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We show that the traveling salesman problem with triangle inequality cannot be approxi-

mated with a ratio better than 37 when the edge lengths are allowed to be asymmetric and

116
220 when the edge lengths are symmetric, unless P=NP. The best previous lower bounds

219
were % and % respectively. The reduction is from Hastad’s maximum satisfiability of

linear equations modulo 2, and is nonconstructive.

1. Introduction

Despite a recent avalanche of better and better — occasionally optimal —
approximability lower bounds for several NP-hard optimization problems,
based on improved PCPs and reductions [2,3,8,9,11,16], there has been very
little progress on the traveling salesman problem (with triangle inequality, of
course). The original reduction in [14] only proves MAXSNP-completeness
of the special case of symmetric distances, each of which is either 1 or 2; no
explicit lower bound is given, but it is clear that no ratio better than about
1.000001 can be obtained from that construction. This can be improved by
more sophisticated methods to about % [12], further improved to % in
[4]; this is presently the best known bound.

Even for the asymmetric traveling salesman problem the best known
lower bound is % [12]. For this latter problem, the best known upper

bound is logn [7], so the miniscule lower bound is especially annoying.
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In this paper, we prove that the asymmetric traveling salesman problem

cannot be approximated to a ratio smaller than +:L, and the symmetric trav-

116°

eling salesman problem cannot be approximated to a ratio smaller than %
(unless P=NP), thus improving the best known inapproximability bounds
by more than an order of magnitude!. Our reduction starts from Hastad’s
maximum satisfiability of linear equations modulo 2 with three variables
per equation [8], a very strong and useful lower bound. Our reduction is
essentially nonconstructive, since it relies on a probabilistic construction of
a graph with specialized expansion-like properties needed in our proof —
the size of this graph, called a pusher, is finite, related to the number of
occurrences of each variable in Hastad’s proof, and thus the existence of a
deterministic reduction is immediate. Deriving inapproximability thresholds
(i.e., finding such reductions) is ideal ground for the probabilistic method
since one cares about existence and not explicit construction. Another un-
usual feature of our reduction is that, in contrast to all previous related
constructions, it has no “variable gadget” — that is, no graph in which the
choice between two values for each variable is “centrally” decided — rely-
ing for consistency on a sophisticated method of checking the value of each
literal against enough opposite literals; this should be a more widely use-
ful method (see [6,15] for two other applications of this idea, since the first
appearance of the present proof in [13]).

2. The Gadgets

An instance of the asymmetric traveling salesman problem is a nxn matrix D
of nonnegative distances satisfying the triangle inequality: D(i,7)+D(j,k) >
D(i,k) for all 7,7,k (in the symmetric case, D is also symmetric). We wish
to find among all permutations 7 (called tours) of {1,...,n} the one that
minimizes y ;" Dy () -(i+1) — here addition in subscripts is modulo n. In this
paper we shall represent, for clarity of presentation, such instances in terms
of an underlying directed graph with n nodes (undirected in the symmet-
ric case) and nonnegative weights on the edges; the distances then are the
shortest-path distances on this graph. Once an underlying graph is specified,
we can extend our notion of a tour to include all closed walks in the graph
that visit all nodes, some possibly many times. Any such walk can then be
rendered as a permutation of the nodes, with no worse cost, by simply omit-
ting previously visited nodes, and taking advantage of the definition of D
as a shortest path matrix. In the sequel, a “tour” will refer to such a walk.

!in [13], we erroneously claimed that a similar construction yields better constants.
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0

Figure 1. The equation gadget. All edges other than x,y, z have length one.

Our main result for the asymmetric traveling salesman problem is the
following:

Theorem 2.1. For every € >0 it is NP-hard to approximate the asymmetric

traveling salesman problem within ratio %g —¢.

We start from the following important result, paraphrased from [8] to
suit our purposes.

