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1 Introduction

The following are well-known:

1. cos(π/1) = −1,

2. cos(π/2) = 0,

3. cos(π/3) = 1/2,

4. cos(π/4) =
√

2/2, and

5. cos(π/6) =
√

3/2.

Note that cos(π/5) is missing. In Harold Boas’s paper [1]1 he shows that

cos

(
π

5

)
=

1 +
√

5

4

which is half the golden ratio. Note that all of these numbers are algebraic.

Convention 1.1

1. In this paper all variables a, b, c, . . . , z range over {1, 2, 3 . . .} unless otherwise noted.
The variable θ ranges over R.

2. All polynomials have coefficients in Z unless otherwise noted.

3. We will be studying cos(vπ/n) and sin(vπ/n) where v/n is in lowest terms. Hence we
will usually have as a premise that v and n are co-prime. We may also denote this by
gcd(v, n) = 1 when that notation is useful.

Definition 1.2 Let d ≥ 1. Let α ∈ C.

1. α is algebraic if there exists p ∈ Z[x] such that p(α) = 0.

2. Let α be algebraic. The degree of α is the least d such that there exists a p ∈ Z[x] of
degree d with p(α) = 0. We denote this by deg(α). Note that we could replace Z with
Q and the degree would be the same.

1Harold Boas’s paper was the inspiration for our paper.
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Are numbers of the form cos(vπ/n) always algebraic? Yes. These statements are well-
known. We will prove this for all v ≥ 1, n ≥ 2, 1 ≤ v ≤ n, and gcd(v, n) = 1. All other
cases are either easy (e.g., v = 0) or can be derived from what we prove (e.g., v ≤ −1). In
this paper we prove the following.

1. In Sections 2,3,4, and 5 we show cos(vπ/n) is algebraic. The proof has the following
properties:

(a) It only uses elementary techniques.

(b) It is self contained (with help from Appendices A and B).

(c) We obtain upper bounds on deg(cos(vπ/n)). The upper bounds for deg(cos(vπ/n))
are optimal although we do not prove that.

(d) The proof gives a way to obtain the explicit polynomials (which we do in Ap-
pendix D).

(e) The proof may be longer than you like.

2. In Section 6 we show that sin(vπ/n) is algebraic. In Section ?? we show that sec(vπ/n)
is algebraic. In Section ?? we show that tan(vπ/n) is algebraic. The proofs have the
following properties:

(a) They use that results about cosine.

(b) They are is self contained.

(c) They obtain upper bounds on deg(sin(vπ/n)), deg(sec(vπ/n)), deg(tan(vπ/n)).
The upper bounds are optimal although we do not prove that.

To state our results we need the following well-known definition and theorem.

Definition 1.3 φ(n) is |{v : 1 ≤ v ≤ n−1 and v and n are co-prime}|. This is often called
Euler’s Totient Function or the Euler’s φ function.

Theorem 1.4

1. If gcd(n1, n2) = 1 then φ(n1n2) = φ(n1)φ(n2).

2. If p is a prime and a ≥ 1 then φ(pa) = pa − pa−1.

3. If n ≥ 3 then φ(n) is even.

4. If n ≥ 3 then

1

2
φ(n) =

∣∣∣∣{k : 1 ≤ k ≤
⌊
n− 1

2

⌋
and gcd(k, n) = 1

}∣∣∣∣.
(To prove this use that gcd(x, n) = gcd(n− x, n) and that f(x) = n− x is a bijection
from {1, . . . ,

⌊
n−1
2

⌋
} to {

⌊
n−1
2

⌋
+ 1, . . . , n− 1}.)
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This paper’s contents are as follows.

1. In Section 2, we define the Chebyshev polynomials of the first kind, Tn, and state
the well-known theorem about them: cos(nx) = Tn(cos(x)). We also state a theorem
about dividing Chebyshev polynomials by other polynomials. Both of these theorems
are proven in the appendix.

2. In Section 3, we show that, for all v, n with 1 ≤ v ≤ n, deg(cos(vπ/n)) ≤ 2n + 1.
We also prove lemmas that are used in the next two sections to obtain better upper
bounds on deg(cos(vπ/n)).

3. In Section 4, we show the following: For all v, n, n odd, 1 ≤ v ≤ n−1, and gcd(v, n) = 1,
deg(cos(vπ/n)) ≤ φ(n)/2. Our proof gives a construction of the needed polynomials.

4. In Section 5, we show the following: For all v, n, n even, 1 ≤ v ≤ n−1, and gcd(v, n) =
1, deg(cos(vπ/n)) ≤ φ(n). Our proof gives a construction of the needed polynomials.

5. In Section 6, we show the following:

(a) If n ≡ 0 (mod 4) then deg(sin(vπ/n)) ≤ φ(n).

(b) If n ≡ 2 (mod 4) then deg(sin(vπ/n)) ≤ φ(n/2)/2.

(c) If n is odd then deg(sin(vπ/n)) ≤ φ(2n).

6. In Appendix A we prove that, for all n, cos(nx) = Tn(cos(x)). This is well-known and
proven here for the sake of completeness.

7. In Appendix B we prove that, if p ∈ Z[x] and all of the roots of p are also roots of Tn,
then Tn(x)/p(x) ∈ Z[x]. This is surely known; however, we could not find a proof it it.

8. In Appendix C, we list the first 39 Chebyshev polynomials of the first kind. We need
these for the next Appendix.

9. In Appendix D, we give, for 1 ≤ v < m ≤ 21, gcd(k, n) = 1, a polynomial p ∈ Z[x]
such that p(cos(vπ/n)) = 0. If n is odd then the polynomial has degree φ(n)/2. If n
is even then the polynomial has degree φ(n).

2 Chebyshev Polynomials of the First Kind

Definition 2.1 The Chebyshev polynomials of the first kind, Tn, n ≥ 1, are defined by

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k.
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We will need the next three theorems.
The following theorem is well-known; however, we provide a proof in Appendix A for

completeness.

Theorem 2.2 For all n, Tn(cos(θ)) = cos(nθ).

The following is surely known; however, we could not find it anywhere. We provide a
prove in Appendix B (Theorem B.4).

Theorem 2.3 Let n ≥ 1. Let p ∈ Z[x]. If the set of roots of p is a subset of the set of roots
of Tn then Tn(x)/p(x) ∈ Z[x].

For the following theorem (1) the first two parts are obvious, and (2) the third part we
will prove in Lemma 3.1.

Theorem 2.4

1. The polynomial T1(x)− x is identically 0, and hence has an infinite number of roots.

2. For n ≥ 2, Tn is a polynomial of degree n.

3. Tn has n distinct roots.

Since we called these Chebyshev polynomials of the first kind the reader may wonder if
there are Chebyshev polynomials of the second kind and, if so, what properties they have.
The Chebyshev polynomials of the second kind, Un, have the following properties:

• Un ∈ Z[x],

• Un has degree n,

• Un(cos θ) sin θ = sin((n+ 1)θ).

We will not be using these polynomials.

3 deg ( cos (vπ/n)) ≤ 2n+ 1

Lemma 3.1

1. Let n ≥ 1. For all

θ ∈
{

2kπ

n− 1
: k ∈ Z

}
∪
{

2kπ

n+ 1
: k ∈ Z

}
,

cos(θ) = cos(nθ). (If n = 1, then just use the second unionand.)
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2. If n is odd and n ≥ 3, then the n roots of Tn(x)− x are{
cos

(
2kπ

n− 1

)
: 0 ≤ k ≤ n− 1

2

}
∪
{

cos

(
2kπ

n+ 1

)
: 1 ≤ k ≤ n− 1

2

}
.

3. If n is even and n ≥ 2, then the n roots of Tn(x)− x are{
cos

(
2kπ

n− 1

)
: 0 ≤ k ≤ n− 2

2

}
∪
{

cos

(
2kπ

n+ 1

)
: 1 ≤ k ≤ n

2

}
.

Proof:
1) For the first unionand notice that

cos

(
2kπ

n− 1

)
= cos

(
2kπ

n− 1
+ 2kπ

)
= cos

(
n2kπ

n− 1

)
.

For the second unionand notice that

cos

(
2kπ

n+ 1

)
= cos

(
− 2kπ

n+ 1

)
= cos

(
2πk − 2kπ

n+ 1

)
= cos

(
n2kπ

n+ 1

)
.

2) Let

X =

{
cos

(
2kπ

n− 1

)
: 0 ≤ k ≤ n− 1

2

}
∪
{

cos

(
2kπ

n+ 1

)
: 1 ≤ k ≤ n− 1

2

}
.

By Theorem 2.2 and Part 1 we have that all of the elements in X are roots of Tn(x)− x.
By algebra one can see that all of the angles mentioned in the definition of X are distinct
and in [0, π]. Since cosine is injective on [0, π], X contains n different numbers. Since n ≥ 2,
by Theorem 2.4, Tn(x)− x has n roots. The elements of X are its n roots.

