UNIT-DISTANCE GRAPHS IN RATIONAL m-SPACES

Kiran B. CHILAKAMARRI
Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A.

Received 20 May 1986
Revised 5 February 1987

Abstract

Let U_{n} be the infinite graph with n-dimensional rational space $Q^{\boldsymbol{n}}$ as vertex set and two vertices joined by an edge if and only if the distance between them is exactly 1 . The connectedness and clique numbers of the graphs U_{n} are discussed.

1. Introduction amd definitions

Let R^{n} and Q^{n} denote real and rational n-space, equipped with the usual Euclidean metric. Let G_{n} denote the infinite graph whose vertices are the points of \boldsymbol{R}^{n}, two vertices adjacent if and only if the distance betweer them is exactly 1 . It is easy to see that G_{n} is connected for $n \geqslant 2$ and the maximum number of points in $\boldsymbol{R}^{\boldsymbol{n}}$ that are pairwise unit distance apart (the clique number of G_{n}) is $n+1$ for $n \geqslant 1$. However, the chromatic number of G_{n} is so far unknown for $n \geqslant 2$ [1].

Let U_{n} be the subgraph of G_{n} induced by those vertices that are in Q^{n}. In Section 2 we shall prove that U_{n} is connected if and only if $n \geqslant 5$. In Section 3 we shall determine the clique number $\omega(n)$ of U_{n}. For even $n, \omega(n)$ is $n+1$ or n according as $n+1$ is or is not a perfect square. For odd n, if the diophantine equation $n x^{2}-2(n-1) y^{2}=z^{2}$ has an integer solution (x, y, z) with $x \neq 0$, then $\omega(n)=n+1$ or n according as $\frac{1}{2}(n+1)$ is or is not a perfect square; otherwise, $\omega(n)=n-1$.

2. The connectedness of $\boldsymbol{U}_{\boldsymbol{n}}$

In this section we shall first prove that U_{1}, U_{2}, U_{3}, and U_{4} are all disconnected and prove that U_{n} is connected for $n \geqslant 5$.

Lemma 1. There is no path in U_{4} connecting the origin $(0,0,0,0)$ to $\left(\frac{1}{4}, 0,0,0\right)$.
Proof. Suppose there is. Then, equivalently, there are finitely many points on the unit sphere in Q^{4} whose sum is $\left(\frac{1}{4}, 0,0,0\right)$. Let $\left(a_{1} / b, a_{2} / b, a_{3} / b, a_{4} / b\right)$ be such a point, where $a_{1}, a_{2}, a_{3}, a_{4}$, and b have no common factor and

$$
\begin{equation*}
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=b^{2} . \tag{1}
\end{equation*}
$$

0.012-365X/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

If b is divisible by 4 , then at least one of $a_{1}, a_{2}, a_{3}, a_{4}$ is odd, and so the left-hand side of (1) is not divisible by 8 whereas the right-hand side is. (Recall that the only squares modulo 8 are 0,1 , and 4.) Thus b is either odd or twice an odd integer. But the sum of a finite number of fractions with denominators of this form cannot be equal to $\frac{1}{4}$. This completes the proof of the lemma.

Theorem 2. The graphs U_{1}, U_{2}, U_{3}, and U_{4} are all disconnected.

Proof. This follows immediately from Lemma 1, since there are obvious subgraphs of U_{4} that contain the points $(0,0,0,0)$ and $\left(\frac{1}{4}, 0,0,0\right)$ and are isomorphic to U_{1}, U_{2}, and U_{3}, respectively.

