
. By integration lnn ≤

∑
j≤n

1
j
. Hence we have

ln(n) ≤
∑
j≤n

1

j
≤
∑
j∈Sn

1

j
=
∏
p≤n

(1− p−1)−1

ln(ln(n)) ≤
∑
p≤n

− ln(1− p−1).

By Lemma 2.1 ∑
p≤n

− ln(1− p−1) ≤
∑
p≤n

1

p
+

1

p2
.

Putting this all together we get∑
p≤n

1

p
≥ ln(ln(n))−

∑
p≤n

1

p2

Since the second sum is bounded by
∑∞

i=1
1
i2

, which converges, we have∑
p≤n

1

p
≥ ln(ln(n))−O(1).

Note 2.3 If the above proof is done more carefully with attention paid to the con-
stants you can obtain

∑
p≤n

1
p
≥ ln(ln(n))− 0.48. See [1].

3 Mertens Proof that Does Not Use the Prime

Number Theorem

This is adapted from Landau’s book [2]. He works a little harder and gets o(1) instead
of O(1).

We first need a weak form of the prime number theorem.

Lemma 3.1 π(x) = O(x/ lnx).

Proof: Let n be a positive integer. Clearly every prime p with n < p ≤ 2n occurs
in the prime factorization of the binomial coefficient

(
2n
n

)
. Therefore,

nπ(2n)−π(n) =
∏

n<p≤2n

n ≤
∏

n<p≤2n

p ≤
(

2n

n

)
≤ (1 + 1)2n = 4n.
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Taking logs yields

π(2n)− π(n) ≤ n ln 4

lnn
≤ 2 ln 4

(
2n

ln(2n)
− n

lnn

)
for n ≥ 8. If y ≥ 16 is a real number, let 2n be the largest even integer with 2n ≤ y.
Then π(y) − π(2n) ≤ 1 and |π(y/2) − π(n)| ≤ 1. By increasing 2 ln 4 to 4 we can
absorb these errors and obtain

π(y)− π(y/2) ≤ 4

(
y

ln y
− y/2

ln(y/2)

)
for y ≥ 16. Adding up this inequality for y = x, x/2, x/4, . . . yields

π(x)− π(16) ≤ 4
( x

lnx

)
.

This yields the lemma.

We now need a result that is interesting in its own right.

Proposition 3.2 ∑
p≤x

ln p

p
= lnx+O(1).

Proof: If n is a positive integer and p is a prime, the power of p dividing n! is⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · .

Therefore,

ln(n!) =
∑
p≤n

ln p

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
.

Changing bn/pc to n/p introduces an error of most 1, so we have∑
p≤n

ln p

⌊
n

p

⌋
= n

∑
p≤n

ln p

p
+O(

∑
p≤n

ln p).

Since there are π(n) terms in the sum, Lemma 1 implies that

O(
∑
p≤n

ln p) = O(π(n) lnn) = O(n).

Let’s treat the higher terms:⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · < n

p2
(
1 + p−1 + p−2 + · · ·

)
=

n

p2 − p
.
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Therefore, ∑
p≤n

ln p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
≤ n

∑
p≤n

ln p

p2 − p
= O(n)

since
∑

ln p/(p2 − p) ≤
∑

j≥2 ln j/(j2 − j), which converges.
Stirling’s formula says that

ln(n!) = n lnn+O(n)

(this weak form can be proved by comparing
∑

ln j with
∫

ln t dt). Putting everything
together yields

n lnn+O(n) = n
∑
p≤n

ln p

p
+O(n).

Dividing by n yields the proposition for x = n. The error introduced by changing
from x to n = bxc is absorbed by O(x), so the proposition is proved.

The following lemma is well known. It is an analog of integration by parts for
summations. It is easily proven by induction on n.

Lemma 3.3 Let both f1, f2, . . . and g1, g2, . . . be sequences of complex numbers. Then,
for all m ≤ n,

n∑
i=m

fi(gi+1 − gi) = fn+1gn+1 − fmgm −
n∑

i=m

gi+1(fi+1 − fi).

We can now prove the theorem.

Theorem 3.4
∑

p≤x
1
p

= ln ln x+O(1).