3) Similar to the proof of Part 2.

Lemmas 3.1.2 and 3.1.3 imply many cosines are algebraic.

Example 3.2

We look at the first unionand in the n = 3, 5, 7 cases of Lemma 3.1.2.

1. n = 3. {
cos

(
2kπ

2

)
: 0 ≤ k ≤ 1

}
= {cos(0), cos(π)}

2. n = 5. {
cos

(
2kπ

4

)
: 0 ≤ k ≤ 2

}
= {cos(0), cos(π/2), cos(π)}
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3. n = 7. {
cos

(
2kπ

6

)
: 0 ≤ k ≤ 3

}
= {cos(0), cos(π/3), cos(2π/3), cos(π)}

Theorem 3.3

1. There exists a polynomial in Z[x] of degree 2n+ 1 that has roots{
cos

(
vπ

n

)
: 0 ≤ v ≤ n

}
.

2. Let v, n be such that n ≥ 1 and 0 ≤ v ≤ n. Then deg(cos(vπ/n)) ≤ 2n + 1. (This
follows from Part 1.)

Proof: By Lemma 3.1.2, applied to 2n+ 1 (since n ≥ 1, 2n+ 1 ≥ 3) and replacing v with
k, the elements of{

cos

(
2vπ

2n

)
: 0 ≤ v ≤ 2n

2

}
=

{
cos

(
vπ

n

)
: 0 ≤ v ≤ n

}
.

are roots of T2n+1(x)− x. Since the degree of T2n+1 is 2n+ 1, deg(cos(vπ/n)) ≤ 2n+ 1.

4 If n is Odd Then deg ( cos (vπ/n)) ≤ 1
2
φ(n)

In this section:

1. We will prove that, for all 1 ≤ v ≤ 22, gcd(v, 27) = 1, deg(cos(vπ/27)) ≤ 1
2
φ(27) = 9.

We use 27 since it is the least odd number x such that both x and x−2 are not primes.
This is important since if x or x − 2 are primes then part of the proof is easy and
will not demonstrate aspects of the general theorem. The proof will use an inductive
assumption.

2. We will prove that, for all n, for all 1 ≤ v ≤ n−1, n odd, gcd(v, n) = 1, deg(cos(vπ/n)) ≤
1
2
φ(n). The proof is by induction.

4.1 An Example: deg ( cos (vπ/27))

The general proof constructs two polynomials cn,o,1 and cn,o,2, inductively on n. (c stands
for cosine, o stands for odd.) The union of the roots of cn,o,1 and cn,o,2 are{

cos

(
vπ

n

)
: 1 ≤ v ≤ n− 1 and gcd(v, n) = 1

}
.
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As an example we will show how the induction step works to give co27,1, co27,2 For
purposes of the example, we will assume we have con′,1 and con′,2 for all 1 ≤ n′ ≤ 26.

We show the following:

Every element of

CO27 =

{
cos

(
vπ

27

)
: 1 ≤ v ≤ 26 and gcd(v, 27) = 1

}
,

(CO stands for cosine.)
has degree ≤ φ(27)/2 = 9.

We construct two polynomials co27,1, co27,2 ∈ Z[x] of degree φ(27)/2 = 9 such that the
following hold.

1. The roots of co27,1 are all cos(vπ/27) where 1 ≤ v ≤ 26, gcd(v, 27) = 1, and v is even.
Formally:

CO27,1 =

{
cos

(
2kπ

27

)
: 1 ≤ k ≤ 13 and gcd(k, 27) = 1

}

=

{
cos

(
2π

27

)
, cos

(
4π

27

)
, cos

(
8π

27

)
, cos

(
10π

27

)}

∪
{

cos

(
14π

27

)
, cos

(
16π

27

)
, cos

(
20π

27

)
, cos

(
22π

27

)
, cos

(
26π

27

)}
.

2. The roots of co27,2 are all cos(vπ/27) where 1 ≤ v ≤ 26, gcd(v, 27) = 1, and v is odd.
Formally:

CO27,2 =

{
cos

(
(27− 2k)π

27

)
: 1 ≤ k ≤ 13 and gcd(k, 27) = 1

}

=

{
cos

(
π

27

)
, cos

(
5π

27

)
, cos

(
7π

27

)
, cos

(
11π

27

)
, cos

(
13π

27

)}

∪
{

cos

(
17π

27

)
, cos

(
19π

27

)
, cos

(
23π

27

)
, cos

(
25π

27

)}
.

1) We construct co27,1 with an inductive assumption.
Assume that, for 3 ≤ n′ ≤ 25, n′ odd, there exists con′,1 ∈ Z[x] of degree φ(n′)/2 whose

roots are

COn′,1 =

{
cos

(
2kπ

n′

)
: 1 ≤ k ≤ n′ − 1

2
and gcd(k, n′) = 1

}
.
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To construct co27,1 we first take T26(x)− x. By Lemma 3.1.3 the roots of T26(x)− x are{
cos

(
2kπ

25

)
: 0 ≤ k ≤ 24

2

}
∪
{

cos

(
2kπ

27

)
: 1 ≤ k ≤ 26

2

}

=

{
cos

(
2kπ

25

)
: 0 ≤ k ≤ 12

}
∪
{

cos

(
2kπ

27

)
: 1 ≤ k ≤ 13

}
.

Note that CO27,1 is a subset of the roots of T26(x) − x. To remove the other roots we
will divide T26(x) − x by some polynomials. We will partition the roots cos(vπ/n′) (with
v/n′ in lowest terms) that we want to get rid of into groups. Each group will have the same
n′. For example, one of the groups is {cos(2π/5), cos(4π/5)}. For each group there will be a
polynomial that has exactly the elements of that group for roots

1. {cos(0π/25)} = {cos(0)} = {1}.
The polynomial x− 1 of degree 1 suffices.

2. {cos(2π/25), cos(4π/25), cos(6π/25), cos(8π/25), cos(12π/25)} ∪
{cos(14π/25), cos(16π/25), cos(18π/25), cos(22π/25), cos(24π/25)}

which is
{cos(2kπ/25) : 1 ≤ k ≤ 12 and gcd(k, 25) = 1}.

By assumption with n′ = 25, there is a polynomial co25,1 ∈ Z[x] of degree φ(25)/2 = 10,
whose roots are this set.

3. {cos(10π/25), cos(20π/25)} = {cos(2π/5), cos(4π/5)} which is

{cos(2kπ/5) : 1 ≤ k ≤ 2 and gcd(k, 5) = 1}.

By assumption with n′ = 5, there is a polynomial co5,1 ∈ Z[x] of degree φ(5)/2 = 2,
whose roots are this set.

4. {cos(6π/27), cos(12π/27), cos(24π/27)} = {cos(2π/9), cos(4π/9), cos(8π/9)} which is

{cos(2kπ/9) : 1 ≤ k ≤ 4 and gcd(k, 9) = 1}.

By assumption with n′ = 9, there is a polynomial co9,1 ∈ Z[x] of degree φ(9)/2 = 3,
whose roots are this set.

5. {cos(18π/27)} = {cos(2π/3)} which is

{cos(2kπ/3) : 1 ≤ k ≤ 1 and gcd(k, 3) = 1}.
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By assumption with n′ = 3, there is a polynomial co3,1 ∈ Z[x] of degree φ(3) = 1,
whose roots are this set. (Since cos(2π/3) = −1/2 we know that co2(x) = 2x + 1;
however, by using the assumption this derivation of co27,1 is similar to the proof of the
general theorem in the next subsection.)

The set of roots of T26(x)− x that are not in CO27,1 is the set of roots of one of the five
polynomials above. Hence we take

co27,1(x) =
T26(x)− x

(x− 1)co25,1(x)co5,1(x)co9,1co3,1(x)
.

co27,1 ∈ Z[x] by Theorem 2.3. The set of roots of co27,1(x) is CO27,1.
As a sanity check we calculate the degree of co27,1 based on the degrees of the numerator

and denominator in the definition of co27,1. The degree of co27,1 is

deg(T26(x)− x)− deg(x− 1)− deg(co25,1)− deg(co5,1)− deg(co9,1)− deg(co3,1)

= 26− 1− 10− 2− 3− 1 = 9.

This passes the sanity check since co27,1(x) is supposed to have 9 roots.

2) We construct the polynomial co27,2 ∈ Z[x] by using co27,1. Note that

cos

(
(27− 2k)π

27

)
= cos

(
−(27− 2k)π

27

)
= − cos

(
π − −(27− 2k)π

27

)
= − cos

(
2kπ

27

)
.

Hence every element in CO27,2 is the negation of an element in CO27,1 and vice versa.
Hence we can take co27,2(x) = co27,1(−x). Clearly f27,2 is of degree φ(27)/2 = 9.

