UNIT-DISTANCE GRAPHS IN RATIONAL *n***-SPACES**

Kiran B. CHILAKAMARRI

Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A.

Received 20 May 1986 Revised 5 February 1987

Let U_n be the infinite graph with *n*-dimensional rational space Q^n as vertex set and two vertices joined by an edge if and only if the distance between them is exactly 1. The connectedness and clique numbers of the graphs U_n are discussed.

1. Introduction and definitions

Let \mathbb{R}^n and \mathbb{Q}^n denote real and rational *n*-space, equipped with the usual Euclidean metric. Let G_n denote the infinite graph whose vertices are the points of \mathbb{R}^n , two vertices adjacent if and only if the distance between them is exactly 1. It is easy to see that G_n is connected for $n \ge 2$ and the maximum number of points in \mathbb{R}^n that are pairwise unit distance apart (the clique number of G_n) is n + 1 for $n \ge 1$. However, the chromatic number of G_n is so far unknown for $n \ge 2$ [1].

Let U_n be the subgraph of G_n induced by those vertices that are in Q^n . In Section 2 we shall prove that U_n is connected if and only if $n \ge 5$. In Section 3 we shall determine the clique number $\omega(n)$ of U_n . For even n, $\omega(n)$ is n+1 or naccording as n+1 is or is not a perfect square. For odd n, if the diophantine equation $nx^2 - 2(n-1)y^2 = z^2$ has an integer solution (x, y, z) with $x \ne 0$, then $\omega(n) = n + 1$ or n according as $\frac{1}{2}(n+1)$ is or is not a perfect square; otherwise, $\omega(n) = n - 1$.

2. The connectedness of U_n

In this section we shall first prove that U_1 , U_2 , U_3 , and U_4 are all disconnected and prove that U_n is connected for $n \ge 5$.

Lemma 1. There is no path in U_4 connecting the origin (0, 0, 0, 0) to $(\frac{1}{4}, 0, 0, 0)$.

Proof. Suppose there is. Then, equivalently, there are finitely many points on the unit sphere in Q^4 whose sum is $(\frac{1}{4}, 0, 0, 0)$. Let $(a_1/b, a_2/b, a_3/b, a_4/b)$ be such a point, where a_1, a_2, a_3, a_4 , and b have no common factor and

$$a_1^2 + a_2^2 + a_3^2 + a_4^2 = b^2. (1)$$

0012-365X/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

If b is divisible by 4, then at least one of a_1 , a_2 , a_3 , a_4 is odd, and so the left-hand side of (1) is not divisible by 8 whereas the right-hand side is. (Recall that the only squares modulo 8 are 0, 1, and 4.) Thus b is either odd or twice an odd integer. But the sum of a finite number of fractions with denominators of this form cannot be equal to $\frac{1}{4}$. This completes the proof of the lemma. \Box

Theorem 2. The graphs U_1 , U_2 , U_3 , and U_4 are all disconnected.

Proof. This follows immediately from Lemma 1, since there are obvious subgraphs of U_4 that contain the points (0, 0, 0, 0) and $(\frac{1}{4}, 0, 0, 0)$ and are isomorphic to U_1 , U_2 , and U_3 , respectively. \Box

Theorem 3. The graph U_n is connected for $n \ge 5$.

Proof. First note that if there exist two paths in U_n , one connecting 0 to x and the other connecting 0 to y, then there exists a path from 0 to x + y in U_n . With this observation, it suffices to show that there is a path from 0 to $(0, 0, \ldots, 0, 1/N, 0, \ldots, 0)$ in U_n for every non-zero integer N with 1/N in the *i*th coordinate for $i = 1, 2, \ldots, n$. Consider the integer $4N^2 - 1$. Since it is positive it can be written as a sum of four squares by Lagrange's Four Square Theorem. Hence, $4N^2 - 1 = a^2 + b^2 + c^2 + d^2$ for some integers a, b, c, and d, or, equivalently,

$$1 = \left(\frac{1}{2N}\right)^2 + \left(\frac{a}{2N}\right)^2 + \left(\frac{b}{2N}\right)^2 + \left(\frac{c}{2N}\right)^2 + \left(\frac{d}{2N}\right)^2.$$
 (2)

So, there are edges in U_n joining 0 and

$$\left(\frac{1}{2N},\pm\frac{a}{2N},\pm\frac{b}{2N},\pm\frac{c}{2N},\pm\frac{d}{2N},0,0,\ldots,0\right).$$

This shows that there is a path of length 2 in U_n connecting 0 to $(1/N, 0, 0, \ldots, 0)$. By repeating the above with 1/2N in the *i*th coordinate, the desired path is obtained. This completes the proof of the theorem. \Box

3. The clique number of U_n

A set of points will be called *unidistant* if they are pairwise unit distance apart. Let $\omega(n)$ denote the maximum number of unidistant points in Q^n (the clique number of U_n). We may remark that any unidistant set can be translated so that the translated unidistant set contains 0. In this section, we first find bounds for $\omega(n)$ and then evaluate $\omega(n)$.

