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A Note on the Succinctness 
of Descriptions of Deterministic Languages 

LESLIE G.  VALIANT 

Centre for Computer Studies, University of Leeds, Leeds, United Kingdom 

It is shown that the relative succinctness that may be achieved by describing 
deterministic context-free languages by general unambiguous grammars 
rather than by deterministic pushdown automata is not bounded by any 
recursive function. 

l .  INTRODUCTION 

The result proved in this paper is that for the elements of some infinite 
class of deterministic context-free languages the size of deterministic push- 
down amomata needed to describe them is not recursively bounded by 
the size of the smallest unambiguous context-free grammars that generate 
them. This is a quantitative explanation of the fact that some languages 
require large descriptions in terms of LR(1) grammars (Knuth, 1965; 
Aho and Ullman, 1972), or strict deterministic grammars (Harrison and 
Havel, 1973), even though they can be described very succinctly in terms 
of general, even unambiguous, context-free grammars. It  therefore illustrates 
one of the tangible advantages of using parsing mechanisms more powerful 
than a single pushdown stack (e.g., Earley, 1970) even for languages for 
which that may be sufficient. 

The most closely related result previously known is that a similar non- 
recursive relationship exists between the succinctness of descriptions of 
regular sets by finite automata and (ambiguous) context-free languages 
respectively (Meyer and Fischer, 1971). In contrast a fairly precise recursive 
relationship is known to exist between finite automata and deterministic 
pushdown automata (Stearns, 1967; Meyer and Fischer, 1971; Valiant, 1975). 
However, the two further questions of analogously relating finite automata 
with unambiguous grammars, and unambiguous grammars with ambiguous 
ones, both remain open. 
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2. PRELIMINARIES 

Comparisons between the succinctness of different formalisms can be 
quantified within the following general framework. Let X be a set on which 
there is an equivalence relation :-, and a size measure ~ mapping X into 
the positive integers. Then the maximum succinctness of X~ over Xi  for 
X~, X:  C X can be expressed by the function Sij defined by 

S,:(n) = max{M,(x) [ a(x) ~ n, x ~ X~}, 

where Mi(x) = min{a(y) [ y ~ X i ,  y :" x}, and min and max take the value 
zero for the empty set. 

For the case Xi C X s C X~ the following general relationships follow 
immediately from the definitions. 

LEMMA 1. For all n, S~,(n) ~ Sie(n). 

LEMMA 2. For all n, S,lc(n) ~ Si,(Ssle(n)). 

For our applications we want X a , X 2 , X a , X 4 to correspond to the class 
of finite automata, deterministic pushdown automata, unambiguous context- 
free grammars, and general context-free grammars, respectively. The  
equivalence relation ,-, will hold between two elements if and only if they 
describe the same language. For uniformity we define X 1 to be the class 
of Chomsky type 3 grammars obtained from finite automata (as in Hopcroft  
and Ullman, 1969, p. 34) and X 2 to be the union of X 1 and class of canonical 
grammars obtained from deterministic pushdown automata (e.g., Hopcroft 
and Ullman, 1969, p. 76). It  is well known that for all conventional size 
measures, both classes of grammars are recursively related to their cor- 
responding automata. We therefore have four classes of grammars 
(X 1 C X 2 C X a C )24) in which we can define a uniformly. From among 
a number of possible size measures for a grammar G (e.g., Gruska, 1972; 
Ginsburg and Lynch, 1975) we choose a(G) to be the total number  of 
occurrences of terminal and nonterminal symbols in the productions of G. 