We have constructed co27,1 and co27,2 as promised.

4.2 General Theorem: If n is Odd Then deg ( cos (vπ/n)) ≤ 1
2φ(n)

Lemma 4.1 Let n ≥ 3, n odd. Let

COn,1 =

{
cos

(
2kπ

n

)
: 1 ≤ k ≤ n− 1

2
and gcd(k, n) = 1

}
.

Then COn,1 is a subset of the roots of Tn−1(x)− x.

Proof: Since n is odd, n− 1 is even. By Lemma 3.1.2, applied to n− 1, the n− 1 roots
of Tn−1(x)− x are{

cos

(
2kπ

n− 2

)
: 0 ≤ k ≤ n− 3

2

}
∪
{

cos

(
2kπ

n

)
: 1 ≤ k ≤ n− 1

2

}
.

Clearly COn,1 is a subset of this set.
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Theorem 4.2 Let n ≥ 3, n odd.

1. There is a polynomial con,1 ∈ Z[x] of degree φ(n)/2 whose roots are

COn,1 =

{
cos

(
2kπ

n

)
: 1 ≤ k ≤ n− 1

2
and gcd(k, n) = 1

}
.

2. There is a polynomial con,2 ∈ Z[x] of degree φ(n)/2 whose roots are

COn,2 =

{
cos

(
(n− 2k)π

n

)
: 1 ≤ k ≤ n− 1

2
and gcd(k, n) = 1

}
.

3. Every element of

COn =

{
cos

(
vπ

n

)
: 1 ≤ v ≤ n− 1 and gcd(v, n) = 1

}
has degree ≤ φ(n)/2.

Proof:
1) We construct con,1 by induction on n.
Base Case: n = 3. Then CO3,1 = {cos(2π/3)} = {−1/2}. Let co3,1(x) = 2x + 1. Note that
co3,1 is of degree φ(3)/2 = 1.
Induction Hypothesis Assume n ≥ 5 is odd. Assume that, for all 1 ≤ n′ < n, n odd,
there exists a polynomial con′,1 ∈ Z[x] of degree ≤ φ(n′)/2 whose roots are

COn′,1 =

{
cos

(
2kπ

n′

)
: 1 ≤ k ≤ n′ − 1

2
and gcd(k, n′) = 1

}
.

Induction Step To construct con,1 we first take Tn−1(x) − x. By Lemma 3.1.3 the n − 1
roots of Tn−1(x)− x are{

cos

(
2kπ

n− 2

)
: 0 ≤ k ≤ n− 3

2

}
∪
{

cos

(
2kπ

n

)
: 1 ≤ k ≤ n− 1

2

}
.

By Lemma 4.1 COn,1 is a subset of the roots of Tn−1(x)−x. To remove the other roots we
will divide Tn−1(x)− x by some polynomials. We list sets of roots and the polynomial that
has exactly that set of roots. We also include degrees for a sanity check. For that purpose
we point out that the degree of Tn−1(x)− x is n− 1.

1. {cos(0π/n)} = {cos(0)} = {1}.
The polynomial x− 1 of degree 1 suffices.
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2. For all 3 ≤ n′ ≤ n− 2 such that n′ divides n− 2 let

COn′,1 =

{
cos

(
2kπ

n′

)
: 1 ≤ k ≤ n′ − 1

2
and gcd(k, n′) = 1

}
.

By the inductive hypothesis there is a polynomial con′,1 ∈ Z[x] of degree φ(n′)/2 whose
roots are this set.

3. Let Q(n) be the product of all the con′,1 where 3 ≤ n′ ≤ n− 2 and n′ divides n− 2.

4. For all 3 ≤ n′ ≤ n− 1 such that n′ divides n we have:

COn′,1 =

{
cos

(
2kπ

n′

)
: 1 ≤ k ≤ n′ − 1

2
and gcd(k, n′) = 1

}
.

By the inductive hypothesis there is a polynomial con′,1 ∈ Z[x] of degree φ(n′)/2 whose
roots are this set.

5. Let R(n) be the product of all the con′,1 where 3 ≤ n′ ≤ n− 2 and n′ divides n.

The set of roots of T26(x)−x that are not in COn,1 is the set of roots of (x−1)Qn,1(x)Rn,1(x).
Hence we take

con,1(x) =
Tn−1(x)− x

(x− 1)Qn,1(x)Rn,1(x)
.

con,1 ∈ Z[x] by Theorem 2.3. The set of roots of con,1(x) is COn,1.
Since the roots of con,1 are COn,1, the degree of con,1 is |COn,1| = φ(n)/2.

2) We construct the polynomial con,2 ∈ Z[x] by using con,1. Note that

cos

(
(n− 2k)π

n

)
= cos

(
−(n− 2k)π

n

)
= − cos

(
π − −(n− 2k)π

n

)
= − cos

(
2kπ

n

)
.

Hence every element in COn,2 is the negation of an element in COn,1 and vice versa.
Hence we can take con,2(x) = con,1(−x). Clearly fn,2 is of degree φ(n)/2.

We have constructed con,1 and con,2 as promised.

3) It is easy to show that COn = COn,1 ∪ COn,2. We leave this proof to the reader.
Since COn = COn,1∪COn,2 we have, for every element α ∈ COn, a polynomial of degree

φ(n)/2 with root α.

Corollary 4.3 Let n ≥ 3 be odd.
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1. There exists a polynomial con ∈ Z[x] of degree n− 1 whose roots are{
cos

(
vπ

n

)
: 1 ≤ v ≤ n− 1

}
.

2. There exists a polynomial sn ∈ Z[x] of degree φ(n) such that

• The roots of sn are{
cos

(
vπ

n

)
: 1 ≤ v ≤ n− 1 and gcd(v, n) = 1

}
.

• Every monomial of sn is of even degree. Hence there exists qn ∈ Z[x] of degree
φ(n)/2 such that sn(x) = qn(x2).

Proof:
Let con,1 and con,2 be as in Theorem 4.2.

1)

con(x) =
∏

n′≥2,n′|n

con′,1(x).
∏

n′≥3,n′|n,2-n

con′,1(x)

2) sn(x) = con,1(x)con,2(x). The proof of Theorem 4.2 shows that the first two properties
hold . We prove the third property.

The roots of sn can be partitioned into φ(n)/2 sets of size 2 as follows.
For 1 ≤ v ≤ n such that gcd(v, n) = 1 we have part

Pn =

{
cos

(
vπ

n

)
, cos

(
(n− v)π

n

)}
=

{
cos

(
vπ

n

)
,− cos

(
(vπ

n

)}
Let the roots be α1,−α1, α2,−α2, . . . , αe,−αe where e = φ(n)/2. Then there exists a ∈ Q

such that

sn(x) = a(x+ α1)(x− α1) · · · (x+ αe)(x− αe).
Clearly the monomials of sn all have even degree.

5 If n is Even Then deg ( cos (vπ/n)) ≤ φ(n)

In this section:

1. We will prove that, for all 1 ≤ v ≤ 17, gcd(v, 18) = 1, deg(cos(vπ/18)) ≤ φ(18) = 6.
We use 18 since it is the least even number a that has an non-prime odd factor. This
is important since if a only has prime odd factors then part of the proof is easy and
will not demonstrate aspects of the general theorem. The proof will use an inductive
assumption.

2. We will prove that, for all n, for all 1 ≤ v ≤ n−1, n even, gcd(v, n) = 1, deg(cos(vπ/n)) ≤
φ(n). The proof is by induction.
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5.1 An Example: deg ( cos (vπ/18))

We will do an example of the general proof which is in the next subsection. We will show
(given an inductive assumption) the following:

Every element of

CO18 =

{
cos

(
vπ

18

)
: 1 ≤ v ≤ 17 and gcd(v, 18) = 1

}

=

{
cos

(
π

18

)
, cos

(
5π

18

)
, cos

(
7π

18

)
, cos

(
11π

18

)
, cos

(
13π

18

)
, cos

(
17π

18

)}
,

has degree ≤ φ(18) = 6.

We construct p18 ∈ Z[x] of degree φ(18) = 6 whose roots are CO18.

We construct p18 with an inductive assumption.
Assume that, for 2 ≤ n′ ≤ 16, n′ even, there exists pn′ ∈ Z[x] of degree φ(n′) whose roots

are

COn′ =

{
cos

(
vπ

n′

)
: 1 ≤ v ≤ n′ − 1 and gcd(v, n′) = 1

}
.

To construct p18 we first take T35(x)− x. By Lemma 3.1.2 the roots of T35(x)− x are{
cos

(
2vπ

34

)
: 0 ≤ v ≤ 34

2

}
∪
{

cos

(
2vπ

36

)
: 1 ≤ v ≤ 34

2

}

=

{
cos

(
vπ

17

)
: 0 ≤ v ≤ 17

}
∪
{

cos

(
vπ

18

)
: 1 ≤ v ≤ 17

}
.