Theorem 2.2 ([8]). For every € > 0 there is an integer k, depending on
€, such that it is NP-hard to tell whether a set of n linear equations mod-
ulo 2 with three variables per equation and with at most k occurrences of
each variable has an assignment that satisfies n(1—¢€) equations, or has no
assignment that satisfies more than n(% +€) equations.

We shall assume that all equations are of the form x4+ y+ z =0 mod 2,
where x,y, 2z are variables or negations, and that each variable appears the
same number of times negated and unnegated (the former condition can be
enforced by flipping some literals, and the latter by repeating each equation
three more times with all possible pairs of literals negated).

Suppose then that we are given such a set of equations. We shall describe
the instance of the asymmetric traveling salesman problem as a directed
graph with edge weights. The graph, as usual, consists of several gadgets.
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The equation gadget is shown in Figure 1. There is one copy of this graph
for each equation, with node 4 of one coinciding with node 0 of the next.
The three edges labeled x,y,z correspond to the literals of the equation
z+y+2z=0mod 2. As we shall see, these three edges are in reality whole
structures (see Figure 2); all other edges in the figure are real edges of cost
one. The key property of this gadget is this:

Lemma 2.3. For any subset S of the three labeled edges the following is
true: There is a Hamilton path from 0 to 4 that traverses precisely S from
among the three labeled edges x,y,z if and only if the cardinality of S is
even. Otherwise, if the cardinality of S is odd, the shortest path from 0 to
4 that traverses all nodes, and precisely the edges in S among the labeled
edges, has length 5.

Proof. The first part (existence of Hamilton path) is evident: If S is empty
then use (besides the edges from 0 and to 4) any two non-labeled edges
connecting the nodes, and if |S| =2 then take the two edges in S and no
other edges. For the second part, if all three labeled edges are traversed then
there is a cycle and thus a node repetition. If one labeled edge is used, notice
that there is only one edge avoiding node repetition that can be used before
the edge, and only one after (the edges from 0 and to 4); since this traversal
would omit the third node, a node repetition is necessary. |

Thus, if we take a traversal of a labeled edge to mean that the corre-
sponding literal is one, then a Hamilton path is tantamount to satisfaction.

The whole graph will consist of one equation gadget for each equation,
connected in arbitrary order in tandem (with the 4 node of one identified
with the 0 node of the next) and closing a cycle (the 4 node of the last
is identified with the 0 node of the first). The intention is that tours will
traverse these gadgets in order, traversing the true (according to a truth
assignment) subset of the literals in each, wasting a weight of 1 whenever an
equation is not satisfied. For any 0 — 1 assignment to the literals, we define
a standard tour as the one which visits the equation gadgets one by one,
and within each gadget it uses a path that visits exactly the subset of edges
that correspond to literals that are set to 1. If the equation is satisfied, the
equation gadget is visited by a Hamilton path, otherwise with a repetition,
as described in the lemma. The number of repeated nodes in the standard
tour will thus capture the number of unsatisfied equations.

What we have described so far is the “skeleton” of the construction (and
of the standard tour); the main action takes place within the labeled edges.
Fach labeled edge in each equation gadget is in fact a whole structure con-
sisting of d undirected paths called bridges (shown as ellipses) connected
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by directed edges called linking edges. (d will soon be fixed to be 6; we are
keeping several free parameters to demonstrate the generality of our con-
struction and hopefully to help readers expose further improvements.) The
two blotted nodes in the figure are nodes of type 1, 2, or 3 in the same equa-
tion gadget. The leftmost directed edge from a blotted node to a bridge,
has length 1; all other linking edges have length b (Figure 2). We call this
the edge gadget. Each bridge in the figure is in fact a bi-directed path with
L+ 2 edges, each of length a/L. Here L is a large integer; a and b will be
eventually fixed to 4 and 2 respectively. A standard tour corresponding to
an assignment is then exactly as described above, with labeled edges being
replaced by the corresponding directed paths. So far, we have not ensured
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An edge gadget consists of ¢ bridges.
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Each bridge is a bi-directed path of L+2 edges.

