1. (0 points) What is your name? Write it clearly. STAPLE your HW.

2. (20 points)

 (a) Let p be a prime. Determine $\phi(p^2)$ (the number of numbers in
 \{1, \ldots, p^2\} that are rel prime to p^2).

 (b) Let p be a prime. Let $a \geq 1$. Determine $\phi(p^a)$

 (c) Let a, b be relatively prime. Show that $\phi(ab) = \phi(a)\phi(b)$.

 (d) Let p_1, \ldots, p_L be primes. Let $a_1, \ldots, a_L \geq 1$. Use the last two
 items to determine a formula for $\phi(p_1^{a_1}p_2^{a_2}\cdots p_L^{a_L})$.

3. (30 points) For each of the following scenarios determine (1) how many
 bits Alice and Bob share in the case (the question do you have an x or
 a y? always gets the answer YES, (2) how many bits Alice and Bob
 share in the case (the question do you have an x or a y? always gets
 the answer NO. Use that the number of bits for $(a, b, 0)$ is $\left\lfloor \log_2 \left(a^n b^n \right) \right\rfloor$.

 (a) $a = 10, b = 10, e = 10$.
 (b) $a = 20, b = 10, e = 10$.
 (c) $a = 10, b = 10, e = 20$.
 (d) $a = n, b = n, e = n$ (so both answers are a function of n). (Assume
 n is even. Leave in terms of n-choose notation.)

 (e) $a = 2n, b = n, e = n$ (so both answers are a function of n).
 (Assume n is even. Leave in terms of n-choose notation.)

 (f) $a = 2n, b = n, e = 2n$ (so both answers are a function of n).
 (Assume n is even. Leave in terms of n-choose notation.)
4. (20 points) A_1, A_2, A_3, A_4 are people. Zelda has a secret s. She wants to give everyone strings such that the following sets of people (and their supersets) can find the secret, but no other group can:

\{A_1, A_2\}
\{A_1, A_3\}
\{A_1, A_4\}
\{A_2, A_3, A_4\}

5. (30 points). A_1, A_2, A_3, A_4 are people. Zelda has a secret s. She wants that if any set of two of them get together they can determine the secret but no one person can.

(a) If Zelda uses the prime 7, A_1 gets $f(1) = 6$, and A_2 gets $f(2) = 5$ then what is the secret?

(b) If Zelda uses the prime 11, A_1 gets $f(1) = 6$, and A_2 gets $f(2) = 5$ then what is the secret?

(c) If Zelda uses the prime 13, A_1 gets $f(1) = 6$, and A_2 gets $f(2) = 5$ then what is the secret?