Note that CO18 is a subset of the roots of T35(x) − x. To remove the other roots we
will divide T35(x) − x by some polynomials. We will partition the roots cos(vπ/n′) (with
v/n′ in lowest terms) that we want to get rid of into groups. Each group will have the same
n′. For example, one of the groups is {cos(π/6), cos(5π/6)}. For each group there will be a
polynomial that has exactly the elements of that group for roots

1. {cos(0π/17)} = {cos(0)} = {1}.
The polynomial x− 1 of degree 1 suffices.

2. {cos(17π/17)} = {cos(π)} = {−1}.
The polynomial x+ 1 of degree 1 suffices.

3. {cos(kπ/17) : 1 ≤ k ≤ 16}.
By Corollary 4.3.1 there is a polynomial r17 of degree 17− 1 = 16 whose roots are this
set.
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(In the general proof we will have a similar case where we look at {cos(kπ/(n−1)) : 1 ≤
k ≤ n− 2}. There will be a polynomial that has exactly this set for its root. This will
also hold when n − 1 is not a prime. That is, the fact that 17 is a prime is not the
reason why this case worked out to use just one polynomial.)

4. {cos(π/9), cos(2π/9), cos(4π/9), cos(5π/9), cos(7π/9), cos(8π/9)}
which is {cos(kπ/9) : 1 ≤ k ≤ 8 and gcd(k, 9) = 1}.
By Corollary 4.3.2 with n′ = 9, there is a polynomial s9 ∈ Z[x] of degree φ(9) = 6,
whose roots are this set.

5. {cos(π/6), cos(5π/6)}
which is {cos(kπ/6) : 1 ≤ k ≤ 5 and gcd(k, 6) = 1}.
By assumption with n′ = 6, there is a polynomial p6 ∈ Z[x] of degree φ(6) = 2, whose
roots are this set.

6. {cos(π/3), cos(2π/3)}.
By Corollary 4.3.2 with n′ = 3 there is a polynomial s3 ∈ Z[x] of degree φ(3) = 2
whose roots are this set.

7. {cos(π/2)}
which is {cos(kπ/2) : 1 ≤ k ≤ 1 and gcd(k, 2) = 1}.
By assumption with n′ = 2, there is a polynomial p2 ∈ Z[x] of degree φ(2) = 1, )hose
roots are this set. (Since cos(π/2) = 0 we know that p2(x) = x; however, by using the
assumption this derivation of p18 is similar to the proof of the general theorem in the
next subsection.)

All of the roots of T35(x)−x that are not in CO18 are roots of one of the seven polynomials
above. Hence we take

p18(x) =
T35(x)− x

(x− 1)(x+ 1)r17(n)s9(x)p6(x)s3(x)p2(x)
.

p18 ∈ Z[x] by Theorem 2.3. The set of roots of p18(x) is CO18.
As a sanity check we calculate the degree of p18 based on the degrees of the numerator

and denominator in the definition of p18. The degree of p18(x) is

deg(T35(x)− x)− deg(x− 1)− deg(x+ 1)− deg(r17)− deg(s9)− deg(p6)− deg(s3)− deg(p2)

= 35− 1− 1− 16− 6− 2− 2− 1 = 6.

This passes the sanity check since p18(x) is supposed to have 6 roots.
We have constructed p18 as promised.
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5.2 General Theorem: If n is Even Then deg ( cos (vπ/n)) ≤ φ(n)

Theorem 5.1 Let n ≥ 2, n even. Let

COn =

{
cos

(
vπ

n

)
: 1 ≤ v ≤ n− 1 and gcd(v, n) = 1

}
,

1. There is a polynomial of degree φ(n) whose roots are the elements of COn.

2. Every element of COn has degree ≤ φ(n). (This follows from Part 1.)

Proof: We construct con ∈ Z[x] of degree φ(n) whose roots are COn.
The construction is by induction on n.

Base Case: n = 2. Then COn = {cos(π/2)} = {0}. Let co2(x) = x. co2(x) has degree 1.

Induction Hypothesis Assume n is even and n ≥ 4. Assume that, for 2 ≤ n′ < n, n′ even,
there exists con′ ∈ Z[x] of degree φ(n′) whose roots are

COn′ =

{
cos

(
vπ

n′

)
: 1 ≤ v ≤ n′ − 1 and gcd(v, n′) = 1

}
.

Induction Step
To construct con we first take T2n−1(x) − x. By Lemma 3.1.2 the roots of T2n−1(x) − x

are {
cos

(
2vπ

2n− 2

)
: 0 ≤ v ≤ 2n− 2

2

}
∪
{

cos

(
2vπ

2n

)
: 1 ≤ v ≤ 2n− 2

2

}

=

{
cos

(
vπ

n− 1

)
: 0 ≤ v ≤ n− 1

}
∪
{

cos

(
vπ

n

)
: 1 ≤ v ≤ n− 1

}
.

Note that COn is a subset of the roots of T2n−1(x) − x. To remove the other roots we
will divide T35(x) − x by some polynomials. We list sets of roots and the polynomial that
has exactly that set of roots. We also include degrees for an attempt at a sanity check. For
that purpose we point out that the degree of T2n−1(x)− x is 2n− 1.

1. {cos(0π/(n− 1))} = {cos(0)} = {1}.
The polynomial x− 1 of degree 1 suffices.

2. {cos((n− 1)π/(n− 1))} = {cos(π)} = {−1}.
The polynomial x+ 1 of degree 1 suffices.

3. {cos(kπ/(n− 1)) : 1 ≤ k ≤ n− 2}.
By Corollary 4.3.1, there exists rn−1 ∈ Z[x] of degree n− 1 whose roots are this set.

15



4. For all 2 ≤ n′ ≤ n− 2 such that n′ divides n we define:

COn′ =

{
cos

(
vπ

n′

)
: 1 ≤ v ≤ n′ − 1 and gcd(v, n′) = 1

}
.

There are two subcases:

(a) If n′ is odd then, by Corollary 4.3.2, there is a polynomial con′ ∈ Z[x] of degree
φ(n′) whose roots are COn′ .

(b) If n′ is even then, by the induction hypothesis, there is a polynomial con′(x) ∈ Z[x]
of degree φ(n′) whose roots are COn′ .

For notational convenience we define two polynomials before defining con.

1. ProdOddn is the product of all con′ such that 2 ≤ n′ ≤ n− 1, n′|n, and n is odd.

2. ProdEvenn is the product of all con′ such that 2 ≤ n′ ≤ n− 1, n′|n, and n is even.

All of the roots of T2n−1(x) − x that are not in COn are roots of either x − 1, x + 1,
ProdOddn(x), or ProdEvenn(x). Hence we take

con(x) =
T2n−1(x)− x

(x− 1)(x + 1)rn−1(x)ProodOddn(x)ProdEvenn(x)

con ∈ Z[x] by Theorem 2.3. The set of roots of con is COn.
As an attempt at a sanity check we calculate the degree of con based on the degrees of

the numerator and denominator in the definition of con.
To write down the degree of con we note the following:

1. deg(ProdOddn) is the sum over all n′ such that 2 ≤ n′ ≤ n− 1, n′|n, and n is odd, of
φ(n′).

2. deg(ProdEvenn) is the sum over all n′ such that 2 ≤ n′ ≤ n− 1, n′|n, and m is even,
of φ(n′).

The degree of con is
2n−1−1−1− (n−1)−deg(ProdEvenn)−deg(ProdOddn) = n−2−deg(ProdEvenn)−

deg(ProdOddn).
We also know that the there are exactly φ(n) roots of con. We can now view these two

expressions for the degree in two ways.

1. We have shown φ(n) = n− 2− deg(ProdEvenn)− deg(ProdOddn).

2. We would like to have an independent proof that φ(n) = n − 2 − deg(ProdEvenn) −
deg(ProdOddn) as a sanity check.

We have constructed con as promised.
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6 Upper Bounds on deg ( sin (vπ/n))

Fact 6.1 For all θ, sin(θ) = cos(θ − π/2).

Theorem 6.2 Let n, v be such that gcd(v, n) = 1.

1. If n ≡ 0 (mod 4) then deg(sin(vπ/n)) ≤ φ(n).

2. If n ≡ 2 (mod 4) then deg(sin(vπ/n)) ≤ φ(n/2)/2.

3. If n is odd then deg(sin(vπ/n)) ≤ φ(2n).

Proof:

sin

(
vπ

n

)
= cos

(
vπ

n
− π

2

)
= cos

(
(2v − n)π

2n

)
.

Hence for all three cases we find deg(cos((2v − n)π/2n)) and use Theorem 4.2 or 5.1.
Part 1: n ≡ 0 (mod 4). Let m be such that n = 4m. Then

(2v − n)π

2n
=

(2v − 4m)π

8m
=

(v − 2m)π

4m
.

