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1 A Bad Way to Computer Discrete Log

Definition 1.1. The Discrete Log Problem is as follows. Let p be a prime and g be a
generator. These are considered parameters. Given y ∈ {1, . . . , p − 1} find x such that
y = gx.

Throughout this paper p is a prime and g is a generator for it.
Here is an algorithm for DL that is slow.

1. Input(y)

2. For x = 0 to p− 1

(a) Compute gx.

(b) If gx = y then output(x) and STOP

Note that in the worst case this could take roughly p steps. But worse than that—
its average case also is not very good (we will not go into this). What we mean is that
in MANY cases it will take a lot of time.

2 Fast(er) Algorithm for Calculating Discrete Logs: the Baby-Step /
Giant-Step Algorithm

Can we do better than p steps? How much better? Recall that we thing of p as large
and log p as small. Hence if DL could be solved in log p steps even (log p)2 steps or even
(log p)10 steps that would be fast. Alas we cannot do that. However, we can do DL in
roughly

√
p steps.

First we do some informal reasoning. Define m = Floor(
√
p− 1). Thus whenever we

do something m times, we are doing it roughly
√
p times.

Given y we want to find x such that y = gx.
KEY IDEA ONE: Think of dividing x by m. Thus x = qm + r. Since we divided by
m we know that 0 ≤ r ≤ m. Since m×m is roughly p we can assume 0 ≤ x ≤ m.
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KEY IDEA TWO: Lets say we GUESS what q is. If we are CORRECT then there is
some r such that

y = gqm+r

y = gqmgr

gr = y × g−qm

AND recall that 0 ≤ r ≤ m. So if we guess q correctly then y × g−qm has to itself
have discrete log ≤ m.
KEY IDEA THREE: Prepossess! Before doing any discrete logs have tables of powers
of g that are helpful. Then we can check if some numbers has DL ≤ m. Can’t prepossess
too much since that would take too much time.

We will now do the PREPOSSESS and ALGORITHM.
PREPROCESSING

1. For i = 0 to m computer gi. Put them in a table that looks like this (I made the
numbers up and so they are NOT TRUE. We are assuming p = 7 for illustration.)

i gi

1 6
2 4
3 2
4 5
5 3
6 1

Now SORT the table on the SECOND entry. Hence we have, in our example,

i gi

6 1
3 2
5 3
2 4
4 5
1 6

2. For i = 0 to m compute g−im. (Actually we need g−1 for this.) Put in a table.
Example with made up numbers with 7. So here m = 3.

i g−3i

1 3
2 5
3 4
4 1
5 2
6 6
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No need to sort.

SO, we have both of these tables.
ALGORITHMS

1. Input(y) (We seek x such that y = gx. We think of x as qm+ r with 0 ≤ q, r ≤ m
and hence we seek q, r.)

2. For q = 0 to m we TRY to see if q is a good guess for q.

(Comment- if q is correct then y = gqm+r = grmgr, so g × g−qm = qr)

Find g−qm on the second table.

Compute y × g−qm. KEY- Look for this in the first table (sorted version). Use
binary search (so take roughly logm steps).

IF find it then find the r such that gr = g−qm. OUTPUT x = qm + r.

IF do not find it then FINE, just go to next value of q.

How long does this take. The preprocessing takes roughly m steps. But you may
not want to really count that since you do it once and may use the data over and over
again.

The algorithm also takes roughly m iterations, each one takes log p steps. So this
takes m

√
p steps.

Since that m is roughly
√
p. So the entire algorithm takes

√
(p) log p steps.

3 What of it?

So DL can be solved in
√
p steps. This is still not that fast. However, its far faster than

we thought. Lets say that 2100 is too big for a computer to do that many steps.
OLD MENTALITY: Need p such that log p is small and p is large. Take p = 2100.
NEW MENTALITY: Need p such that log p is small and

√
p is large. Take p = 2200.

This is a warning. Clever math has not yet made us think that DL is easy (and hence
Diffie Helman is breakable but this clever math has made us increase our parameter.

State of the art: So far better algorithms for TIME are not known. However, note
that our algorithm takes

√
p space which is alot. There are algorithms that take

√
p

time and much less space then the one presented.
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