Figure 2. The edge gadget

consistency among the occurrences of a variable, i.e., it is possible that the
optimum tour of the graph is not a standard tour — it might traverse one oc-
currence of a literal and avoid another — and hence there is no corresponding
truth assignment.

To ensure consistency we need a further refinement of the construction
(which will not affect a standard tour). Consider a variable x that appears
k times negated and k times unnegated. The conclusion of the construction
requires the pairwise identification of the bridges in the edge structures, so
that each bridge in a positive edge gadget is identified with a bridge in a
negative edge. The two bridges are identified so that each of the two end-
points of the resulting bridge has an entering edge and an exiting edge. Once
the bridges have been identified, the neighborhood of each edge gadget is as
shown in Figure 3. The “plan” for the identification is provided by a par-
ticular k x k d-regular bipartite multigraph X = (V4,V5, E) with a special
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Figure 3. The neighborhood of an edge gadget

expander-like property, which we call a b-pusher (definition 1 below). For
each variable x, we consider the b-pusher X, and identify the unnegated oc-
currences of x with V] and the negated occurrences with V5, and we identify
two bridges if the corresponding occurrences are connected by an edge in X.
This concludes the description of the construction. (Even though it is not
essential to our construction, it is easy to see, that the graph can have the
orderly structure shown in Figure 3 with bridges divided into layers, and
directed edges leading from one layer to the next; this follows from the fact
that d-regular bipartite graphs are d-edge-colorable.)

Definition 1. A d-regular bipartite graph G = (V1,V5,E) is called a b-
pusher if for any partition of V7 into subsets Uy, S1,7T1 and V5 into Us, So,T5,
such that there are no edges from vertices in U; to vertices in Us, the number
(T1,T5) of edges between vertices in 77 and T5 satisfies

1 . 1
(b4 5) (T, T) = min{| 1] + [al, 0] + (T3]} = (b= ) (1] + |S2]).

Theorem 5.1 shows the existence of such graphs for useful values of d

and b.
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3. The Proof

Suppose that there is a truth assignment in the given set of equations that
satisfies all but F' of the equations. We have described tours as Eulerian
walks of the underlying directed graph; the cost of a tour is then the sum of
the weights of the edges in the walk, with the cost an edge added as many
times as the edge is traversed. We claim that the cost of the standard tour
is

{Sn ( L+2
2

d=—a+ db)] + [dn + F].

The first bracketed term is the cost of traversing all the ?’dT” bridges, each at
cost %a and one linking edge per bridge, with each of these edges costing b.
(The first of the linking edges of an edge gadget, when traversed, is charged
to the corresponding equation gadget.) The second term comes from the
cost of traversing the n equation gadgets at 4 per satisfied equation, and 5
per unsatisfied equation.

The main step of the proof is to show that the optimum tour is standard
(for some assignment, this is Lemma 3.2 below).

Let us fix a tour 7. Its cost can be split into two parts, corresponding
to the bracketed terms in the cost of the standard tour above: The bridge
cost of 7 is the total cost of traversing the edges of length b and a/L in the
bridges, whereas the equation cost is the cost of traversing the edges of length
one on the equation gadgets (including the first edge of every bridge). If an
edge gadget has all of its linking edges traversed from left to right in 7, then
we call the edge gadget fully traversed — and we think of the corresponding
occurrence of a literal as true (Figure 4(A)). Otherwise, if none of these d+1
edges is traversed, we call the edge gadget fully untraversed — the occurrence
is false (Figure 4(B)). All other edge gadgets (and occurrences) are called
semitraversed.