Lemma 4. $\omega(n) \leq n+1$.

Proof. Let $\{0, y_1, y_2, \ldots, y_r\}$ be a unidistant set in Q^n . Let A be the $r \times n$ matrix whose rows are y_1, y_2, \ldots, y_r . Now the $r \times r$ matrix AA^T has 1's on the principal diagonal and $\frac{1}{2}$ everywhere else. AA^T is a non-singular matrix and so,

 $r = \operatorname{rank}(AA^{\mathrm{T}}) \leq \operatorname{rank}(A) \leq n.$

From this it follows immediately that $\omega(n) \le n+1$. This completes the proof of the lemma. \Box

Lemma 5. If $n \ge 4$, then $\omega(n) \ge n$ if n is even and $\omega(n) \ge n-1$ if n is odd.

Proof. If *n* is even, define a set S_n of *n* unidistant points as follows:

$$\begin{aligned} \mathbf{x}_{1} &= \mathbf{0} \\ \mathbf{x}_{2} &= (1, 0, 0, \dots, 0) \\ \mathbf{x}_{3} &= (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \dots, 0) \\ \mathbf{x}_{4} &= (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, 0, \dots, 0) \\ \mathbf{x}_{5} &= (\frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, 0, \dots, 0) \\ \mathbf{x}_{6} &= (\frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, -\frac{1}{2}, 0, \dots, 0) \\ \vdots \\ \mathbf{x}_{n-1} &= (\frac{1}{2}, \frac{1}{2}, 0, \dots, 0, \frac{1}{2}, \frac{1}{2}) \\ \mathbf{x}_{n} &= (\frac{1}{2}, \frac{1}{2}, 0, \dots, 0, \frac{1}{2}, -\frac{1}{2}) \end{aligned}$$

If *n* is odd, define a set T_n of n-1 unidistant points by adding an extra coordinate zero to the end of each vector in S_{n-1} . \Box

Theorem 6. $\omega(n) = n + 1$ if and only if a set of n unidistant points exist in Q^n and $(n + 1)/2^n$ is a rational square.

Proof. If $\omega(n) = n + 1$, then with no loss of generality let $\{0, x_1, \ldots, x_n\}$ be a set of the n + 1 unidistant points in Q^n . Let A be the $n \times n$ matrix having x_1, x_2, \ldots, x_n as its rows. It is clear that det(A) (the determinant of A) is a rational number. Now det $(AA^T) = (n + 1)/2^n$ = square of det(A), thus showing that $(n + 1)/2^n$ is a rational square.

Suppose $(n + 1)/2^n$ is a rational square and $\{0, x_1, \ldots, x_{n-1}\}$ is a unidistant set of *n* points. We will construct a point x_n so that $\{0, x_1, \ldots, x_n\}$ is a unidistant set in Q^n . Consider the $(n - 1) \times n$ matrix *B* having x_1, \ldots, x_{n-1} as its rows. Let B_i be the $(n - 1) \times (n - 1)$ matrix obtained from *B* by deleting its *i*th column, and let $a_i = (-1)^{i+1} \det(B_i)$, for $i = 1, 2, \ldots, n$. Defining a vector $x = (a_1, a_2, \ldots, a_n)$, we observe that it has the following properties;

- (2) x is orthogonal to $x_1, x_2, \ldots, x_{n-1}$ (follows from construction),
- (3) $||\mathbf{x}||^2 = \det(BB^T) = n/2^{n-1}$ (easily verified and also a consequence of the Cauchy-Binet Theorem).

⁽¹⁾ x is in Q^n ,

Define a vector $x_n = kx + c$, where

$$c=\frac{1}{n}(x_1+x_2+\cdots+x_{n-1})$$

and

$$k=\frac{2^{n-1}}{n}\sqrt{\frac{n+1}{2^n}}.$$

The vector x_n is in Q^n since k is a rational number. From properties (2) and (3) above, it follows that

$$\|x_n\|^2 = k^2 \|x\|^2 + 2kx \cdot c + \|c\|^2$$

= $\frac{2^{2n-2}}{n^2} \frac{n+1}{2^n} \frac{n}{2^{n-1}} + 0 + \frac{1}{n^2} \left(n - 1 + \frac{(n-1)(n-2)}{2}\right)$
= $\frac{n+1}{2n} + \frac{n-1}{2n} = 1$

and

$$\|x_n - x_i\|^2 = \|x_n\|^2 - 2x_n \cdot x_i + \|x_i\|^2$$

= $1 - \frac{2}{n} \left(1 + \frac{n-2}{2} \right) + 1 = 1$, for $i = 1, 2, ..., n-1$. (4)

This completes the proof. \Box

Theorem 7. If n is even, then $\omega(n) = n + 1$ if n + 1 is a perfect square and $\omega(n) = n$ otherwise.