To use either Theorem 5.1 we need gcd(v − 2m, 4m) = 1.
Claim: gcd(v − 2m, 4m) = 1.
Proof of Claim:

gcd(v, 4m) = gcd(v, n) = 1. Hence v is odd.
Assume d divides both v − 2m and 4m. We show d = 1 by (a) showing that d divides

both n and v, and (b) using gcd(v, n) = 1.

• Since v is odd, v − 2m is odd.

• Since d divides v − 2m, and v − 2m is odd, d is odd.

• Since d divides both 4m and v − 2m, d divides 2(v − 2m) + 4m = 2v.

• Since d is odd and v divides 2v, d divides v.

• d divides 4m = n.

End of Proof of Claim
Since gcd(v − 2m, 4m) = 1, by Theorem 5.1:

deg

(
cos

(
(v − 2m)π

4m

))
= φ(4m) = φ(n).

By Fact 6.1 and the above line,
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deg

(
sin

(
vπ

n

))
= deg

(
cos

(
(v − 2m)π

4m

))
= φ(n).

Part 2: n ≡ 2 (mod 4). Let m be such that n = 4m+ 2.

(2v − n)π

2n
=

(2v − 4m− 2)π

8m+ 4
=

(v − 2m− 1)π

4m+ 2
.

Since gcd(v, n) = 1, v is odd. Let v = 2w + 1. Then

(v − 2m− 1)π

4m+ 2
=

(2w − 2m)π

4m+ 2
=

(w −m)π

2m+ 1

To use Theorem 4.2 we need gcd(w −m, 2m+ 1) = 1.
Claim: gcd(w −m, 2m+ 1) = 1.
Proof of Claim:

Assume d divides both w −m and 2m+ 1 = n/2. We show d = 1 by (a) showing that d
divides both n and v, and (b) using gcd(v, n) = 1.

• Since d divides n/2, d divides n.

• Since d divides both w −m and 2m+ 1, d divides 2(w −m) + 2m+ 1 = 2w + 1 = v.

End of Proof of Claim
Since gcd(w − n, 2m+ 1) = 1, by Theorem 4.2

deg

(
cos

(
(w −m)π

2m+ 1

))
=
φ(2m+ 1)

2
=
φ(n

2
)

2
.

By Fact 6.1 and the above line,

deg

(
sin

(
vπ

n

))
= deg

(
cos

(
(w −m)π

2m+ 1

))
=
φ(n

2
)

2
.

Part 3: n ≡ 1 (mod 2). Let m be such that n = 2m+ 1.

(2v − n)π

2n
=

(2v − 2m− 1)π

4m+ 2
.

To use Theorem 5.1 we need gcd(2v − 2m− 1, 4m+ 2) = 1.
Claim: gcd(2v − 2m− 1, 4m+ 2) = 1.

Assume d divides both 2v − 2m − 1 and 4m + 2 = 2n. We show d = 1 by (a) showing
that d divides both n and v, and (b) using gcd(v, n) = 1.

• Since d divides 2v − 2m− 1, d is odd.

• Since d divides 4m+ 2 = 2n, and d is odd, d divides n.
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• Since d divides both 2v− 2m− 1 and 4m+ 2, d divides 2(2v− 2m− 1) + 4m+ 2 = 4v.

• Since d divides 4v and d is odd, d divides v.

End of Proof of Claim
Since gcd(2v − 2m− 1, 4m+ 2) = 1, by Theorem 5.1:

deg

(
cos

(
(2v − 2m− 1)π

4m+ 2

))
= φ(4m+ 2) = φ(2n).

By Fact 6.1 and the above line,

deg

(
sin

(
vπ

n

))
= deg

(
cos

(
(2v − 2m− 1)π

4m+ 2

))
= φ(2n).

7 deg ( cos (vπ/n)) & deg ( sin (vπ/n)): Field Theory

7.1 Background Needed

We state well known facts from field theory and use them to prove our results. All fields are
subsets of C.

Definition 7.1 Let F and E be fields. E is a field extension of F if

• F ⊆ E.

• The operations +,× in F are +,× in E restricted to F.

Fact 7.2

1. If E is a field extension of F then E is a vector space over F. We denote the dimension
of this vector space by [E : F].

2. If D is a field extension of E and E is a field extension of F then [D : F] = [D : E][E : F].

Definition 7.3 Let F ⊆ C be a field and let α ∈ C− F.

F(α) =

{
p(α)

q(α)
: p, q ∈ F[x] and q(α) 6= 0

}
.

19



Definition 7.4 Let E be a field extension of F. Let α ∈ E. The degree of α over F is the
smallest d ∈ N such that α is the root of a degree-d polynomial in F[x]. We denote this by
degF(α). If F = Q then we just use deg which matches the definition of deg we have been
using.

Fact 7.5 F(α) is a field extension of F and [F(α) : F] = degF(α).

Proof:
Clearly F(α) is a field extension of F.
Let degF (α) = d.
We show that The set {1, α, α2, . . . , αd−1} forms a basis for [F(α) : F].

• Every element of F(α) is a polynomial in α with coefficients in F. Since degF (α) = d,
the polynomials can be made to be of degree ≤ d.

• Let a0, . . . , ad−1 ∈ F be such that
∑d−1

i=0 aiα
i = 0. Since degF (α) = d, all of the ai are

0.

Note 7.6 Lets say you prove that [Q(α) : Q] = d, so deg(α) = d. Can Fact 7.5 help find a
polynomial of degree d that has α as a root. No. All you find out is that {1, α, . . . , αd} is
linearly dependent over Q, hence there exists such a polynomial. But the proof of Fact 7.5
does not say how to find the polynomial.

BEGINNING OF COMMENTS TO AUGUSTE
(I DO NOT KNOW IF THE NOTE ABOVE IS CORRECT.)
We just proved [F(α) : F ] = degF(α) but for us for now lets just consider [Q(α) : F ] =

degQ(α)
1) The proof is constructive in one direction: Given α we can get a basis, namely

{1, α, . . . , αd−1}.

(Note- not clear what given means since α is irrational.)
2) Can the following be done: Given α and d where one is told that there is a poly

p ∈ Z[x] of degree d that has α as a root, find that poly?
Actually the answer is yes for a stupid way: enumerate all polys and test each one until

you find one. But even this is not really right since α is irrational so this would need perfect
real arithmetic.

It may be that for our case of cos(vπ/n) this can be dealt with.
So the question is, is there a SANE algorithm.
3) In Lemma 7.10 below we prove the following:
——-
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Let 1 ≤ v ≤ n− 1 be such that gcd(v, n) = 1.
[Q(cos(2πv/n)) : Q] = φ(n)/2.
Hence deg(cos(2πv/n)) = φ(n)/2.
————-
SO here are my questions:
From the proof of this one can one, given v, n (that is an input you CAN be given) find

poly p ∈ Z[x] of degree φ(n)/2 that has α as a root.
If so, then (a) is the algorithm SANE, and (b) does the algorithm need perfect arithmetic

for reals?
Much like Maya’s personal statement, I don’t want our final paper to dwell on this point.

I want to BRIEFLY talk about how the proof using Field theory can or cannot be used to
find he poly, and if yes then does or does not use real arithmetic. I will then also state this
as probably one of the CONS when I discuss PROS and CONS early in the paper
END OF COMMENTS TO AUGUSTE

Notation 7.7 ζn = e2πi/n. (ζ is the Greek letter zeta.)

Definition 7.8 Let n ∈ N. α is an nth root of unity if αn = 1. α is a primitive root of unity
if (1) αn = 1, and (2) for every n′ < n, αn

′ 6= 1.

Fact 7.9

1. There are n nth roots of unity: ζ1n, . . . , ζ
n
n .

2. There are φ(n) primitive nth roots of unity: {ζvn : gcd(v, n) = 1}.

3. If α is a primitive nth root of unity then deg(α) = φ(n).

7.2 deg ( cos (vπ/n)) Via Field Theory

Lemma 7.10 Let 1 ≤ v ≤ n− 1 be such that gcd(v, n) = 1.

1. [Q(ζvn) : Q] = φ(n).

2. If n ≥ 3 then [Q(ζvn) : Q(cos(2πv/n))] = 2.

3. [Q(cos(2πv/n)) : Q] = φ(n)/2.

4. deg(cos(2πv/n)) = φ(n)/2.
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Proof:
1) [Q(ζvn) : Q] = φ(n) follows from Fact 7.5 and Fact 7.9.3.

2) [Q(ζvn) : Q(cos(2πv/n))] = degQ(cos(2πv/n))(ζ
v
n). Hence we need to show degQ(cos(2πv/n))(ζ

v
n) =

2.

a) We show degQ(cos(2πv/n))(ζ
v
n) ≤ 2.