Theorem 3. The graph U_{n} is connected for $n \geqslant 5$.
Proof. First note that if there exist two paths in U_{n}, one connecting 0 to x and the other connecting 0 to y, then there exists a path from 0 to $x+y$ in U_{n}. With this observation, it suffices to show that there is a path from 0 to $(0,0, \ldots, 0,1 / N, 0, \ldots, 0)$ in U_{n} for every non-zero integer N with $1 / N$ in the i th coordinate for $i=1,2, \ldots, n$. Consider the integer $4 N^{2}-1$. Since it is positive it can be written as a sum of four squares by Lagrange's Four Square Theorem. Hence, $4 N^{2}-1=a^{2}+b^{2}+c^{2}+d^{2}$ for some integers a, b, c, and d, or, equivalently,

$$
\begin{equation*}
1=\left(\frac{1}{2 N}\right)^{2}+\left(\frac{a}{2 N}\right)^{2}+\left(\frac{b}{2 N}\right)^{2}+\left(\frac{c}{2 N}\right)^{2}+\left(\frac{d}{2 N}\right)^{2} \tag{2}
\end{equation*}
$$

So, there are edges in U_{n} joining 0 and

$$
\left(\frac{1}{2 N}, \pm \frac{a}{2 N}, \pm \frac{b}{2 N}, \pm \frac{c}{2 N}, \pm \frac{d}{2 N}, 0,0, \ldots, 0\right)
$$

This shows that there is a path of length 2 in U_{n} connecting to $(1 / N, 0,0, \ldots, 0)$. By repeating the above with $1 / 2 N$ in the i th coordinate, the desired path is obtained. This completes the proof of the theorem.

3. The cliquire numaber of U_{n}

A set of points will be called unidistant if they are pairwise unit distance apart. Let $\omega(n)$ denote the maximum number of unidistant points in Q^{n} (the clique number of U_{n}). We may remark that any unidistant set can be translated so that the translated unidistant set contains (1). In this section, we first find bounds for $\omega(n)$ and then evaluate $\omega(n)$.

Lemana A. $\omega(n) \leqslant n+1$.

Proof. Let $\left\{0, y_{1}, y_{2}, \ldots, y_{r}\right\}$ be a unidistant set in Q^{n}. Let A be the $r \times n$ matrix whose rows are $y_{1}, y_{2}, \ldots, y_{r}$. Now the $r \times r$ matrix $A A^{\mathrm{T}}$ has 1 's on the principal diagonal and $\frac{1}{2}$ everywhere else. $A A^{\mathrm{T}}$ is a non-singular matrix and so,

$$
r=\operatorname{rank}\left(A A^{\mathrm{T}}\right) \leqslant \operatorname{rank}(A) \leqslant n .
$$

From this it follows immediately that $\omega(n) \leqslant n+1$. This completes the proof of the lemma.

Lemma 5. If $n \geqslant 4$, then $\omega(n) \geqslant n$ if n is even and $\omega(n) \geqslant n-1$ if n is odd.
Proof. If n is even, define a set $S_{\boldsymbol{n}}$ of \boldsymbol{n} unidistant points as follows:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=(1,0,0, \ldots, 0) \\
& x_{3}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right) \\
& x_{4}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, 0, \ldots, 0\right) \\
& x_{5}=\left(\frac{1}{2}, \frac{1}{2}, 0,0 . \frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right) \\
& x_{6}=\left(\frac{1}{2}, \frac{1}{2}, 0,0, \frac{1}{2},-\frac{1}{2}, 0, \ldots, 0\right) \\
& \vdots \\
& x_{n-1}=\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0, \frac{1}{2}, \frac{1}{2}\right) \\
& x_{n}=\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0, \frac{1}{2},-\frac{1}{2}\right)
\end{aligned}
$$

If n is odd, define a set T_{n} of $n-1$ unidistant points by adding an extra coordinate zero to the end of each vector in S_{n-1}.
Theorem 6. $\omega(n)=n+1$ if and only if a set of n unidistant points exist in Q^{n} and $(n+1) / 2^{n}$ is a rational square.

