
NIM Games: Handout 1
Based on notes by William Gasarch

1 One-Pile NIM Games

Consider the following two-person game in which players alternate making
moves.

• There are initially n stones on the board.

• During a move a player can remove either one, two, or three stones.

• The first player who cannot move loses (this only happens when there
are 0 stones on the board).

Notation 1.1 We denote this game (1, 2, 3)-NIM.

Before reading on, think about how you should play this game to win if
you go first starting with a pile of, say, 7 stones. How about 21 stones?

Strategy: It is clear that if there are only one, two, or three stones left
on your turn, you can win the game by taking all of them. If, however,
you have to move when there are exactly four stones you will lose, because
no matter how many you take, you will leave one, two, or three, and your
opponent will win by taking the remainder. If there are five, six, or seven
stones, you can win by taking just enough to leave four stones. If there are
eight stones, and your opponent plays optimally, you will again lose, because
you must leave five, six, or seven.

If you go first and both you and your opponent play optimally, here is a
table indicating whether you will win or lose (1, 2, 3)-NIM for up to 21 stones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L W W W L W W W L W W W L W W W L W W W L W

In general, if there are a multiple of four stones you will lose. Otherwise you
win by taking enough stones to leave a multiple of four for your opponent.
So we see the pattern LWWW, which is repeated. Thus, 21 stones is a win: take
one stone.
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1.1 Modular Arithmetic

In this section we define notation for modular arithmetic, which will be useful
in studying NIM games.

Def 1.2 We say that that two numbers a and b are equivalent modulo m if
a− b is a multiple of m. This is written a ≡ b(mod m).

For example, 8 ≡ 2 (mod 3). (Some people also write a mod m for the
remainder obtained when a is divided by m. So in that notation, 8 mod 3 =
2.)

We are used to working with modular arithmetic in everyday life. For
example, starting from the midnight we could count the number of seconds,
minutes, and hours exactly. In practice, this is too complicated so we take the
seconds mod 60, the minutes mod 60, and the hours mod 12. (Sometimes
we take hours mod 24 to distinguish a.m. and p.m.)

Consider the first game from the last section. Using the modular arith-
metic notation, we say that a pile of n stones is a win for the first player if
n ≡ 1, 2, 3 (mod 4) and a loss if n ≡ 0 (mod 4).

2 General One-Pile NIM

Def 2.1 Let a1, a2, . . . , ak be k distinct positive integers. Then (a1, . . . , ak)-
NIM is the following game.

• There are initially n stones on the board.

• During a move a player can remove either a1, a2, . . . , ak−1, or ak stones.

• The first player who cannot move loses. (This may happen even if
there are a non-zero number of stones on the board. For example, if
the game is (2, 3)-NIM and there is one stone on the board, then the
player cannot move.)

Let’s work out the best strategy for (1, 4)-NIM. Assume there are s stones
left. If n < 4, you can take only one stone, leaving n− 1 stones. If n− 1 is a
loss for your opponent, then n is a win for you, and if n− 1 is a win for your
opponent, then n is a loss for you. If n ≥ 4, you can remove one or four,
leaving either n− 4 or n− 1 stones. If either n− 4 or n− 1 is a loss for your
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opponent, then n is a win for you. Otherwise n− 4 and n− 1 are both wins
for your opponent, so n must be a loss for you.

We can build a win/loss table by looking for each n at the entries for
n− 1 and n− 4 stones. Here it is up to 21 stones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L W L W W L W L W W L W L W W L W L W W L W

We see that the pattern is LWLWW. How do we confirm that this pattern repeats
forever? We can do this by showing that once the pattern LWLWW exists, it will
keep repeating. The table clearly starts LWLWW (for zero to four stones). After
that, the win/loss situation for any group of five starting numbers depends
only on the previous group. So once the pattern LWLWW continues into the
next group (five to nine), it has to repeat forever.

Let’s turn this into a theorem. We’ll call the player who moves first
“player I” and the other one “player II”. When we say that a player “wins”,
we mean that player has a strategy to win no matter what the other player
does.