All semitraversed edge gadgets have this in common: There is at least
one reversal somewhere in the edge gadget, that is, one linking edge is
traversed and either the next or the previous one is not. We distinguish two
types of semitraversed edge gadgets: (i) If the first and last linking edges
are both untraversed, then the semitraversed edge gadget is of type U (e.g.,
Figure 4(C)). (ii) If the first and last linking edges are both traversed, then
the semitraversed edge gadget is of type T' (e.g., Figure 4(D)). (iii) Otherwise,
it is of type S (e.g., Figure 4(E)). Note that types U and T have an even
nonzero number of reversals, while type S has an odd number of reversals.
The intuition for this classification is that vis-a-vis the equation gadget,
type U and type T semi-traversed gadgets behave exactly like fully traversed
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Figure 4. Traversals of an edge gadget

and fully untraversed edge gadgets respectively, while type S gadgets might
create more complex patterns by “entering” or “leaving” equation gadgets
in the middle of the edge gadget.

A final species of waste is double traversal, which occurs when a particular
bridge is traversed twice, once for the true value of its variable and once for
the false.

Now, it is intuitively clear that reversals and double traversals are waste-
ful, in that the bridges or the linking edges must be traversed more intensely
than in the standard tour in order to implement the reversal. To formalize
this, we claim that there is a local cost of at least min(a/2,b) that we can
assign to each reversal, and a local cost of a+b to each double traversal:

Lemma 3.1. The bridge cost of a tour is larger than that of the standard
tour by at least Rmin(a/2,b)+ D(a+b) where R is the number of reversals
and D of double traversals.

Proof. Consider a reversal, without loss of generality a bridge with an
entering “horizontal” but no leaving horizontal edge (the other situation
is analogous). Obviously, there is a vertical edge leaving the bridge. There
are two cases: If there is a vertical edge entering the bridge (Figure 5(a)),
then there is a locally assignable cost of b because of the second traversal
of the vertical edge leaving the bridge. If there is no entering vertical edge
(Figure 5(b)), then there is an extra cost of (L+2)a/L in order for the tour
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to pick up the nodes in the bridge and come back to the left. However, only
half of this cost can be assigned locally to this reversal — since the same
bridge may also be the theater of a reversal in the vertical direction. Note
that in the first case, when there is a vertical edge entering the bridge, there
is no reversal happening in the vertical direction at this bridge; if a reversal
happens earlier or later, it will incur a separate cost. Hence, every reversal
can be assigned a local cost of at least min(a/2,b).

Double traversals are straightforward to account for: The edges of the
bridge are traversed twice (extra cost at least a), and one of the linking
edges leaving the bridge can be uniquely assigned to the double traversal. I

We can now prove the main result of this section:

Lemma 3.2. There is an optimum tour that is a standard tour for some
assignment.

Proof. Let 7 be any tour; we shall convert it, at no extra cost, to a standard
tour.

Consider the bipartite graph with the positive occurrences of variable z
on one side of the bipartition and the negative occurrences on the other side.
Each vertex in this graph can be labeled as T, U, SU,ST or S° depending
on whether the corresponding edge gadget is traversed, untraversed or semi-
traversed and, in the latter case, on the type of the semitraversal. Let U;
be the set of vertices labeled U on the left side of the bipartition. Similarly
define UQ,Tl,TQ,S%],S{,Sig,Sg,Sg and 5’5 and let uy,t1, etc. be the corre-
sponding cardinalities of these sets. Without loss of generality assume that
uy +tg < ug +t1. Consider a modified tour where the occurrences on the
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U, side of the bipartition are all traversed and those on the Us are all un-
traversed, resulting in a tour where the variable x is traversed consistently.
Do this for all variables, and then traverse the equation gadgets as in the
standard tour for this assignment.

We will now show that the cost of the new tour is at most that of the
old tour. There are two kinds of changes in the cost. First, the standard
tour recovered certain wastefulness of the non-standard one in traversing
the edge gadgets (the one captured by Lemma 3.1). Second, the standard
tour may have incurred, in the worst case, some extra costs in traversing
the equation gadgets (intuitively, by turning satisfied equations to unsatis-
fied ones). We shall argue, on a variable-by-variable basis, that the former
changes compensate for the latter.