Proof. If $\omega(n)=n+1$, then with no loss of generality let $\left\{0, x_{1}, \ldots, x_{n}\right\}$ be a set of the $n+1$ unidistant points in Q^{n}. Let A be the $n \times n$ matrix having $x_{1}, x_{2}, \ldots, x_{n}$ as its rows. It is clear that $\operatorname{det}(A)$ (the determinant of A) is a rational number. $\operatorname{Now} \operatorname{det}\left(A A^{T}\right)=(n+1) / 2^{n}=$ square of $\operatorname{det}(A)$, thus showing that $(n+1) / 2^{n}$ is a rational square.
Suppose $(n+1) / 2^{2}$ is a rational square and $\left\{0, x_{1}, \ldots, x_{n-1}\right\}$ is a unidistant set of n points. We will construct a point x_{n} so that $\left\{0, x_{1}, \ldots, x_{n}\right\}$ is a unidistant set in Q^{n}. Consider the $(n-1) \times n$ matrix B having x_{1}, \ldots, x_{n-1} as its rows. Let B_{i} be the $(n-1) \times(n-1)$ matrix obtained from B by deleting its i th column, and let $a_{i}=(-1)^{i+1} \operatorname{det}\left(B_{i}\right)$, for $i=1,2, \ldots, n$. Defining a vector $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, we observe that it has the following properties;
(1) \boldsymbol{x} is in Q^{n},
(2) x is orthogonal to $x_{1}, x_{2}, \ldots, x_{n-1}$ (follows from construction),
(3) $\|x\|^{2}=\operatorname{det}\left(B B^{T}\right)=n / 2^{n-1}$ (easily verified and also a consequence of the Cauchy-Binet Theorem).

Define a vector $x_{n}=k x+c$, where

$$
c=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)
$$

and

$$
k=\frac{2^{n-1}}{n} \sqrt{\frac{n+1}{2^{n}}}
$$

The vector x_{n} is in Q^{n} since k is a rational number. From properties (2) and (3) above, it follows that

$$
\begin{aligned}
\left\|x_{n}\right\|^{2} & =k^{2}\|x\|^{2}+2 k x \cdot c+\|c\|^{2} \\
& =\frac{2^{2 n-2}}{n^{2}} \frac{n+1}{2^{n}} \frac{n}{2^{n-1}}+0+\frac{1}{n^{2}}\left(n-1+\frac{(n-1)(n-2)}{2}\right) \\
& =\frac{n+1}{2 n}+\frac{n-1}{2 n}=1
\end{aligned}
$$

and

$$
\begin{align*}
\left\|x_{n}-x_{i}\right\|^{2} & =\left\|x_{n}\right\|^{2}-2 x_{n} \cdot x_{i}+\left\|x_{i}\right\|^{2} \\
& =1-\frac{2}{n}\left(1+\frac{n-2}{2}\right)+1=1, \quad \text { for } i=1,2, \ldots, n-1 . \tag{4}
\end{align*}
$$

This completes the proof.

Theorem 7. If n is even, then $\omega(n)=n+1$ if $n+1$ is a perfect square and $\omega(n)=n$ otherwise.

Proof. If $n \geqslant 4$, this follows immediately from Lemma 5 and Theorem 6. If $n=2$, the result is a simple exercise. In fact, Woodall [4] shows that $\boldsymbol{U}_{\mathbf{2}}$ is two-colorable (bipartite).

In what follows, we shall need the following theorem:
Theorem (Hall and Ryser [2]). Let A be a non-singular $n \times n$ matrix with entries from a field of characteristic $\neq 2$, and suppose that $A A^{\mathrm{T}}=D_{1} \oplus D_{2}$, the direct sum of two square matrices D_{1} and D_{2} of orders r and s respectively $(r+s=n)$. Let M be an arbitrary $r \times n$ matrix such that $M M^{T}=D_{1}$. Then there exists an $n \times n$ matrix Z having M as its first r rows such ihat $Z Z^{\mathrm{T}}=D_{1} \oplus D_{2}$.

Lemma 8. Let U and V be two unidistant sets of $n-1$ points in Q^{n}. Then there is a rational orthogonal transformation (preserving distances and inner products) that maps U onto V. In particular, there is a point u in Q^{n} that is unidistant from all points in U if and only if there is a point v in Q^{n} that is unidistant from all points in V.