The  following definition of a deterministic pushdown automaton (dpda) 
is a convenient standard form into which all the other customary formulations 
can be recursively translated. A dpda M is specified by a sextuple (Q, 1", Z, 
A, cs, F), where Q, F, 2: are finite sets of states {s,...}, stack symbols {d,...}, 
and input symbols {a,...}, and A, cs, and F are the transitions, starting con- 
figuration, and accepting modes, respectively, as defined below. 
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Typically we denote words from N* and Z* by oJ and % respectively, 
and their lengths by ] oJ I and [~ I. A configuration c is a pair (s, ~o) from 
O × F*, and its height I c I is defined to be I co I- A mode, designated either 
a reading mode or an E-mode, is a pair from Q × (F  k3 {f2}), where E2 is a 
special empty stack symbol. A is a set of transitions, each of the form 

(s, A) ~ (~', ~), 

where rr ~ 27 t3 {¢} and ] w ] ~< 2, such that 

(i) if (s, A) is a reading mode then for each a ~27 it has a unique 
transition with ~ = a but none with 7r = e; and 

(ii) if (s, _//) is an e-mode then it has just one transition, and in this 
7T ~ e .  

This machine makes a move 

(~, ~A) ", (s', ~ ' )  

if and only if there is some transition 

(s, A) -~+ (s', oJ). 

I f  ~ ~ 27 then this symbol is considered to have been read. 
A derivation is a sequence of such moves through successive configurations 

and is said to be an s-derivation if ~ is the concatenation of the symbols 
read by the constituent moves, c is a stacking configuration of the derivation 
if all the configurations following it have height > ] c 1. It  is a popping con- 
figuration of the derivation if all the configurations preceding it have height 

> l c l .  
A special configuration of height 1 is designated the starting configuration 

c s . The  set F of accepting modes is a set of reading modes. A word ~ is 
accepted by M if there is an s-derivation from c s to some c' with mode 
(i.e., state, top stack symbol) belonging to F. 

For a dpda M we denote the cardinalities of Q and _P by q and t, respec- 
tively. 

3. PROPERTIES OF PUSHDOWN J~UTOMATA 

We start with a lemma that illustrates a basic technical argument applicable 
to deterministic pushdown automata. 
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LEMMA 3. Suppose for  some configurations Co, c l ,  and c 2 o f  dpda M 
such that ! c o I, I c2 I < m, ] q ] > n, and n - -  m > q2t there is y-derivation 

f rom  c o to q and a 8-derivation f rom  q to c 2 . Then for  some fi strictly shorter 
than 78 there is a fi derivation f rom c o to c 2 . 

Proof. Since n - - m > q 2 t  two integers i, j ( m ~ < i < j  <~n) clearly 
exist such that the modes of the stacking configurations in the y-derivation 
are the same at heights i + 1 and j + 1, and the states of the popping 
configurations of heights i and j in the 8-derivation are also identical. By 
removing from y8 the substrings that induce the subderivations between 
these two pairs of configurations a shorter string fi with the desired properties 
is clearly obtained. I 

Using the above style of argument in various ways we can prove the 
following. 

LENtMA 4. There is a positive constant k such that i f  for  some dpda M 
with q states and t stack symbols ~ is a shortest string such that both ~a and ~b 
are accepted, then qt > / ( log  [ ~ [)1~. 

Proof. Consider the derivation of M from c s that reads ~ and reaches 
a reading mode c. Let  % be one of the configurations in this derivation 
of maximal height. Let  %,  cb be the configurations with reading modes 
in F reached when c~a, c~b, respectively, are read. 

I f  ~ has the assumed minimality property then clearly no configuration 
in the c~-derivation can repeat. Consequently [ ~1 ~< qtlC< if t > 1 and 
[~I  ~ q ' ] % ]  if t = 1. T o  prove the lemma it remains to show that 
I %  ] <~ 4q at which then implies that qt > (1) .  (log l c ~ ])1/3 for all q, t. 

We assume the contrary, that [ %  [ > 4qat and deduce that in all the 
following four cases, which are clearly exhaustive, some substrings of 
can be removed to give shorter strings still with the required property: 

(i) I f  [ % ]  - - I  c] > q 2 t  then Lemma  3 (with c o = e , ,  c 1 - ~ c m ,  
ce : c, y3 = c~) can be applied directly to find a/3 ([ fi[ < [~ t) such that 
f a  and fib are still both accepted. 

(ii) I f  Ic [  - -  max{l ca I, [cb 1} > qat (i.e., the readings of both ~a 
and ~b are followed by long e-derivations) then extending the argument 
of Lemma  3 to find a stack segment corresponding to state repetitions in 
the popping configurations of both e-derivations as well as mode repetitions 
in the stacking configurations leads to a contradiction similar to (i). 