We derive a quadratic polynomial with coefficients in Q(cos(2πv/n)) that has e2πvi/n as
a root. Then degQ(cos(2πv/n))(ζ

v
n) ≤ 2.

Let β = e2πvi/n. Recall that

cos(x) =
eix + e−ix

2
.

Hence

cos

(
2πv

n

)
=
β + 1

β

2
.

Hence we need a polynomial with coefficients in Q(β + 1/β) that has β as a root. The
polynomial

x2 − (β + 1/β)x+ 1 = 0

has β as a root. Hence we take the polynomial

x2 − 2 cos(2vπ/n)x+ 1.

b) We show degQ(cos(2πv/n))(ζ
v
n) ≥ 2.

Assume, by way of contradiction, that ζvn is the root of a linear polynomial with co-
efficients in Q(cos(2πv/n)). Then ζvn ∈ Q(cos(2πv/n)) and hence ζvn ∈ R. Since n ≥ 3,
ζvn ∈ C− R. This is a contradiction.

3) By Fact 7.2.2

[Q(ζvn) : Q] = [Q(ζvn) : Q(cos(2πv/n))][Q(cos(2πv/n)) : Q]

By Part 1 and Part 2 we have

φ(n) = 2[Q(cos(2πv/n)) : Q].

Hence [Q(cos(2πv/n)) : Q] = φ(n)/2.

4) By Part 3 [Q(cos(2πv/n)) : Q] = φ(n)/2. By Fact 7.5

deg(cos(2πv/n))) = [Q(cos(2πv/n)) : Q] = φ(n)/2.
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Theorem 7.11 Let 1 ≤ v ≤ n such that gcd(v, n) = 1.

1. If n is odd then deg(cos(vπ/n)) = φ(n)/2.

2. If n is even then deg(cos(vπ/n)) = φ(n).

Proof:
1) n is odd. There are two cases

Case 0: v is even. Then v = 2v′. Hence deg(cos(vπ/n)) = deg(cos(2v′π/n)).
Since gcd(v, n) = 1, gcd(v′, n) = 1. Hence, by Lemma 7.10.4, deg(cos(2v′π/n)) = φ(n)/2,

so deg(cos(vπ/n)) = φ(n)/2.

Case 1: v is odd. Note that deg(cos(vπ/n)) = deg(cos(2vπ/2n)).
Since v is odd and gcd(v, n) = 1, gcd(v, 2n) = 1. Hence, by Lemma 7.10.4, deg(cos(2vπ/2n)) =

φ(2n)/2. Since n is odd, φ(2n) = φ(n) so deg(cos(vπ/n)) = φ(n)/2.

2) n is even. Note that deg(cos(vπ/n)) = deg(cos(2vπ/2n)).
Since n is even and gcd(v, n) = 1, gcd(v, 2n) = 1. Hence, by Lemma 7.10.4, deg(cos(2vπ/2n)) =

φ(2n)/2, Since n is even, φ(2n) = 2φ(n) so deg(cos(vπ/n)) = φ(n).

7.3 deg ( sin (vπ/n)) Via Field Theory

BILL- WILL PROB RE DO THIS ENTIRE SECTION, ON FIELD THEORY PROOF FOR
SINE. LATER

Lemma 7.12 Let 1 ≤ v ≤ n− 1 be such that gcd(v, n) = 1. Let ζn = e2πi/n.

1. [Q(ζn) : Q] = φ(n).

2. [Q(sin(2vπ/n), i)) : Q(sin(2vπ/n))] = 2.

Proof:
1) By Fact 7.5 [Q(ζn) : Q] = deg(ζn). By Fact 7.9, deg(ζn) = φ(n). Hence [Q(ζn) : Q] = φ(n).

2) By Fact 7.5,

[Q(sin(2vπ/n), i)) : Q(sin(2vπ/n))] = degQ(sin(2vπ/n))(i)].

Since i /∈ Q(sin(2vπ/n)),

degQ(sin(2vπ/n))(i) ≥ 2.

Since i is a root of x2 + 1,
degQ(sin(2vπ/n))(i) ≤ 2.

Hence
degQ(sin(2vπ/n))(i) = 2.
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Lemma 7.13 Let 1 ≤ v ≤ n − 1 be such that n ≡ 0 (mod 4) and gcd(v, n) = 1. Let
ζn = e2πi/n.

1. If n is a power of 2 then [Q(ζn) : Q(sin(2vπ/n, i))] = 1.

2. If n is not a power of 2 then [Q(ζn) : Q(sin(2vπ/n, i))] = 2.

Proof:

Lemma 7.14 Let 1 ≤ v ≤ n − 1 be such that n ≡ 0 (mod 4) and gcd(v, n) = 1. Let
ζn = e2πi/n.

1. If n is a power of 2 then deg(sin(2vπ/n) = φ(n)/2.

2. If n is not a power of 2 then deg(sin(2vπ/n) = φ(n)/4.

Proof:
1)

[Q(ζn) : Q] = [Q(ζn) : Q(sin(2vπ/n), i))][Q(sin(2vπ/n), i)) : Q(2vπ/n)][Q(2vπ/n) : Q].

• By Lemma 7.12.1[Q(ζn) : Q] = φ(n).

• By Lemma 7.15.1 [Q(ζn) : Q(sin(2vπ/n, i))] = 1.

BILL- ABOVE LEMMA IS IN THE FUTURE. FIX IF NEEDED- THIS SECTION
WILL PROB BE REDONE

• By Lemma 7.13.2 [Q(sin(2vπ/n, i)) : Q(2vπ/n)][Q(2vπ/n) : Q] = 2.

Hence we have

φ(n) = 1× 2× [Q(2vπ/n) : Q]

So

[Q(2vπ/n) : Q] = φ(n)/2.

2)
[Q(ζn) : Q] = [Q(ζn) : Q(sin(2vπ/n, i))][Q(sin(2vπ/n, i)) : Q(sin(2vπ/n))][Q(sin(2vπ/n)) :

Q].

• By Lemma 7.12.1[Q(ζn) : Q] = φ(n).

• By Lemma 7.15.2 [Q(ζn) : Q(sin(2vπ/n, i))] = 2.
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• By Lemma 7.13.2 [Q(sin(2vπ/n, i) : Q(sin(2vπ/n))][Q(sin(2vπ/n)) : Q] = 2.

Hence we have

φ(n) = 2× 2× [Q(sin(2vπ/n)) : Q]

So

[Q(sin(2vπ/n)) : Q] =
1

4
φ(n).

Lemma 7.15 Let 0 ≤ v ≤ n such that gcd(v, n) = 1.

1. If n is even then

(a) If n is a power of 2 then deg(sin(vπ/n) = φ(n).

(b) If n is not a power of 2 then deg(sin(vπ/n) = φ(n)/2.

2. If n is odd then BILL FILL IN. THIS SECTION WILL PROB BE REDONE

Proof:
1) Since n ≡ 0 (mod 4), 2n ≡ 0 (mod 4). Since gcd(v, n) = 1, v is odd, so gcd(n, 2n) = 1.
Note that

sin(vπ/n) = sin(2vπ/2n).

If n is a power of 2 then 2n is a power of 2 so, by Lemma 7.15.1,

deg(sin(vπ/n)) =
1

2
φ(2n).

a) Let n = 2k. Then

1

2
φ(2n) =

1

2
φ(2k+1) =

1

2
2k = 2k−1 = φ(n).

If n is not a power of 2 then 2n is not a power of 2 so, by Lemma 7.15.2.

deg(sin(vπ/n)) =
1

4
φ(2n).

b) Let n = 2km where m is odd. Then

1

4
φ(2n) =

1

4
φ(2k+1m) =

1

4
2kφ(m) = 2k−2φ(m)

=
1

2
2k−1φ(m) =

1

2
φ(2k)φ(m) =

1

2
φ(2km) =

1

2
φ(n).

2) sin(vπ/n) = sin(2× 2vπ/4n).
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A Proof That cos(nx) = Tn(cos(x)))

We prove Theorem 2.2, which we restate here:

Theorem A.1 Let n ≥ 1. Let

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k.

Then cos(nx) = Tn(cos(x)).

The following proof is an expanded version of an anonymous post on math.stackexchange
so it is probably folklore. Here is the URL:

https://math.stackexchange.com/questions/125774/how-to-expand-cos-nx-with-cos-x

Proof:
As usual, i =

√
−1.

We view einx in two ways.
WAY ONE

einx =
∞∑
j=0

(inx)j

j!
=

∞∑
j≡0 mod 2

ij(nx)j

j!
+

∞∑
j≡1 mod 2

ij(nx)j

j!

=
∞∑

j≡0 mod 2

(−1)j/2(nx)j

j!
+

∞∑
j≡1 mod 2

(−1)((j−1)/2)(nx)j

j!
i

=
∞∑
k=0

(−1)k(nx)2k

(2k)!
+

∞∑
j≡1 mod 2

(−1)((j−1)/2)(nx)j

j!
i

cos(nx) +
∞∑

j≡1 mod 2

(−1)((j−1)/2)(nx)j

j!
i.