Proof. There is no loss of generality in supposing that 0 is in both U and V, so that we can write

$$
U=\left\{0, u_{1}, \ldots, u_{n-2}\right\} \quad \text { and } \quad V=\left\{0, v_{i}, \ldots, v_{n-2}\right\}
$$

Let u_{n-1} and w_{n} be independent vectors in Q^{n} that are orthogonal to all the vectors in U. Let A be the $n \times n$ matrix with rows $u_{1}, u_{2}, \ldots, u_{n}$ and let M be the $(n-2) \times n$ matrix with rows $v_{1}, v_{2}, \ldots, v_{n-2}$. Then A is non-singular, $A A^{T}=$ $D_{1} \oplus D_{2}$ and $M M^{\mathrm{T}}=D_{1}$, where D_{1} is a square matrix of order $n-2$ with 1 's on the principal diagonal and $\frac{1}{2}$ everywhere else, and D_{2} is a non-singular 2×2 matrix. By Hall and Ryser's theorem, there exists an $n \times n$ matrix Z having M as its first $n-2$ rows such that $Z Z^{\mathrm{T}}=D_{1} \oplus D_{2}$. Let $L=Z^{-1} A$. Then L is a rational matrix such that $v_{i} L=u_{i}$, for $i=1,2, \ldots, n-2$. Moreover, L is an orthogonal matrix, because $\left(Z^{\mathrm{T}}\right)^{-1} Z^{-1} A A^{\mathrm{T}}=I$ and so $L L^{\mathrm{T}}=Z^{-1} A A^{\mathrm{T}}\left(Z^{-1}\right)^{\mathrm{T}}=I$. This completes the proof of Lemma 8.

Theorem 9. Let n be an odd integer $\geqslant 5$. If the diophantine equation

$$
\begin{equation*}
n x^{2}-2(n-1) y^{2}=z^{2} \tag{5}
\end{equation*}
$$

has an integer solution (x, y, z) with $x \neq 0$, then $\omega(n)=n+1$ or n according as $\frac{1}{2}(n+1)$ is or is not a perfect square; otherwise $\omega(n)=n-1$.

Proof. In view of Theorem 6, it suffices to prove that $\omega(n) \geqslant n$ if and only if (5) has an integer solution with $x \neq 0$. By Lemma 8, $\omega(n) \geqslant n$ if and only if there is a point \boldsymbol{x} in Q^{n} that is uridistant from all the $n-1$ points in the set T_{n} of Lemma 5 . Let

$$
\boldsymbol{x}=\left(t_{1}, s_{1}, t_{2}, s_{2}, \ldots, t_{m} ; s_{m}, r\right)
$$

be such a point, where $m=\frac{1}{2}(n-1)$. It follows immediately that $t_{1}=\frac{1}{2}$, $s_{2}=s_{3}=\cdots=s_{m}=0, t_{2}=t_{3}=\cdots=t_{m}=\frac{1}{2}-s_{1}$ and $s_{1}^{2}+(m-1)\left(\frac{1}{2}-s_{1}\right)^{2}+r^{2}=\frac{3}{4}$. Solving for s_{1} in terms of r,

$$
\begin{equation*}
s_{1}=\frac{m-1 \pm \sqrt{n-4 m r^{2}}}{2 m} \tag{6}
\end{equation*}
$$

Thus there exists a point x in Q^{n} as required if and only if there exists a rational number $r=y / x$ such that $n-4 m r^{2}$ is a rational square, say $(z / x)^{2}$; that is, if and only if eq. (5) has an integer solution with $x \neq 0$. This completes the proof of Theorem 9.

The above theorem is also true for $n=1$ and $n=3$. For $n=3$, the result is a simple exercise. The chromatic number of U_{3} is 2 . Robertson [3] has shown thai the chromatic number of U_{4} is 4 . These results will be reported in a separate paper dealing mainly with the coloring of graphs \mathbb{U}_{n}^{\prime}.

Ackmowledgnents

The author wishes to thank Professor Neil Robertson for his guidance, and the referee for his valuable suggestions.

References

[1] H. Hadwiger, H. Debrunner and V.L. Klee, Combinatorial Geometry in the Plane (Holt, Rinehart, and Winston, New York, 1964).
[2] M. Hall and H.J. Ryser, Normal completion of incidence matrices, Amer. J. Math. (1954) 581-589.
[3] N. Robertson, Private communication.
[4] D.R. Woodall, Distances realized by sets covering the plane, J. Combin. Theory Ser. A 14 (1973) 187-200.