Consider a variable z and its sets Uy etc. There are two kinds of waste-
fulness in the edge gadgets of this variable: First, since type U and type T
semitraversals have at least two reversals per edge gadget and type S have
at least one reversal, there are at least 2[s{4-s7 +s¥ +32T+%(315 +55)] reversals
in 7.

Second, suppose that in the bipartite graph X providing the connection
plan there is an edge between a node in 77 and a node in T5. This means
that the bridge corresponding to this edge is doubly traversed. Setting at
this point a =20, the total waste related to x is, by Lemma 3.1

(1) bR+3bD > b 257 + 257 + 255 + 255 + 57 + 55| + 30(11, 1),

where by (T,T5) we denote the number of edges between T} and T3 in X.

This saved waste will have to compensate for the increased cost of travers-
ing the equation gadgets. Each edge gadget corresponding to an occurrence
in the sets Uy,T5 is traversed in a different manner in the modified tour,
and therefore may increase the cost of traversing an equation from 4 to 5,
i.e., the equation is unsatisfied in the final tour. Similarly for occurrences in
the sets S, S1. We claim that, besides this, at most one equation is lost for
every two semitraversed occurrences of type S.

Consider a semitraversed edge gadget of x of type S. Call it f, and
suppose w.l.o.g. that it goes between nodes labeled 1 and 2 in its equation
gadget (Figure 1), and that its first linking edge is untraversed while its
last is traversed. If the equation gadget already has local cost 5 in 7 (i.e.,
the cost of the outgoing edges from nodes labeled 0,1,2,3 plus any other
incoming edges into node 4), then there is nothing to prove, since there is
no increase in the cost. So assume that the local cost of the equation in
the tour 7 is 4. This implies that the nodes labeled 0,1,2,3 in the gadget
have indegree and outdegree equal to one. Further we can assume that the
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other edge gadgets for this equation are of type Uy, T1,ST or SY. Otherwise
the cost of the equation has already been accounted for. We will now argue
that there must be another semitraversed edge gadget of type S for the
same equation gadget. This would imply our claim. Suppose not. Then the
outgoing edge from 1 has to go to node 4 (since the first linking edge from
on the edge gadget from 1 to 2 is assumed to be untraversed). The edge
gadget between nodes labeled 2 and 3, and 3,1 must both be of type T} or
ST since the outgoing edges from 2,3 cannot go to 4. But then all three
nodes 1,2,3 have indegree 1 already and the outgoing edge from 0 has to
go to one of them, which would make one of them have indegree two, and
hence outdegree two. This contradicts the assumption that the local cost of
the equation is only 4.

We conclude that the total cost of the extra equations lost because of the
change in the tour is at most the sum, over all variables z, of

1
(2) U1+t2+81U+82T+§(8f+S§)~

It remains to prove that the RHS of (1) dominates (2). This is equivalent
to showing that

1
36(Ty, To) > uy +to — 2b(sT +s5) —b(s¥ 4+ s7) — <b - 5) (s7 +55).
Let s1=sY +s7T +57 and sy = s§ + 53 + 5. Clearly it would suffice to
show that

(3) 3b(T1,T2) > up +tg — (b — é) (81 + 52),

(Intuitively, this is saying that the worst case is when all the semitraversed
edge gadgets are of type S).

Theorem 5.1 shows that almost all large enough d-regular graphs are b-
pushers for d=6 and b=2. The defining property of 2-pushers implies (3).
Thus the lemma follows. |

Proof of Theorem 2.1. The proof of our main result is now a matter
of accounting. From Hastad’s theorem, we know that it is NP-hard to tell
whether a set of n linear equations modulo 2 has an assignment that satisfies
n(1—¢) linear equations or has no assignment that satisfies more than n(3+e)
equations. After applying our reductions, this corresponds to standard tours
of length (%d(a% +b)+4-+e)n=(58+F+e€)n and (%d(a% +b)+3+€e)n=
(58.5+7—L2+6)n respectively. By choosing L to be large enough, it follows that
it is NP-hard to approximate the asymmetric traveling salesman problem to

within % —¢, for any €>0. |
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4. The Symmetric TSP

We use the same basic ideas with a new set of gadgets suitable for the
symmetric traveling salesman problem. Our main result is the following.