Theorem 2.2 In the game (1, 4)-NIM starting with n stones:

1. If n ≡ 1, 3, 4 (mod 5) then player I wins.

2. If n ≡ 0, 2 (mod 5) then player II wins.

Proof: We will prove by induction that the pattern LWLWW for player I in
the table above always repeats. More formally, we will prove for each positive
integer q that the pattern holds for the qth group of starting numbers: player
II wins for n = 5q−5, player I wins for n = 5q−4, player II wins for n = 5q−3,
and player I wins for n = 5q − 2 and n = 5q − 1.

Base Case: q = 1. For n = 0, player II wins because player I cannot move.
For n = 1, 4, player I wins by removing all the stones. For n = 2, the only
move player I can make is to remove one stone, leaving one. Then player II
removes the last stone and wins. For n = 3, player I must remove one stone
leaving two. Player II then removes one stone, and player I removes the last
stone.

Inductive Step: Assume that the pattern holds for q = r, where r ≥ 1. To
complete the proof, we need to show that the pattern then also holds for q =
r+1. In this case, the qth group of starting numbers is 5r, 5r+1, 5r+2, 5r+3,
and 5r + 4. Imagine that you are player I. Then:
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• For 5r stones, you can move either to 5r − 1 and 5r − 4; each option
leaves your opponent in a winning position, so it is a loss for you (and
a win for player II).

• For 5r + 1 stones, you can take four stones and move to 5r− 3, leaving
your opponent in a losing position, so 5r + 1 is a win for you. (You
could also move to 5r, which we just showed is a loss for your opponent
too.)

• For 5r+2 stones, both moves to 5r−2 and to 5r+1 leave your opponent
in a winning position, so it is a loss for you (and a win for player II).

• For 5r +3 stones, taking one stone leaves 5r +2, which we just showed
is a loss for your opponent, and thus a win for you.

• For 5r + 4 stones, taking four stones leaves 5r, which is a loss for your
opponent, and thus a win for you.

We thereby reproduce the pattern LWLWW.
We now present an alternative proof using induction on n directly. It is

really the same proof just expressed differently. However, it is an example of
what is often called “strong induction” (in the inductive step we’ll assume
that the theorem is true for all smaller values of n), whereas the previous
induction on q used only the case q = r to prove the case q = r + 1.

Base Case: n = 0. As before, player II wins because player I cannot move.

Inductive Step: Assume that the theorem is true for all n < p, where
p ≥ 1. To complete the proof, we need to show that the theorem is then also
true for n = p. There are several cases. In each, we let m be the number of
stones remaining after player I moves, and we use the induction hypothesis
for n = m, which is necessarily less than p.

• p ≡ 1 (mod 5). We need to show that player I wins. Hence we need to
show a move from p stones that leaves m ≡ 0 or 2 (mod 5) stones. If
player I removes one stone then m = p− 1 ≡ 1− 1 ≡ 0 (mod 5).

• p ≡ 2 (mod 5). We need to show that player II wins. Hence we show
that every move from p stones leads to m ≡ 1, 3 or 4 (mod 5) stones.
If player I removes one stone then m = p− 1 ≡ 2− 1 ≡ 1 (mod 5). If
player I removes four stones then m = p− 4 ≡ 2− 4 ≡ 3 (mod 5). (If
p = 2, the second option is not available, but that’s OK; player I must
remove one stone and then lose.)
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• p ≡ 3 (mod 5). We need to show that player I wins. Hence we need to
show a move that leaves m ≡ 0 or 2 (mod 5). If player I removes one
stone then m = p− 1 ≡ 3− 1 ≡ 2 (mod 5).

• p ≡ 4 (mod 5). We need to show that player I wins. Hence we need to
show a move that leaves m ≡ 0 or 2 (mod 5). If player I removes four
stones then m = p− 4 ≡ 4− 4 ≡ 0 (mod 5). (Notice that if p ≥ 1 and
p ≡ 4 (mod 5), then in fact p ≥ 4, so removing four stones is always
possible in this case.)