Proof. If $n \ge 4$, this follows immediately from Lemma 5 and Theorem 6. If n = 2, the result is a simple exercise. In fact, Woodall [4] shows that U_2 is two-colorable (bipartite). \Box

In what follows, we shall need the following theorem:

Theorem (Hall and Ryser [2]). Let A be a non-singular $n \times n$ matrix with entries from a field of characteristic $\neq 2$, and suppose that $AA^T = D_1 \oplus D_2$, the direct sum of two square matrices D_1 and D_2 of orders r and s respectively (r + s = n). Let M be an arbitrary $r \times n$ matrix such that $MM^T = D_1$. Then there exists an $n \times n$ matrix Z having M as its first r rows such that $ZZ^T = D_1 \oplus D_2$.

Lemma 8. Let U and V be two unidistant sets of n - 1 points in Q^n . Then there is a rational orthogonal transformation (preserving distances and inner products) that maps U onto V. In particular, there is a point **u** in Q^n that is unidistant from all points in U if and only if there is a point **v** in Q^n that is unidistant from all points in V.

216

Proof. There is no loss of generality in supposing that 0 is in both U and V, so that we can write

$$U = \{0, u_1, \ldots, u_{n-2}\}$$
 and $V = \{0, v_1, \ldots, v_{n-2}\}$.

Let u_{n-1} and u_n be independent vectors in Q^n that are orthogonal to all the vectors in U. Let A be the $n \times n$ matrix with rows u_1, u_2, \ldots, u_n and let M be the $(n-2) \times n$ matrix with rows $v_1, v_2, \ldots, v_{n-2}$. Then A is non-singular, $AA^T = D_1 \oplus D_2$ and $MM^T = D_1$, where D_1 is a square matrix of order n-2 with 1's on the principal diagonal and $\frac{1}{2}$ everywhere else, and D_2 is a non-singular 2×2 matrix. By Hall and Ryser's theorem, there exists an $n \times n$ matrix Z having M as its first n-2 rows such that $ZZ^T = D_1 \oplus D_2$. Let $L = Z^{-1}A$. Then L is a rational matrix, because $(Z^T)^{-1}Z^{-1}AA^T = I$ and so $LL^T = Z^{-1}AA^T(Z^{-1})^T = I$. This completes the proof of Lemma 8. \Box

Theorem 9. Let n be an odd integer ≥ 5 . If the diophantine equation

$$nx^2 - 2(n-1)y^2 = z^2$$
(5)

has an integer solution (x, y, z) with $x \neq 0$, then $\omega(n) = n + 1$ or n according as $\frac{1}{2}(n+1)$ is or is not a perfect square; otherwise $\omega(n) = n - 1$.

Proof. In view of Theorem 6, it suffices to prove that $\omega(n) \ge n$ if and only if (5) has an integer solution with $x \ne 0$. By Lemma 8, $\omega(n) \ge n$ if and only if there is a point x in Q^n that is unidistant from all the n-1 points in the set T_n of Lemma 5. Let

$$\mathbf{x} = (t_1, s_1, t_2, s_2, \ldots, t_m, s_m, r)$$

be such a point, where $m = \frac{1}{2}(n-1)$. It follows immediately that $t_1 = \frac{1}{2}$, $s_2 = s_3 = \cdots = s_m = 0$, $t_2 = t_3 = \cdots = t_m = \frac{1}{2} - s_1$ and $s_1^2 + (m-1)(\frac{1}{2} - s_1)^2 + r^2 = \frac{3}{4}$. Solving for s_1 in terms of r,

$$s_1 = \frac{m - 1 \pm \sqrt{n - 4mr^2}}{2m}.$$
 (6)

Thus there exists a point x in Q^n as required if and only if there exists a rational number r = y/x such that $n - 4mr^2$ is a rational square, say $(z/x)^2$; that is, if and only if eq. (5) has an integer solution with $x \neq 0$. This completes the proof of Theorem 9. \Box

The above theorem is also true for n = 1 and n = 3. For n = 3, the result is a simple exercise. The chromatic number of U_3 is 2. Robertson [3] has shown that the chromatic number of U_4 is 4. These results will be reported in a separate paper dealing mainly with the coloring of graphs U_n .

Acknowledgments

The author wishes to thank Professor Neil Robertson for his guidance, and the referee for his valuable suggestions.

References

- [1] H. Hadwiger, H. Debrunner and V.L. Klee, Combinatorial Geometry in the Plane (Holt, Rinehart, and Winston, New York, 1964).
- [2] M. Hall and H.J. Ryser, Normal completion of incidence matrices, Amer. J. Math. (1954) 581-589.
- [3] N. Robertson, Private communication.
- [4] D.R. Woodall, Distances realized by sets covering the plane, J. Combin. Theory Ser. A 14 (1973) 187-200.