So the real part of einx is cos(nx).

WAY TWO

einx = (eix)n = (cos(x) + i sin(x))n =
n∑
j=0

(
n

j

)
ij sinj(x) cosn−j(x).

=
n∑

j≡0 mod 2,j≤n

(
n

j

)
ij sinj(x) cosn−j(x) +

n∑
j≡1 mod 2,j≤n

(
n

j

)
ij sinj(x) cosn−j(x)+
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=
n∑

j≡0 mod 2,j≤n

(
n

j

)
(−1)j/2 sinj(x) cosn−j(x) +

n∑
j≡1 mod 2,j≤n

(
n

j

)
(−1)(j−1)/2 sinj(x) cosn−j(x)i

=

bn/2c∑
k=0

(
n

2k

)
(−1)k sin2k(x) cosn−2k(x) +

∑
j≡1 mod 2,j≤n

(
n

j

)
1(j−1)/2 sinj(x) cosn−j(x)i

=

bn/2c∑
k=0

(
n

2k

)
(−1)k(sin2(x))k cosn−2k(x) +

∑
j≡1 mod 2,j≤n

(
n

j

)
1(j−1)/2 sinj(x) cosn−j(x)i

=

bn/2c∑
k=0

(
n

2k

)
(−1)k(1− cos2(x))k cosn−2k(x) +

∑
j≡1 mod 2,j≤n

(
n

j

)
1(j−1)/2 sinj(x) cosn−j(x)i

=

bn/2c∑
k=0

(
n

2k

)
(cos2(x)− 1)k cosn−2k(x) +

∑
j≡1 mod 2,j≤n

(
n

j

)
1(j−1)/2 sinj(x) cosn−j(x)i

WAY ONE gives that the real part of einx is cos(nx). WAY TWO gives that the real
part of einx is

∑
k=0(x)bn/2c

(
n
2k

)
(cos2(x)− 1)k cosn−2k(x)

By equating the real part of WAY ONE and the real part of WAY TWO we get the
theorem sought.

B Lemmas on Polynomial Divisibility in Z[x]

Definition B.1 A polynomial in Z[x] is primitive if the gcd of its coefficients is 1.

Lemma B.2

1. For all n ≥ 1, the coefficient of xn in Tn(x) is 2n−1.

2. For all n ≥ 1, n is even, Tn has constant term (−1)n/2.

3. For all n ≥ 1, n is odd, Tn has linear term (−1)(n−1/2nx.

4. For all n ≥ 1, Tn is primitive.
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Proof: Recall that

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k.

1) The part of the sum that contains xn is

bn/2c∑
k=0

(
n

2k

)
(x2)kxn−2k =

bn/2c∑
k=0

(
n

2k

)
xn = 2n−1xn.

Hence the coefficient of xn is 2n−1.

2) The constant term is part of the summand when k = n/2. This summand is(
n

n

)
(x2 − 1)n/2xn−2(n/2) = (x2 − 1)n/2

Hence the constant term is (−1)n/2.

3) The linear term is part of the summand when k = (n− 1)/2. This summand is(
n

n− 1

)
(x2 − 1)(n−1)/2x = n(x2 − 1)(n−1)/2x

Hence the linear term is (−1)(n−1)/2nx.

4) There are two cases.

• If n is even then the constant term is (−1)n/2, hence the gcd of all the coefficients is 1.
Hence Tn is primitive.

• If n is odd then the coefficient of x is (−1)(n−1/2nx which is odd. The coefficient of
xn is 2n−1. Since the gcd of an odd number and a power of 2 is 1, the gcd of all the
coefficients is 1. Hence Tn is primitive.

Lemma B.3 Let T, p ∈ Z[x] such that T is primitive.

1. If p divides T in C[x] then T/p ∈ Q[x].

2. If p divides T in Q[x] then T/p ∈ Z[x].

3. If p divides T in C[x] then T/p ∈ Z[x]. (This follows from parts 1 and 2.)
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Proof:
1) (This part does not use that T is primitive.) Let T/p = q. Since T, p ∈ Z[x] we know
that q(0), q(1), . . . are all in Q.

Let q(x) = anx
n + · · ·+ a0. Then

(an, · · · , a0) · (0, · · · , 0, 1) = q(0)
(an, · · · , a0) · (1, · · · , 1, 1) = q(1)
(an, · · · , a0) · (2n, · · · , 21, 20) = q(2)
(an, · · · , a0) · (3n, · · · , 31, 30) = q(3)

...
...

(an, · · · , a0) · (nn, · · ·n0) = q(n)
(a0, . . . , an) is the solution to n+ 1 equations over Q. Hence a0, . . . , an ∈ Q.

2) Let T/p = q where q ∈ Q[x]. Then T = pq. Since p ∈ Z[x] there exists a ∈ Z such that
p = ap† where p† ∈ Z[x] is primitive. Since q ∈ Z[x] there exists b ∈ Z such that q = bq†

where q† ∈ Z[x] is primitive. Hence we have
T = abp†q†

Since T is primitive ab = 1. Hence b ∈ {1,−1} so q ∈ Z[x].

Theorem B.4 Let n ≥ 1. Let p ∈ Z[x]. If the set of roots of p are a subset of the set of

roots of Tn then T (x)
p(x)
∈ Z[x].

Proof: By Lemma B.2 Tn is primitive. Since the set of roots of p is a subset of the set of
roots of Tn, p divides Tn. By Lemma B.3 T (x)

p(x)
∈ Z[x].

C The First 39 Chebyshev Polynomials

In Section D we will list out the polynomials that have cos(vπ/n) as roots for n = 1, . . . , 21,
1 ≤ v ≤ n − 1, gcd(v, n) = 1. For the odd n we need Tn−1. Hence we need T0, T2, . . . , T20.
For the even n we need T2n−1. Hence we need T1, T3, . . . , T39. In this section we list out
T1, . . . , T39.

1. T1(x) = x

2. T2(x) = 2x2 − 1

3. T3(x) = 4x3 − 3x

4. T4(x) = 8x4 − 8x2 + 1

5. T5(x) = 16x5 − 20x3 + 5x

6. T6(x) = 32x6 − 48x4 + 18x2 − 1
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7. T7(x) = 64x7 − 112x5 + 56x3 − 7x

8. T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

9. T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

10. T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1

11. T11(x) = 1024x11 − 2816x9 + 2816x7 − 1232x5 + 220x3 − 11x

12. T12(x) = 2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1

13. T13(x) = 4096x13 − 13312x11 + 16640x9 − 9984x7 + 2912x5 − 364x3 + 13x

14. T14(x) = 8192x14 − 28672x12 + 39424x10 − 26880x8 + 9408x6 − 1568x4 + 98x2 − 1

15. T15(x) = 16384x15− 61440x13 + 92160x11− 70400x9 + 28800x7− 6048x5 + 560x3− 15x

16. T16(x) = 32768x16 − 131072x14 + 212992x12 − 180224x10

+84480x8 − 21504x6 + 2688x4 − 128x2 + 1

17. T17(x) = 65536x17 − 278528x15 + 487424x13 − 452608x11

+239360x9 − 71808x7 + 11424x5 − 816x3 + 17x

18. T18(x) = 131072x18 − 589824x16 + 1105920x14 − 1118208x12

+658944x10 − 228096x8 + 44352x6 − 4320x4 + 162x2 − 1

19. T19(x) = 262144x19 − 1245184x17 + 2490368x15 − 2723840x13

+1770496x11 − 695552x9 + 160512x7 − 20064x5 + 1140x3 − 19x

20. T20(x) = 524288x20 − 2621440x18 + 5570560x16 − 6553600x14

+4659200x12 − 2050048x10 + 549120x8 − 84480x6 + 6600x4 − 200x2 + 1

21. T21(x) = 1048576x21 − 5505024x19 + 12386304x17 − 15597568x15

+12042240x13 − 5870592x11 + 1793792x9 − 329472x7 + 33264x5 − 1540x3 + 21x

22. T22(x) = 2097152x22(x)− 11534336x20 + 27394048x18 − 36765696x16

+30638080x14 − 16400384x12 + 5637632x10 − 1208064x8

+151008x6 − 9680x4 + 242x2 − 1

23. T23(x) = 4194304x23 − 24117248x21 + 60293120x19 − 85917696x17

+76873728x15 − 44843008x13 + 17145856x11 − 4209920x9

+631488x7 − 52624x5 + 2024x3 − 23x
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24. T24(x) = 8388608x24 − 50331648x22 + 132120576x20 − 199229440x18