• p ≡ 0 (mod 5). We need to show that player II wins. Hence we show
that every move leads to m ≡ 1, 3 or 4 (mod 5). If player I removes
one stone then m = p − 1 ≡ 0 − 1 ≡ 4 (mod 5). If player I removes
four stones then m = p− 4 ≡ 0− 4 ≡ 1 (mod 5).

This covers all the cases for p and completes the proof.

Note 2.3 The two sets {0, 2} and {1, 3, 4} have the following properties:

1. If the number of stones is p ≡ 1, 3 or 4 (mod 5), then some move will
leave m ≡ 0 or 2 (mod 5) stones.

2. If the number of stones is p ≡ 0 or 2 (mod 5), then all moves will leave
m ≡ 1, 3 or 4 (mod 5) stones.

This kind of structure is common in proofs that certain values lead to player
I or player II wins in NIM.

Def 2.4 If there is a pattern of wins and losses (as a function of the starting
number of stones n) that repeats after some initial segment (which does not
have to fit the pattern), the game is periodic. The length of a minimum
repeating pattern is the period.

Using this notation (1, 2, 3)-NIM has period 4, and (1, 4)-NIM has period 5.
Consider the game (2, 4, 7)-NIM (where each player can remove 2, 4, or

7 stones). It has the following win/loss table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L L W W W W L W W L W W L W W L W W L W W L
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It has an initial segment LLWW. Then the pattern WWL repeats forever, so the
game is periodic with period 3.

Theorem 2.5 For each h1, . . . , hk, the game (h1, . . . , hk)-NIM is periodic.

Proof: Let m be the maximum of h1, . . . , hk. Consider the first m(2m +1)
entries in the win/loss table. Group them into 2m +1 groups of m contiguous
entries. There are only 2m possible patterns for each group. (Why?) Since
there are 2m + 1 groups, by the pigeon hole principle, two groups must be
the same. Whatever pattern occurs between those two groups must repeat
after that forever. So the period must be at most m2m.

3 Easy Two-Pile NIM

Consider the following NIM-type game:

• The game begins with two piles, one of a stones, and one of b stones.
We denote this position (a, b).

• During a move a player must remove one or more stones from one of
the piles. (Any number can be removed, up to the number of stones in
the pile.)

• The first player who cannot move loses. (This only happens when the
position is (0, 0).)

Here is an example of a play of the game.

1. Starting position is (20, 14).

2. Player I removes 6 from pile 1. Position is now (14, 14).

3. Player II removes 4 from pile 1. Position is now (10, 14).

4. Player I removes 4 from pile 2. Position is now (10, 10).

5. Player II removes 8 from pile 2. Position is now (10, 2).

6. Player I removes 8 from pile 1. Position is now (2, 2).

7. Player II removes 2 from pile 1. Position is now (0, 2).
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8. Player I removes 2 from pile 2. Position is now (0, 0).

9. Player II loses.

Notice that Player I’s strategy was to always even out the piles. We’ll
prove that this always works. Let ONE be the set of ordered pairs where I
wins, and let TWO be the set of ordered pairs where II wins.

Theorem 3.1 (a, b) ∈ ONE if and only if a 6= b.

Proof: We prove this by induction on n = a + b.

Base Case: n = 0. If a + b = 0 then a = b = 0 and II wins.

Inductive Step: Assume that n ≥ 1 and that for all (c, d) where c + d < n,
we have (c, d) ∈ ONE if and only if c 6= d, where. We must show that the
theorem is then true for (a, b) if a + b = n. There are two cases.

• a = b. We take the position to be (a, a). We show that any move
that player I makes leads to a position in ONE. By symmetry, we
can assume without loss of generality that player I removes from pile
1. Let x be the number of stones removed; hence the position is now
(a−x, a). Since a−x+a < a+a, we can use the induction hypothesis
on (a−x, a). Then because a−x 6= a, we know that (a−x, a) ∈ ONE.
Since every possible move leads to a position in ONE, we’ve shown
that (a, a) ∈ TWO.