Theorem 4.1. For every ¢ >0 it is NP-hard to approximate the symmetric

traveling salesman problem within ratio % —€.

i
Yy

S = N W A

Figure 6. Equation gadget for the symmetric TSP

The equation gadget is shown in Figure 6; it is the asymmetric gadget,
with each of the nodes labeled 1,2,3 in Figure 1 replaced by an undirected
path consisting of 4 nodes, one more than in Karp’s original reduction from
directed to undirected Hamilton cycle [10]. Node 0 is replaced by 6 nodes.
The analog of Lemma 2.3 is this:

Lemma 4.2. For any subset S of the three labeled edges the following is
true: There is a Hamilton path from 0 to 18 that traverses precisely S from
among the three labeled edges if and only if the cardinality of S is even.
Otherwise, if the cardinality of S is odd, the shortest path from 0 to 18 that
traverses the labeled edges in S and no other labeled edges, and visits all
nodes, has length 20.
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An edge gadget consists of 6 bridges.

A bridge consists of 2 paths with L edges each; each edge has length 4/L.

Figure 7. Edge gadget for the symmetric TSP

Proof. Because of the four nodes replacing each node in the directed gadget,
failing to traverse one such quadruple in the intended way incurs an extra
cost of two — and hence in this case there is nothing to prove. Therefore,
all quadruples are traversed as intended, and the argument reverts to the
asymmetric case. ]

In our construction we have an equation gadget for each equation, with
all edge lengths equal to %; this way the difference between satisfied and
unsatisfied equation gadgets is kept to 1.

The edge gadget is shown in Figure 7; the ovals in the figure are
bridges, 2L-node gadgets identical to the one shown, with each edge having
length 4/L. (Note that each oval now denotes a pair of paths perpendicular
to the oval, in the sense that the linking edges 1 and 1’ are incident upon the
same node; likewise for 2 and 2’.) The linking edges are of length g, except
for the first and the last one, which have length % The plan for identification
of the bridges is again via the k x k, 6-regular bipartite graph X.

There are two “standard” ways to traverse each bridge. One is by entering
at 1 and exiting at 1’ and the other is by entering at 2 and exiting at 2" (see
Figure 7). The cost of traversing a bridge in one of the two standard ways
is 8.

As before we define a standard tour as one that traverses all edge gadgets
corresponding to true literals in the standard way, and visits the equations
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equation gadgets one by one, incurring an extra cost of 1 if the corresponding
equation is unsatisfied. The cost of a standard tour that corresponds to a
satisfying assignment with F' unsatisfied equations is

21
37”<6-s+5-5/2+2x (7/2 — 1/4)) —|—[9n+F]:79n—|—F.

The first bracketed term is again the bridge cost, and the second term is
the equation cost, 9 per satisfied equation and 10 per unsatisfied equation.
In the bridge cost, we add the cost of traversing the 6 bridges, the 5 inner
linking edges, plus the two outer edges with cost 7/2; however, of that cost
1/4 is allocated to the equation gadget, so that the two combined make the
edge gadget behave like an edge of length 1/2 (in the asymmetric case we
instead had a first edge of length 1).

Nonstandard traversals by the pairs (1,2), (1,2'), (1/,2), (1',2") of edges
incur a minimum additional cost of 4 (we ignore the O(1/L) terms that will
be absorbed, as in the previous section, in the €). Double traversals, in which
4 or more edges from among 1, 1/, 2, 2/ are traversed, cost an extra of at
least 5/2 because of the extra traversals of these edges.