Proof: We have

f(x) =
∑
p≤x

ln p

p
= lnx+ r(x),

where r(x) = O(1). Then

∑
p≤x

1

p
=
∑
p≤x

ln p

p

1

ln p
=

x∑
n=2

f(n)− f(n− 1)

lnn

=
x∑

n=2

lnn− ln(n− 1)

lnn
+

x∑
n=2

r(n)− r(n− 1)

log n
.

Since

lnn− ln(n− 1) = − ln

(
1− 1

n

)
=

1

n
+O(1/n2),
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and
x∑

n=2

1

n lnn
= ln ln x+O(1),

we find that
x∑

n=2

lnn− ln(n− 1)

lnn
= ln ln x+O(1).

Summation by parts yields

x∑
n=2

r(n)− r(n− 1)

log n
=

x∑
n=2

r(n)

(
1

lnn
− 1

ln(n+ 1)

)
+

r(bxc)
ln(bxc+ 1)

= O

(
x∑

n=2

1/n

(lnn)2

)
+O(1) = O(1).

Putting everything together yields the theorem.

4 A Proof that uses Summation by Parts

In this section we give the standard way to estimate
∑

1/p using the Prime Number
Theorem.

Theorem 4.1
∑

p≤n
1
p

= ln(ln(n)) +O(1).

Proof: Let π(i) be the number of primes ≤ i. Let g(i) = π(i − 1) and f(i) = 1
i
.

Let m = 2. Plugging these into Lemma 3.3 yields

n∑
i=2

1

i
(π(i)− π(i− 1)) =

1

n+ 1
π(n)− 1

2
π(1)−

n∑
i=2

π(i)(
1

i+ 1
− 1

i
).

We need:

• π(i)− π(i− 1) is 1 if i is prime but 0 otherwise.

• π(n) = n
lnn

+ O( n
ln2 n

) by the Prime Number Theorem (when it is proved with
an error term).

We have

π(i)(
1

i+ 1
− 1

i
) =

π(i)

i(i+ 1)
=

1

(i+ 1) ln i
+O

(
1

(i+ 1) ln2 i

)
by the Prime Number Theorem. But this equals

1

i ln i
− 1

i(i+ 1) ln i
+O

(
1

(i+ 1) ln2 i

)
=

1

i ln i
+O

(
1

(i+ 1) ln2 i

)
.
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Therefore,

∑
p≤n

1

p
=

n∑
i=2

1

i ln i
+O

(
1

(i+ 1) ln2 i

)
= ln(ln(n)) +O(1),

where we have used

n∑
i=2

1

i ln i
=

∫ n

2

1

x lnx
dx+O(1) = ln(ln(x)) +O(1)

and
n∑
i=2

1

(i+ 1) ln2 i
= O(1)

by the Integral Test.

5 A Proof that uses Integration by Parts

This is the same as the previous proof, with the summation by parts replaced by
integration by parts in a Stieltjes integral.

Theorem 5.1
∑

p≤n
1
p

= ln(ln(n)) +O(1).

Proof: The preceding proof can be rewritten using Stieltjes integrals:∑
p≤x

1

p
=

∫ x

1.9

1

t
dπ(t).

Integration by parts yields
π(x)

x
+

∫ x

1.9

π(t)

t2
dt.

We use the Prime Number Theorem approximation π(x) = x
lnx

+O( x
ln2 x

) to obtain

1

lnx
+

∫ x

1.9

1

t ln t
+O(

∫ x

1.9

1

t ln2 t
) = ln(ln(x)) +O(1).
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6 What Else is Known

Rosser and Schoenfeld [3] have shown that, when n ≥ 286,

ln(lnn)− 1

2(lnn)2
+B ≤

∑
p≤n

1

p
≤ ln(lnn) +

1

(2 lnn)2
+B,

where B = 0.261497212847643.
Even though the sum

∑
p≤n

1
p

diverges, it grows very slowly:

•
∑

p≤10
1
p

= 1.176

•
∑

p≤106
1
p

= 2.887

•
∑

p≤109
1
p

= 3.293

•
∑

p≤10100
1
p
∼ 5.7
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