• a 6= b. Without loss of generality, assume a < b. We claim that player I
has a winning move: remove b−a stones from pile 2. Now the position
is (a, a). Since a + a < a + b = n, we can use the induction hypothesis
on (a, a). It says that (a, a) ∈ TWO, and hence (a, b) ∈ ONE.

This completes the induction.

7



NIM Games: Handout 2
Based on notes by William Gasarch

4 General Two-Pile NIM

Consider the following game.

1. Initially there are two piles of stones. As before, we denote a position
by (a, b).

2. During a turn a player can do one of the following.

• Remove 1,2, or 3 stones from pile 1.

• Remove 1,3, or 4 stones from pile 2.

3. The first player who cannot move loses. (Again, this will only happen
if the position is (0, 0).)

More generally, consider the following game.

Def 4.1 Let G1 and G2 be one-pile NIM games. Then G = G1 ⊕ G2 is
defined as follows.

1. The game begins with two piles, one of a stones, and one of b stones.
We denote this position (a, b).

2. During a turn a player can do one of the following.

• Remove from pile 1 an amount allowed by G1.

• Remove from pile 2 an amount allowed by G2.

3. The first player who cannot move loses. (This may happen even if
the position is not (0, 0). For example, if G1 is (2, 3)-NIM and G2 is
(1, 2)-NIM then there is no move from position (1, 0).)

Recall the following philosophies from the previous games studied.
In (1, 2, 3)-NIM you try to make your opponent move from a position a

where a ≡ 0 (mod 4), while never facing such a position yourself. Notice
that the losing position 0 has the property that 0 ≡ 0 (mod 4). Hence you
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are trying to make your opponent face a position that has a property also
shared by the losing position, while never facing a position with that property
yourself. Since the position’s numeric value keeps decreasing, and you never
face a position with that property, you must win.

In “easy” two pile-NIM you try to make your opponent face a position
(a, b) where a = b, while never facing such a position yourself. Notice that
the losing position (0, 0) has the property that a = b. Hence you are trying
to make your opponent face a position that has a property also shared by
the losing position, while never facing a position with that property yourself.
Since the total number of stones a + b keeps decreasing, and you never face
a position (a, b) with a = b, you must win.

So in general, we would like to find some property of the losing position(s)
such that we can make sure we never face a position with that property (and
our opponent always does).

4.1 Grundy numbers

Before analyzing two-pile NIM games, we need to analyze one-pile NIM games
in more depth. We will assign numbers to all the positions in a one-pile NIM
game. These numbers would not be needed if all we wanted to do was win
the one-pile game; however, they help to study many-pile games.

Def 4.2 A game in which two players take turns making moves is impartial
(or nonpartisan) if from each position, exactly the same moves are available
to both players.

All the games of the form (a1, . . . , ak)-NIM are impartial. Chess is not
impartial because one player can only move the white pieces and the other
player the black pieces. Similarly, checkers and go are not impartial.

We will see that we can “solve” all impartial games where the last player
to move wins. We give a recursive definition for the Grundy number of a
position in an impartial game.

Def 4.3 Let G be an impartial game. The Grundy number of a position P
in G is

- If P is a final position (from which no further move is possible), it has
Grundy number 0.
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- Otherwise the Grundy number is the minimum nonnegative integer
that is not a Grundy number of any position that can be attained by
making one move from P .

The Grundy function of G is the function g that takes each position P to its
Grundy number g(P ).

Notice that if g(P ) > 0, then there must be a move to a position P ′ with
g(P ′) = 0. And if g(P ) = 0, then every move must lead to a position P ′ with
g(P ′) > 0. These observations prove the following proposition.

Proposition 4.4 Let G be an impartial game, and let g be its Grundy func-
tion. Then P is a winning position for player I whenever g(P ) > 0, and P
is a winning position for player II whenever g(P ) = 0.

The following lemma will also be useful later.

Lemma 4.5 Let g be the Grundy function of an impartial game G. Let P, P ′

be positions in G such that you can get from P to P ′ in one move. Then
g(P ) 6= g(P ′).