(iii) I f  max{[c a [ , / c ~ [ } - m i n { I c  a l , l cb [}  > q  2t a stack segment 
exists that corresponds to state repetitions in the popping configurations 
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of the longer e-derivation and mode repetitions in the stacking configurations. 
This  yields the required contradiction. 

(iv) I f  min{[ c, I, I cb 1} > qt then a substring of ~ corresponding to 
mode repetitions in the stacking configurations can be removed to give 
the contradiction. | 

4. SUCCINCTNESS THEOREM 

To prove our main result we use the idea (due to Meyer and Fischer, 
1971) of encoding large Tur ing machine computations in small grammars. 

THEOREM. The function S~z is not recursively bounded. 

Proof. Let  T be a T M  wkh I T  I quadruples that on null input halts 
in Z steps. Let  the function Nextr(x) be defined at x if and only if x is an 
instantaneous description (ID) of T, and to have value y if y is the I D  
following x in a computation of T. Let  x 0 be the ID for the starting con- 
figuration with null tape and let the set {$, a, b} be disjoint from the alphabet 
describing the ID 's .  

Let  L '  be the set of strings of the form 

$xoSxl$'"$x~$, 

where x~ is a halting ID  of T, such that for all k (0 ~< h ~< (n - -  1)/2) 
X21c+lR = Nextr(X2~ ). Let  L" be the set of strings of the same form under 
the different restriction that for all k (1 <~ k <~ n/2) x.)1~ = Nextr(x~k_l). 
Now let L = L'a kJ L"b. 

It  is easily verified that L', L" are both recognized by dpda's  (say M', M", 
respectively) of size polynomial in [ T [. I t  follows that L'a and L"b are also 
both so recognizable and therefore both generated by unambiguous grammars 
of similar size. Since these languages are disjoint their union L is also 
generated by an unambiguous grammar  of size recursive in F T I. 

However, L itself is recognized by a dpda. The  dpda uses its finite state 
control to deal with strings of length no more than Z 2 and for longer strings 
acts as follows. It  reads the first Z 2 or so characters of the input c¢ and 
determines to which of L'a or L"b c¢ may still possibly belong. This  initial 
segment cannot be a prefix of words in both languages for that would imply 
that a computation of T of more than Z steps on null input exists. If  it 
does not prefix words in either language ~ is rejected. Otherwise the dpda 
simulates the rest of ~ on M '  (or M"  as appropriate) and accepts it if after 
reaching an accepting mode of M' (or M") an a (or b) follows. 
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It  remains to observe that for any dpda recognizing L, qt > (log Z f  ~. 
This is because the string corresponding to the correct computation sequence 
of T on null input satisfies the condition of Lemma 4. From the undecidability 
of the halting problem for TM's  we know that Z is not recursively bounded 
by I T I, and hence neither is qt. The family of languages obtained from 
halting TM's  in the manner of L above therefore ensures that $23 is not 
recursively bounded. | 

Note that since the reversal of L is recognized by a dpda of size recursive 
in ] T 1, this example also shows that the relative sizes of dpda's required 
to recognize a language and its reversal are not recursively bounded. As a 
further application the example can also be used to deduce that it is un- 
decidable whether an unambiguous grammar generates a deterministic 
language. 

5. SUMMARY 

We have investigated within a general framework the succinctness rela- 
tionships among four classes of context-free grammars. Our result is that 
S~3 is not recursively bounded. This follows an analogous result for $14 
by Meyer and Fischer (1971). The recursiveness of $1~ was first proved 
by Stearns (1967) and that it is in fact double exponential follows from 
Meyer and Fischer (1971) and Valiant (1975). That $2~ is not recursively 
bounded is immediate from the result for $14 together with Lemma 2, 
or alternatively from that for S~3 together with Lemma 1. The natures 
of Sla and of Sa4 remain unknown, although the result for $14 and Lemma 2 
together implies that at least one of them is not recursively bounded. 
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