
Pollard’s Factoring Algorithm
Exposition by William Gasarch

1 Introduction

There is a trivial algorithm that factors N in time O(N1/2). We will present Pollard’s
algorithm for factoring which is believed to have complexity O(N1/4) though this has
not been proven. It works well in practice.

We take factoring to mean just finding a non-trivial factor. In practice we would
use such an algorithm recursively.

2 We Seek x, y such that x ≡ y (mod p)

We want to factor N . Let p be the smallest prime factor of N . Note that p ≤ N1/2.
We do not know p. Lets say we somehow find x, y such that x ≡ y (mod p). Then
GCD(x−y,N) will likely yield a nontrivial factor of N . We look at several approaches
to finding such an x, y that do not work before presenting the approach that does
work.

3 Some Probability

We first need some probability.
There are n boxes. I am going to put k balls in them at random. What is the probability
that there is some box with at least two balls in it?

We first find the probability that no box has two balls.
The number of ways to put balls into boxes is nk.
The number of ways to put balls into boxes so that no box has two balls is

n× (n− 1)× · · · × (n− k + 1).
Hence the probability that no two balls go in the same box is

n× (n− 1)× · · · × (n− k + 1)

nk
=
n

n

n− 1

n

n− 2

n
· · · n− k + 1

n
= (1− 1

n
)(1− 2

n
) · · · (1−k − 1

n
)

We ignore all terms that are ≤ c
n2 for any c.

Hence we have:

(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
) ∼ (1− (1 + 2 + · · ·+ (k − 1)

n

We approximate 1 + 2 + · · · (k− 1) = k(k−1)
2

by k2

2
. Hence the probability that no

box has two balls is approximately

1

(1− k2

2n
).

Hence the probability that some box has at least two balls is approximately

(1− (1− k2

2n
) =

k2

2n
.

We want a value of k so that this probability is over 1
2
.

k2

2n
>

1

2

k2

n
> 1

k ≥
√
n

We want to say Great, we’ll take k =
√
n. But we did all of those approximations.

We summarize what we did, and what is known, in the following Lemma.

Lemma 3.1 1. There exists numbers c and n0 such that for all n ≥ n0, if k =
c
√
k, if k balls are randomly put into n boxes then the probability that some box

has two balls is ≥ 1
2
. The larger n0 is the smaller c has to be. The following

values work: n0 = 43, c =
√

2 ln(2) ∼ 1.16.

2. There exists numbers c and n0 such that for all n ≥ n0, if k = c
√
k, if k balls

are randomly put into n boxes then the probability that some box has two balls
is ≥ 99

100
. The larger n0 is the smaller c has to be. I don’t know the value of n0

and c but they are reasonable. I would guess n0 = 100 and c = 5 suffice.

4 Use Randomization!

Given N we generate a sequence of random numbers x1, x2, . . . ∈ [0, N − 1]. Thought
experiment: look at

x1 mod p, x2 mod p,

This is a sequence of random elements in [0, p − 1]. By Lemma 3.1.2 with prob-
ability 0.99 there exists i, j ≤ cp1/2 ≤ cN1/4 such that xi (mod p) = xj (mod p),
or xi ≡ xj (mod p). For the rest of this exposition we will ignore the c and just use
p1/2 and N1/4.

So we could have an algorithm that generates this sequence and looks for repeats.
NO WE CAN”T- we don’t know p. But we can pretend that xi ≡ xj (mod p) and
try GCD(xi − xj, N). Which xi, xj do we do this for? ALL of them which is why
this algorithm is too slow. Even so, here is the algorithm.

2

x_1 = RAND(0,N-1)

i=2

FOUND = FALSE

while NOT FOUND

{

x_i := RAND(0,N-1)

for j=1 to i-1

{

d=GCD(x_i-x_j,N)

if (d NE 1) and (d NE N) then FOUND=TRUE

}

i=i+1

}

output(d)

Assume If xi ≡ xj (mod p) and xi 6= xj. Then xi − xj ≡ 0 (mod p). Hence
p divides d = GCD(xi − xj, N). Therefore d 6= 1. Since xi, xj ∈ [0, N − 1], d 6= N .
Hence if xi ≡ xj (mod p) then the algorithm will terminate.

Look at the sequence x1 mod p, x2 mod p, By the birthday paradox this
sequence will almost surely have a repeat before O(p1/2) iterations. Hence the run
time is almost surely bounded by

p1/2∑
i=1

i−1∑
j=1

logN ≤ logN
p1/2∑
i=1

i = O(p) = O(N1/2).

That’s not better than the trivial algorithm. Oh well.
Also, the algorithm is a space hog.

5 Don’t Use Randomization

The reason the last algorithm was a space hog is that it generated random numbers
and had to store all of them. Instead we use a deterministic sequence that looks
random.

The sequence that begins with a random x1 and c, and then does xi := x2
i−1 + c

(mod N) appears random. This has not been proven (I am not even sure how you
would state it); however, it does seem to have the property of repeating within O(p1/2)
steps.

With this in mind we can write the algorithm which is no longer a space hog but
still takes too much time.

3

x_1 = RAND(0,N-1)

c = RAND(0,N-1)

i=2

FOUND = FALSE

while NOT FOUND

{

x_i := x_{i-1}^2 + c mod N

for j=1 to i-1

{

compute x_j

d=GCD(x_i-x_j,N)

if (d NE 1) and (d NE N) then FOUND=TRUE

}

i=i+1

}

output(d)

6 Using Cycle Detection

We plan to generate x1, x2, . . . deterministically. We need to find xi, xj such that
xi ≡ xj (mod p) without storing too much or spending too much time.

We prove a lemma due to Floyd that is interesting in its own right.

Lemma 6.1 Let z1, z2, z3, . . . be an infinite sequence. Let m be such that there is
some i ≤ m such that the sequence zi, zi+1, . . . is periodic with period ρ ≤ m. Then
there exists a ≤ 2m such that za = z2a.

Proof:
Let a be such that (a− 1)ρ ≤ i < aρ. Note that the sequence is aρ-periodic.
Since the sequence is aρ-periodic after zi we have that, for all ∆ ≥ 0, zi+∆ =

zi+aρ+∆. Plug in ∆ = aρ − i (note that aρ − i ≥ 0 by the case that we are in) to
obtain. zaρ = z2aρ.

How big is aρ? We know that
aρ/2 ≤ (a− 1)ρ ≤ i ≤ m, so aρ ≤ 2m.

We will form two sequences. One will be x1, x2, The other will be x2, x4,
Given c we let fc be the function fc(x) ≡ x2 + c (mod p).

4

x = RAND(0,N-1)

c = RAND(0,N-1)

y = f_c(x)

FOUND = FALSE

while NOT FOUND

{

x := f_c(x)

y := f_c(f_c(y))

d=GCD(x-y,N)

if (d NE 1) and (d NE N) then FOUND=TRUE

}

output(d)

Consider the sequence x1 = x, xi = fc(xi−1). Note that the x-sequence is
x1, x2, x3, . . . while the y-sequence is x2, x4, We assume that the sequence has
the same properties as a random sequence. Let zi = xi (mod p). This is also ran-
dom. By the Birthday paradox it is highly likely that there is a repeat before O(p1/2)
iterations. By Lemma 6.1 there exists a ≤ p1/2 such that za = z2a. When this occurs
we have x− y ≡ 0 (mod p), and hence d 6= 1 and d 6= N .

With high prob this algorithm takes O(p1/2) = O(N1/4) iterations. Each iteration
only takes logN steps. Hence the algorithm takes O(N1/4 logN) steps.

5