Proof: Assume that from position P you can get to, in one move, the
positions P1, P2, . . . , Pk. Then g(P ) is the least number that is not in the set
{g(P1), . . . , g(Pk)}. In particular g(P ) cannot equal any number in {g(P1), . . . , g(Pk)}.
Since P ′ is one of the Pi, we have g(P ) 6= g(P ′).

Example 4.6 Here are Grundy numbers for (1, 2, 3)-NIM for up to 21 stones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

The sequence is periodic with repeating pattern 0, 1, 2, 3.
We can write the Grundy function as

g(n) =


0 if n ≡ 0 (mod 4);

1 if n ≡ 1 (mod 4);

2 if n ≡ 2 (mod 4);

3 if n ≡ 3 (mod 4).
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Example 4.7 Here are Grundy numbers for (1, 3, 4)-NIM for up to 21 stones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 0 1 2 3 2 0 1 0 1 2 3 2 0 1 0 1 2 3 2 0

The sequence is periodic with repeating pattern 0, 1, 0, 1, 2, 3, 2.
We can write the Grundy function as

g(n) =


0 if n ≡ 0 or 2 (mod 7);

1 if n ≡ 1 or 3 (mod 7);

2 if n ≡ 4 or 6 (mod 7);

3 if n ≡ 5 (mod 7).

Example 4.8 Here are the Grundy numbers for (2, 4, 7)-NIM up to 21 stones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 1 1 2 2 0 3 1 0 2 1 0 2 1 0 2 1 0 2 1 0

The sequence is eventually periodic with repeating pattern 1, 0, 2. Notice
that it has an initial segment of length 8, as compared to length 4 when we
looked only at win/loss information.

We can write the Grundy function as

g(n) =


0 if n = 0, 1, 6, or n ≥ 8 and n ≡ 0 (mod 3);

1 if n = 2, 3, or n ≥ 8 and n ≡ 2 (mod 3);

2 if n = 4, 5, or n ≥ 8 and n ≡ 1 (mod 3);

3 if n = 7.

4.2 Using Grundy Numbers for Two-pile NIM Games

We can now state the philosophy of two-pile NIM games. Let G1 be a one-
pile NIM game with Grundy function g1. Let G2 be a one-pile NIM game
with Grundy function g2. Let G = G1 ⊕ G2. The position (0, 0) has the
property that g1(0) = g2(0). To win we make our opponent always face a
position (a, b) with g1(a) = g2(b).

Theorem 4.9 Let G1 be a one-pile NIM game with Grundy function g1. Let
G2 be a one-pile NIM game with Grundy function g2. Let G = G1 ⊕G2. Let
ONE be the set of initial positions (a, b) from which player I wins. Then
(a, b) ∈ ONE if and only if (g1(a) 6= g2(b)).
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Proof: We prove this by induction on n = a + b. Let TWO be the
complement of ONE, namely the set of initial positions (a, b) from which
player II wins.
Base Case: a + b = 0. This is only possible if a = b = 0, and the theorem
is true in this case: g1(0) = g2(0) = 0 and (0, 0) ∈ TWO.

Inductive Step: Assume that n ≥ 1 and that for all (c, d) such that c+d <
n, we have (c, d) ∈ ONE if and only if g1(c) 6= g2(d). We must show that
the theorem is then true for (a, b) if a + b = n. There are two cases.

Case 1: g1(a) = g2(b). To show that (a, b) ∈ TWO, we show that any move
on pile 1 creates a position in ONE (the argument for pile 2 is analagous by
symmetry). Let the new position be (a′, b). By Lemma 4.5, g1(a) 6= g1(a

′).
Since a′ + b < a + b, we can apply the induction hypothesis to (a′, b). Then
since g1(a

′) 6= g1(a) = g2(b), we know that (a′, b) ∈ ONE.

Case 2: g1(a) 6= g2(b). To show that (a, b) ∈ ONE, we show that there is
a move that creates a position in TWO. Without loss of generality, assume
g1(a) < g2(b). Consider the positions that can be reached in one move from
b in G2. By the definition of Grundy numbers, for every number x < g2(b)
there is move in G2 to a position b′ such that g2(b

′) = x. In particular, with
x = g1(a), we can make g2(b

′) = g1(a). The winning move is to make that
move in G2. This creates position (a, b′) in G. Since a + b′ < a + b we can
apply the induction hypothesis to (a, b′). Then since g1(a) = g2(b

′), we know
that (a, b′) ∈ TWO.