+190513152x16 − 120324096x14 + 50692096x12 − 14057472x10

+2471040x8 − 256256x6 + 13728x4 − 288x2 + 1

25. T25(x) = 16777216x25 − 104857600x23 + 288358400x21 − 458752000x19

+466944000x17 − 317521920x15 + 146227200x13 − 45260800x11

+9152000x9 − 1144000x7 + 80080x5 − 2600x3 + 25x

26. T26(x) = 33554432x26 − 218103808x24 + 627048448x22 − 1049624576x20

+1133117440x18− 825556992x16 + 412778496x14 − 141213696x12

+32361472x10 − 4759040x8 + 416416x6 − 18928x4 + 338x2 − 1

27. T27(x) = 67108864x27 − 452984832x25 + 1358954496x23 − 2387607552x21

+2724986880x19− 2118057984x17 + 1143078912x15 − 428654592x13

+109983744x11 − 18670080x9 + 1976832x7 − 117936x5 + 3276x3 − 27x

28. T28(x) = 134217728x28 − 939524096x26 + 2936012800x24 − 5402263552x22

+6499598336x20 − 5369233408x18 + 3111714816x16 − 1270087680x14

+361181184x12 − 69701632x10 + 8712704x8 − 652288x6 + 25480x4 − 392x2 + 1

29. T29(x) = 268435456x29 − 1946157056x27 + 6325010432x25 − 12163481600x23

+15386804224x21 − 13463453696x19 + 8341487616x17 − 3683254272x15

+1151016960x13 − 249387008x11 + 36095488x9 − 3281408x7

+168896x5 − 4060x3 + 29x

30. T30(x) = 536870912x30 − 4026531840x28 + 13589544960x26 − 27262976000x24

+36175872000x22 − 33426505728x20 + 22052208640x18 − 10478223360x16

+3572121600x14 − 859955200x12 + 141892608x10 − 15275520x8

+990080x6 − 33600x4 + 450x2 − 1

31. T31(x) = 1073741824x31 − 8321499136x29 + 29125246976x27 − 60850962432x25

+84515225600x23 − 82239815680x21 + 57567870976x19 − 29297934336x17

+10827497472x15 − 2870927360x13 + 533172224x11 − 66646528x9

+5261568x7 − 236096x5 + 4960x3 − 31x

32. T32(x) = 2147483648x32 − 17179869184x30 + 62277025792x28 − 135291469824x26

+196293427200x24 − 200655503360x22 + 148562247680x20 − 80648077312x18

+32133218304x16 − 9313976320x14 + 1926299648x12 − 275185664x10

+25798656x8 − 1462272x6 + 43520x4 − 512x2 + 1
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33. T33(x) = 4294967296x33 − 35433480192x31 + 132875550720x29 − 299708186624x27

+453437816832x25 − 485826232320x23 + 379364311040x21 − 218864025600x19

+93564370944x17 − 29455450112x15 + 6723526656x13 − 1083543552x11

+118243840x9 − 8186112x7 + 323136x5 − 5984x3 + 33x

34. T34(x) = 8589934592x34 − 73014444032x32 + 282930970624x30 − 661693399040x28

+1042167103488x26 − 1167945891840x24 + 959384125440x22 − 586290298880x20

+267776819200x18 − 91044118528x16 + 22761029632x14 − 4093386752x12

+511673344x10 − 42170880x8 + 2108544x6 − 55488x4 + 578x2 − 1

35. T35(x) = 17179869184x35 − 150323855360x33 + 601295421440x31 − 1456262348800x29

+2384042393600x27 − 2789329600512x25 + 2404594483200x23 − 1551944908800x21

+754417664000x19 − 275652608000x17 + 74977509376x15 − 14910300160x13

+2106890240x11 − 202585600x9 + 12403200x7 − 434112x5 + 7140x3 − 35x

36. T36(x) = 34359738368x36 − 309237645312x34 + 1275605286912x32 − 3195455668224x30

+5429778186240x28 − 6620826304512x26 + 5977134858240x24 − 4063273943040x22

+2095125626880x20 − 819082035200x18 + 240999137280x16 − 52581629952x14

+8307167232x12 − 916844544x10 + 66977280x8 − 2976768x6 + 69768x4 − 648x2 + 1

37. T37(x) = 68719476736x37 − 635655159808x35 + 2701534429184x33 − 6992206757888x31

+12315818721280x29− 15625695002624x27 + 14743599316992x25− 10531142369280x23

+5742196162560x21 − 2392581734400x19 + 757650882560x17 − 180140769280x15

+31524634624x13 − 3940579328x11 + 336540160x9 − 18356736x7

+573648x5 − 8436x3 + 37x

38. T38(x) = 137438953472x38−1305670057984x36+5712306503680x34−15260018802688x32

+27827093110784x30− 36681168191488x28 + 36108024938496x26− 27039419596800x24

+15547666268160x22 − 6880289095680x20 + 2334383800320x18 − 601280675840x16

+115630899200x14 − 16188325888x12 + 1589924864x10 − 103690752x8

+4124064x6 − 86640x4 + 722x2 − 1

39. T39(x) = 274877906944x39−2680059592704x37+12060268167168x35−33221572034560x33

+62646392979456x31− 85678155104256x29 + 87841744879616x27− 68822438510592x25

+41626474905600x23 − 19502774353920x21 + 7061349335040x19 − 1960212234240x17

+411402567680x15 − 63901286400x13 + 7120429056x11 − 543921664x9

+26604864x7 − 746928x5 + 9880x3 − 39x
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D Table of Polynomials

In the first column, if we have a number like π/4 we mean cos(π/4).

Roots Polynomial
π/2 x− 1

π/3 −2x+ 1
2π/3 2x+ 1

π/4, 3π/4 2x2 − 1

π/5, 3π/5 4x2 − 2x− 1
2π/5, 4π/5 4x2 + 2x− 1

π/6, 5π/6 4x2 − 3

π/7, 3π/7, 5π/7 −8x3 + 4x2 + 4x− 1
2π/7, 4π/7, 6π/7 8x3 + 4x2 − 4x− 1

π/8, 3π/8, 5π/8, 7π/8 8x4 − 8x2 + 1

π/9, 5π/9, 7π/9, −8x3 + 6x+ 1
2π/9, 4π/9, 8π/9 8x3 − 6x+ 1

π/10, 3π/10, 7π/10, 9π/10 16x4 − 20x2 + 5

π/11, 3π/11, 5π/11, 7π/11, 9π/11 −32x5 + 16x4 + 32x3 − 12x2 − 6x+ 1
2π/11, 4π/11, 6π/11, 8π/11, 10π/11 32x5 + 16x4 − 32x3 − 12x2 + 6x+ 1

π/12, 5π/12, 7π/12, 11π/12 16x4 − 16x2 + 1

π/13, 3π/13, 5π/13, 7π/13, 9π/13, 11π/13 64x6 − 32x5 − 80x4 + 32x3 + 24x2 − 6x− 1
2π/13, 4π/13, 6π/13, 8π/13, 10π/13, 12π/13 64x6 + 32x5 − 80x4 − 32x3 + 24x2 + 6x− 1

π/14, 3π/14, 5π/14, 9π/14, 11π/14, 13π/14 64x6 + 112x4 − 56x2 + 7

π/15, 7π/15, 11π/15, 13π/15 16x4 + 8x3 − 16x2 − 8x+ 1
2π/15, 4π/15, 8π/15, 14π/15 16x4 − 8x3 − 16x2 + 8x+ 1

π/16, 3π/16, 5π/16, 7π/16, 9π/16 . . . 128x8 − 256x6 + 160x4 − 32x2 + 1

π/17, 3π/17, 5π/17, . . . 256x8 − 128x7 − 448x6 + 192x5

+240x4 − 80x3 − 40x2 + 8x+ 1
2π/17, 4π/17, 6π/17, 14π . . . 256x8 + 128x7 − 448x6 − 192x5

+240x4 + 80x3 − 40x2 − 8x+ 1

π/18, 3π/18, 5π/18, 7π/18, 9π/18 . . . −64x6 + 96x4 − 36x2 + 3

π/19, 3π/19, 5π/19, . . . −512x9 + 256x8 + 1024x7 − 448x6 − 672x5

+240x4 + 160x3 − 40x2 − 10x+ 1
2π/19, 4π/19, 6π/19, 8π/19 . . . 512x9 + 256x8 − 1024x7 − 448x6 + 672x5

+240x4 − 160x3 − 40x2 + 10x+ 1

π/20, 3π/20, 5π/20, 7π/20, 9π/20 . . . 256x8 − 512x6 + 304x4 − 48x2 + 1

π/21, 5π/21, 7π/21, . . . 64x6 + 32x5 − 96x4 − 48x3 + 32x2 + 16x+ 1
2π/21, 4π/21, 6π/21, 8π/21 . . . 64x6 − 32x5 − 96x4 + 48x3 + 32x2 − 16x+ 1
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