Notice that in the symmetric case, double traversals incur no extra cost
within the bridge. Also, in allocating “local” costs to the bridges, we shall
be thinking that the cost of extra traversals of a linking edge as being split
equally between the two bridges it links. If the first or the last linking edge
of an edge gadget is traversed more than once, the extra cost is allocated in
its entirety to the adjacent bridge.

The only remaining case of non-standard traversal of a bridge is the one
in which the tour enters and leaves a bridge from the same linking edge,
say the edge 1. There are two cases. (a) The linking edge leads to another
bridge: then that other bridge is bound to suffer an additional cost of at
least 5/2 for the extra traversals of linking edges this will cause. (b) The
doubly traversed linking edge leads to an equation gadget (and thus the
bridge is the first or last in the edge gadget): the standard cost of traversing
the linking edges once on each side (charged to the bridge) is (%—i)—i—g: %,
which is the cost of the first linking edge (%) minus the portion i which is
charged to the equation gadget, plus half the cost of the other linking edge.
The cost of the double traversal is 2x %, all of which is charged to the bridge.
Thus, the extra cost is 2 x %— % = g Such a semitraversed edge (picked up
by a linking edge that is connected to the equation gadget) is said to be of
type P.

It follows that for each reversal we can assign to the bridges of the semi-
traversed edge gadget a local cost of at least 2, while semitraversals of type
P cost 5/2. As we mentioned above, double traversals cost an extra 5/2:
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Lemma 4.3. The bridge cost of a tour is larger than that of the standard
tour by at least 2R+ %D+ %P where R is the number of reversals in semi-
traversals other than those of type P, D is the number of double traversals,
and P is the number of semitraversals of type P.

Proof of Theorem 4.1. We show, as in the asymmetric case, that there
is an optimum standard tour. The argument follows closely that for the
asymmetric case. The expression for the local recovered waste of a tour at
a variable gadget becomes now

5 5
(4)  4sT + 45T + 45V + 45§ + 257 4 255 + 5(3{3 +s5) + 5T, T),
where the superscript P denotes semitraversed edges of that type. The equa-
tion for the loss on the equation side is

1
(5) wi o574 5] +sy + (57 +53),

Again (since the coefficient of si, 55" in (4) is 5/2) the worse case is when

we only have type-S semitraversals. Since this now reduces to the same

inequality as in the asymmetric case, we can apply Theorem 5.1 to establish

that (5) is dominated by (4). It follows that it is NP-hard to approximate
220

the symmetric traveling salesman problem to a ratio smaller than 57. |

5. The Probabilistic Construction

In this section we prove the existence of bipartite multigraphs with the
required property.

Theorem 5.1. For k sufficiently large and any b>2, almost every 6-regular
bipartite graph on 2k vertices is a b-pusher.

The proof relies on the following lemma.

Lemma 5.2. For k sufficiently large, almost every 6-regular bipartite graph
on 2k vertices has the following property: for any subset of vertices U con-

tained entirely in Vi or Vo, with |U|=ak and |N(U)|= Sk,

1. 0<a<.25 = 3>2a.
2. .25<a<0b=(>a+.25
3. a>05=(>.5a+.5
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Proof of the Lemma. The probability that some subset U contained in
V1 or V5 of size ak has at most Gk neighbors is at most

(R

Let P the quantity obtained after using the approximation (;;) ~
(W)T in the above expression. (By ~ we mean that the logarithms

of the two sides are within a 1+ 0(1) factor). Then,

log P
k

— 5alog(a) + 5(1 — a) log(1 — a) — Blog(8) — (1 — ) log(1 — )
—6alog (%) —6(8 — ) log (1 — %)

If we substitute 8 = 2« in the above equation, we can check that the
expression is non-positive for 0<a <.25 (the second derivative with respect
to « is positive, and the endpoints can be checked). Similarly for §=a+.25,
and §=.5a+.5 for the corresponding bounds. |

Proof of Theorem 5.1. Let Uy,S7,11 be a partition of V; and Us, Sy, T5
be a partition of V5 and let wuy,us9,s1,S92,t1,t2 denote their sizes. W.l.o.g.
assume that uy +ty <wug+t;. Let T = (T1,T) denote the number of edges
between 17 and T5. We will show that

(6) <b+%)TZu1+t2—<b—%>(31+32).