We end this section where we began: with a particular two-pile NIM
game.

Example 4.10 Let G1 be (1, 2, 3)-NIM game with Grundy function g1. Let
G2 be (1, 3, 4)-NIM game with Grundy function g2. Let G = G1⊕G2. Earlier
we found that

g1(n) =


0 if n ≡ 0 (mod 4);

1 if n ≡ 1 (mod 4);

2 if n ≡ 2 (mod 4);

3 if n ≡ 3 (mod 4)
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and

g2(n) =


0 if n ≡ 0 or 2 (mod 7);

1 if n ≡ 1 or 3 (mod 7);

2 if n ≡ 4 or 6 (mod 7);

3 if n ≡ 5 (mod 7).

Hence (a, b) ∈ TWO if and only if one of the following conditions is true:

• a ≡ 0 (mod 4) and b ≡ 0, 2 (mod 7).

• a ≡ 1 (mod 4) and b ≡ 1, 3 (mod 7).

• a ≡ 2 (mod 4) and b ≡ 4, 6 (mod 7).

• a ≡ 3 (mod 4) and b ≡ 5 (mod 7).
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NIM Games: Handout 3
Based on notes by William Gasarch

5 Many-Pile NIM Games

We define many-pile NIM games similarly to two-pile NIM games.

Def 5.1 Let G1, G2, . . . , Gk be one-pile NIM games. G = ⊕k
i=1Gi is defined

as follows.

1. Initially there are k piles of stones. We denote a position by (a1, a2, . . . , ak),
where ai is the number of stones in pile i for i = 1, 2, . . . , k.

2. During a turn a player can do one of the following.

• Remove from pile 1 what is allowed by G1.

• Remove from pile 2 what is allowed by G2.

• ...

• Remove from pile k what is allowed by Gk.

3. The first player who cannot move loses. (This may happen even if the
position is not (0, 0, 0, . . . , 0). For example, if G1 is (2, 3)-NIM and all
the rest are (1, 2)-NIM, then from position (1, 0, 0, . . . , 0) there is no
move.)

We need the following definition to just state our theorem.

Def 5.2 Let G1, G2, . . . , Gk be one-pile NIM games and G = ⊕k
i=1Gi. Let

(a1, . . . , ak) be a position in G. Write g1(a1), . . ., gk(ak) in base 2. Add zeros
to the left of the numbers so that all the numbers have the same length.
Write the numbers down in a table. This table is called T (G, a1, . . . , ak).

Example 5.3 Let G1 be (1, 2, 3, 4)-NIM. Let G2 be (1, 3, 4)-NIM. Let G3 be
(2, 4, 7)-NIM. Let G = G1 ⊕G2 ⊕G3. Let g1, g2, g3 be the Grundy functions
of G1, G2, G3. We write the Grundy Functions of G1, G2, and G3 in both
base 10 and base 2. In base 2, we use 3 bits per number since that is the
most we need for any of the numbers. The Grundy function of G1 is
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g1(n) =



0 = (000)2 if n ≡ 0 (mod 5);

1 = (001)2 if n ≡ 1 (mod 5);

2 = (010)2 if n ≡ 2 (mod 5);

3 = (011)2 if n ≡ 3 (mod 5);

4 = (100)2 if n ≡ 4 (mod 5).

The Grundy function of G2 is

g2(n) =


0 = (000)2 if n ≡ 0 or 2 (mod 7);

1 = (001)2 if n ≡ 1 or 3 (mod 7);

2 = (010)2 if n ≡ 4 or 6 (mod 7);

3 = (011)2 if n ≡ 5 (mod 7).

The Grundy function of G3 is

g3(n) =


0 = (000)2 if n = 0, 1, 6, or n ≥ 8 and n ≡ 0 (mod 3);

1 = (001)2 if n = 2, 3, or n ≥ 8 and n ≡ 2 (mod 3);

2 = (010)2 if n = 4, 5, or n ≥ 8 and n ≡ 1 (mod 3);

3 = (011)2 if n = 7.

