A Time Line of Who-Proved-What for Upper bounds on VDW Numbers
An Excerpt from the VDW book being worked on by
William Gasarch, Clyde Kruskal, Andy Parrish

A

Def 0.0.1 If A C N, then the upper density of A is limsup,,_, .,

We give a history of how better bounds on W (k, ¢) were found. We also
include some side roads.

1. In 1927 van der Waerden proves VDW. His proof yields bounds on
W (k,c) that are not primitive recursive.

2. In 1936 Erdés and Turan [?] conjectured that every set of positive upper
density has a 3-AP. A proof of this would yield a proof of VDW(3, ¢)
that is very different from the original proof (and from Shelah’s proof).
They have often been credited with conjecturing that every set of posi-
tive upper density has a k-AP with this paper as the reference; however,
Soifer [?] gives compelling evidence that the conjecture for k-AP was
made by Erdés in the 1957 (next item).

3. In 1953 Roth [?] (see also [?]) proved that, for every § > 0, for every
N > 22°° 7 for every A C [N] with |A| > 6N, A has a 3-AP. The
proof used Fourier Analysis. This result did lead to better bounds on
W(3,¢), namely W (3,¢) < 227,

4. In 1957 Erdds [?] conjectured that every set of positive upper density
has a k-AP. A proof of this would yield a proof of VDW that is very
different from the original proof (and from Shelah’s proof). Such a
proof might lead to better bounds on W (k,c). We will call this The
Congecture.

5. In 1974 Szemerédi [?] proved the k = 4 case of The Conjecture with a
purely combinatorial proof. This result did not lead to better bounds
on W (4, c). Even though it is purely combinatorial, it is rather difficult.

6. In 1975 Szemerédi [?] proved The Conjecture with a purely combinato-
rial proof. His result did not lead to better bounds on W (k, ¢) because
the proof used VDW. Even though it is purely combinatorial, it is
rather difficult. In order to prove this he first proved Szemerédi’s Reg-
ularity Lemma which has been very useful in a variety of fields [?, 7, 7].



7. In 1977 Fiirstenberg [?] proved The Conjecture with ergodic methods.

10.

11.

12.

His proof did not appear to lead to any bounds on W(k,c) since it
was nonconstructive. Avigad and Towsner [?] (see also [?, 7, 7, 7])
have shown that, in principle, one can extract bounds from the proof;
however, these bounds are no better than the classic bounds and may
be worse.

. In 1988 Shelah [?] obtained a new proof of VDW that yielded primitive

recursive bounds on W(k,c). The bounds are still quite large and
cannot be written down. The proof is purely combinatorial and does
not use any of the techniques related to The Conjecture.

. In 1996 Bergelson and Leibman [?] used ergodic techniques to prove

the following generalization of The Conjecture:

Let py,...,pr € Zlx] such that (Vi)[p;(0) = 0]. If A is a set of positive
upper density then there exists a,d € N such that a,a + pi(d),a +
pa(d), ..., a+ pp(d) € A.

An easy corollary is POLYVDW which we restate here:
For any polynomials py(z), ... ,pp(x) € Z[z] such that (Vi)[p;(0) = 0],

for any natural number c, there exists W = W (py,...,px; c) such that,
for any c-coloring x:[W] — [c| there exists a,d € N such that x(a) =
x(a+pi(d)) = x(a+p2(d)) = - -+ = x(a+ pr(d)).

Their proof did not appear to lead to any bounds on W since it was
nonconstructive. Towsner [?] showed that, in principle, one can extract
bounds from the proof; however, these bounds are no better than the
classic bounds and may be worse.

Bourgain [?] showed that A C [n] and |A| > Q(n,/"%6%") then A has

logn
a 3-AP. The proof is rather difficult and not purely combinatorial. This
can be used to obtain a better bound on W (3, ¢) then Roth had.

In 2000 Walters [?] obtained a proof of POLYVDW that yielded bounds
W(p1,...,px; c). these bounds were not primitive recursive.

In 2001 Gowers [?, 7] proved The Conjecture using Fourier methods.
His proof did yield better bounds on W (k, ¢). In particular he obtains
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W(k,c) < 2%

In 2002 Shelah [?] obtained a proof of POLYVDW that yielded primi-
tive recursive bounds on W(py, ..., pk;c).

In 2006 Graham and Solymosi [?] obtained a purely combinatorial proof
O(c
that W(3,¢) < 227