Let H=(b+3)T—[u1+t2—(b—3)(s1+52)]. The following claim will be useful
in the proof.

Claim 1. There is a setting of u;, s;,t; that minimizes H for which T'=0.

Suppose T'> 0. Then, there is an edge between w in T} and z in T5. If
we instead label z as being in Sy or Us, then T' decreases and H does not
increase.

Thus, we can assume that 7T'=0 at the minimum value of H. Our goal
is to show that H > 0 for b > 2. Let f(Uy),f(T2) denote the number of
neighbors of Uy, Ts respectively. We consider the following cases.

Case A. uq1,t5<0.25.
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Then, using part (1) of Lemma 5.2, f(Uy) >2uq, f(T2) > 2ty and so

H > <b—%) (f(Ur) —ta+ f(T2) —u1) — (ug + t2)

> <b—g) (up +t2) >0 forbzg.

Case B. wuy,ts > 0.25. Using Lemma 5.2, this implies that uy,t5 <0.5. Sup-
pose uj > 0.5, then f(Uy) > 0.75 and so ug < 0.25; on the other hand
f(T3)>0.5 and so t; <0.5. This gives ug+t1 <0.75<wuy +ta, a contradic-
tion. Thus part (2) of the lemma is applicable in this case. Further,

up+to <wug 4+t <2— f(Uy) — f(Tp) < 1.5 —ug —to

and so we get u1 +1t9 <0.75, and hence s 4 s9 <0.5. Using this,

H> (b - %) (0.5) — (ur + £)

2%—120 for b> 2.

Case C. u; > 0.25,t9 < 0.25. The remaining case (u; < 0.25,t5 > 0.25) is
identical to this one.
Here we can use part (1) of Lemma 5.2 to get that f(7%)>2ts. There are
two subcases.
Cl. u; <0.5. By part (2) of Lemma 5.2, f(U;)>wu1+0.25. Therefore,

"> (b - %)(f(Ul) o+ max{0, F(Ty) — ur}) — (w1 + )

1 1
> (b — §> (u1 +0.25 — tz) -+ (b — §)max{0, 2t2 — ul} — (Ul + tg)

Now if uy > 2ts, then
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(based on whether b<7/2 or b>7/2). If u; <2ty

1 3
H20.25<b—§>+<b—§)t2—u1
1 7 b
> 0. —)=(-==
com(o-1)- (121
b 1
>ming - —1,0.2 — = .
_mln{2 ,0 5<b 2)}

In both subcases, H >0 for b>2.
C2. u;>0.5. By part (3) of Lemma 5.2 f(U;)<u;/2+1/2. Also,

3 3 3
U1+t2§U2+t1§2—U1—f(U1)S——ﬂS—-
2 2 4
Therefore,
1
17> (b= 3) U0) — ) (s + 1)
1 1
> (b—§> ?1+——t2) — (u1 +t2)
b 1
>__
-2 4

b 1 1 b 3
H>-—>—(b4+=)ty>-—=Z.
~2 1 < * 2) =48
Again, H >0 for b>2.
This completes the proof. ]

6. Discussion

The methods and bounds of this paper provide a new motivation for the
study of random graphs. In particular, better bounds for the random con-
structions would directly imply improved lower bounds for the approxima-
bility of the traveling salesman problem. The parameters we use here (d=6
and b=2) are the best we found for all values of d between 4 and 7, and
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we are convinced that the value of the b-d product, 12, is very close to its
optimum value.

The immense intricacies of proving a rather modest lower bound for the

asymmetric TSP, suggest that a constant approximation ratio, at least for
the directed graph TSP, should be possible.
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