Consider the position (24, 2, 0). The Grundy numbers are (100, 010, 000).
Hence T (G, 24, 2, 0) is:

100

010

000

Theorem 5.4 Let G1, . . . , Gk be one-pile NIM games. Let g1, . . . , gk be the
associated Grundy functions. Let G = ⊕k

i=1Gi, and let (a1, . . . , ak) be a
position in G. Then (a1, . . . , ak) is a winning position for player I if and
only if some column of T (G, a1, . . . , ak) has an odd number of 1’s.

Proof:
We prove this by induction on

∑k
i=1 ai. As before, let ONE be the set of

initial positions from which player I wins, and let TWO be the set of initial
positions from which player II wins.
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Base Case:
∑k

i=1 ai = 0. This only happens when a1 = a2 = · · · = ak = 0.
Notice that then (a1, . . . , ak) ∈ TWO and g(a1) = · · · = g(ak) = 0. Clearly
all of the columns in T (G, a1, . . . , ak) have an even number of 1’s (0 is an
even number), so the theorem is correct in this case.

Inductive Step: Assume that for all positions p = (c1, . . . , ck) with
∑k

i=1 g(ci) <
n, we have that (c1, . . . , ck) ∈ ONE if and only if some column of T (G, c1, . . . , ck)
has an odd number of 1’s. Let (a1, . . . , ak) be a position where

∑k
i=1 ai = n.

We denote T (G, a1, . . . , ak) by

g(a1) = b1,m b1,m−1 · · · b1,i · · · b1,1

g(a2) = b2,m b2,m−1 · · · b2,i · · · b2,1
...

...
...

...
...

...
...

g(aj) = bj,m bj,m−1 · · · bj,i · · · bj,1
...

...
...

...
...

...
...

g(ak) = bk,m bk,m−1 · · · bk,i · · · bk,1

There are two cases.

Case 1: There is a column in T (G, a1, . . . , ak) with an odd number of 1’s. We
need to show that some move creates a position in TWO. Let i be the left-
most column such that the number of 1’s in b1,i, . . . , bk,i is odd. Choose j such
that bj,i = 1. Player I’s winning move will involve removing stones from pile j.
By the definition of Grundy numbers, for any number x < g(aj), there is a po-
sition a′j such that g(a′j) = x. In particular, for any bit sequence b′j,i−1 · · · b′j,1
there is a position a′j such that g(a′j) = bj,mbj,m−1 · · · bj,i+10b

′
j,i−1 · · · b′j,1. No-

tice that for each of these moves the ith column will have an even number of
1’s. We can find b′j,i−1 · · · b′j,1 such that the columns (i − 1), . . . , 1 also have
an even number of 1’s. The columns indexed higher than i are untouched
so they already have an even number of 1’s. This move will produce a po-
sition of the form (a1, a2, . . . , aj−1, a

′
j, aj+1, . . . , ak). Since a′j < aj the sum

of these numbers is less than
∑n

i=1 ai = n. Hence we can apply the induc-
tion hypothesis. By the choice of a′j, in T (G, a1, a2, . . . , aj−1, a

′
j, aj+1, . . . , ak)

every column has an even number of 1’s. By the induction hypothesis
(a1, a2, . . . , aj−1, a

′
j, aj+1, . . . , ak) ∈ TWO.

Case 2: All of the columns of T (G, a1, . . . , ak) have an even number of 1’s.
We need to show that every move results in a position in ONE. If Player
I’s move is in pile j, moving from aj to a′j, then g(a′j) 6= g(aj). Let i be
a bit so that the ith bit of g(aj) and g(a′j) differ. Then the ith column of
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T (G, a1, . . . , aj−1, a
′
j, aj+1, . . . , ak) has an odd number of 1’s. Since a′j < aj we

can apply the induction hypothesis to (a1, . . . , aj−1, a
′
j, aj+1, . . . , ak). By the

induction hypothesis, since a column of T (G, a1, a2, . . . , aj−1, a
′
j, aj+1, . . . , ak)

has an odd number of 1’s, we know that (a1, . . . , aj−1, a
′
j, aj+1, . . . , ak) ∈

ONE.

Example 5.5 We revisit this example from before. Let G1 be (1, 2, 3, 4, 5)-
NIM. Let G2 be (1, 3, 4)-NIM. Let G3 be (2, 4, 7)-NIM. Let G = G1⊕G2⊕G3.
Let g1, g2, g3 be the Grundy functions of G1, G2, G3. Their formulas are given
before the theorem.

It is possible to write down a statement like “(a1, a2, a3) ∈ TWO if and
only if XXX”, but it would be quite complicated involving many cases. We
give a couple examples of cases that determine what T (G, a1, a2, a3) is and
hence which player wins.

1. If a1 ≡ 0 (mod 5), a2 ≡ 4 or 6 (mod 7), and a3 ≥ 8 and a3 ≡ 1
(mod 3), then g1(a1) = 0 = (00)2, g2(a2) = 2 = (10)2, and g3(a3) =
2 = (10)2. So T (G, a1, a2, a3) is

00

10

10

Notice that every column has an even number of 1’s. Hence (a1, a2, a3) ∈
TWO.

2. If a1 ≡ 3 (mod 5), a2 ≡ 1 or 3 (mod 7), and a3 ≥ 8 and a3 ≡ 2
(mod 3), then g1(a1) = 3 = (11)2, g2(a2) = 1 = (01)2, and g3(a3) =
2 = (01)2. T (G, a1, a2, a3) is

11

01

01

Notice that the last column has an odd number of 1’s. Hence (a1, a2, a3) ∈
ONE.
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6 Dynamic Programming

Consider the following game

• Initially there are 3 piles of stones. We denote a position by (a, b, c).

• A player may remove a prime from the first pile, or a square from the
second pile, or a Fibonacci number from the third pile.

• If a player cannot move then they lose.

This is a rather complicated game it is doubtful that it has a succinct
statement about when player I wins. However, we can still (with a computer
program) calculate who wins which positions rather easily. The key is that
we never try to calculate who wins (a1, a2, a3) until we know ALL of the lower
positions.

W (a, b, c) =

{
I if player I wins when the game starts with (a, b, c);

II if player II wins when the game starts with (a, b, c).

Let PR be the set of primes, SQ be the set of squares and FIB be the
set of Fibonacci numbers. Then the following holds:

W (0, 0, 0) = II
W (a, b, c) =

• I if

– (∃p ∈ PR)[a ≥ p ∧W (a− p, b, c) = II] OR

– (∃s ∈ SQ)[b ≥ s ∧W (a, b− s, c) = II] OR

– (∃f ∈ FIB)[c ≥ f ∧W (a, b, c− f) = II]

• II otherwise.

If by the time we are looking at (a, b, c) we have already computed W
of all (a′, b′, c′) with a′ + b′ + c′ < a + b + c then we can carry out this
calculation easily. In fact, the problem we are really solve here is not “What
is W (a, b, c)?’ but instead “What is W (a, b, c) for all (a, b, c) a + b + c ≤ n?”

Here is psuedocode for the problem. It is not very efficient; however, it
can be made alot more efficient.
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Input(n).
W(0,0,0)=II. (This sets W(0,0,0) to the value II.)
for i=1 to n

for a=0 to n
for b=0 to n-a

c=n-(a+b) (So now a+b+c=n.)
W(a,b,c)=II (Will set this to I if find a good move.)
for p=1 to a, p PRIME

if (W(a-p,b,c)=II) then W(a,b,c)=I
for s=1 to b, s SQUARE

if (W(a,b-s,c)=II) then W(a,b,c)=I
for f=1 to c, c FIB

if and (W(a,b,c-f)=II) then W(a,b,c)=I

Even though this is not a nice formula, it is a calculation that gives the
answer. It can be made alot more efficient by putting in a condition to stop
when you find the p, s, or f that works.
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