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1 Abstract

Alice and Bob want to cut a cake and have their own opinions of what values
various pieces have. In contrast to the usual problems of fair division, they want
to cut it unfairly. More precisely, they want to cut it in ratio (a, b). (We can
assume gcd(a,b)=1.) Let f(a, b) be the number of cuts this will take (assuming
both act in their own self interest). It is known that f(a, b) ≤ dlg(a + b)e [1].
We show that

1. for all a,b, f(a, b) ≥ lg(lg(a + b))

2. for an infinite number of (a,b), f(a, b) ≤ 1 + lg(lg(a + b)).
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2 Introduction
The problem of discrete, unequal division already has a solution given in [1],
which acheives a ratio (a, b) in at most dlg(a + b)e steps. This procedure works
to effectively halve the sum of ratio with each cut by having a peice cut off
that is near half of the current sum of the ratio. Then the other person takes
the piece if they value it more than the person who cut it. So that no matter
how the piece is allocated, that ratio falls by a factor of approximately two.
The following tree shows the possible sequences of ratios to be considered when
applying this procedure to the ratio (9, 8). Note, it uses 5 cuts in worst case.

(9,8)

(1,8)

(1,5)

(3,1)

same

(3,1)

(1,1)

(0,1)(1,0)

(1,1)

(0,1)(1,0)

(1,4)

(1,1)

(0,1)(1,0)

(1,2)

(1,1)

(0,1)(1,0)

(0,1)

(9,0)

3 Definitions

We call a ratio (a, b) in lowest terms if gcd(a, b) = 1. Notice that for the purposes
of allocation, (a, b) is equivalent to (b, a) we’ll use them interchangably.

Definition 1. A standard, discrete protocol is a protocol in which each person
involved is able to either respond with what value they place on a particular
piece, or cut off a piece of a given value.

Definition 2. An (a, b)-division is a standard protocol involving Alice and Bob
such that Alice receives at least a

a+b and Bob receives at least b
a+b .

We will show later that a more restricted form of standard protocols is all
that need be considered for (a, b)-divisions.

Definition 3. Let f(a, b) be the smallest number of worst-case cuts needed for
an (a,b)-division.

Definition 4. ProcA(c) is the subprocedure in which one of the two people
(selected arbitrarily) cuts off a piece that they value at c. Then, if the other
person values that piece > c, they take it, otherwise the person who cut it off
takes it.
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Definition 5. ProcB(c) is the subprocedure in which the person who is owed
less of the whole, cuts off a piece that they value at c. Then, the other person
takes that peice if they value it more than c, otherwise they take the other piece,
which they neccesarily value at ≥ 1− c

Definition 6. The binary operations on ratios ∗1, ∗2, and ∗3 are:

(a1, b1) ∗1 (a2, b2) = ((a1 + b1)a2, (a2 + b2)b1)
(a1, b1) ∗2 (a2, b2) = (a1a2, a1a2 + b2a1 + a2b1)
(a1, b1) ∗3 (a2, b2) = (a1b2 + b1a2 + b2b1, b2b1)

Note, that if either ratio given as an argument is scaled, then that merely causes
the result to be scaled by the same factor, so, these operators are independent
of representatives of the ratios used.

4 Examination of (a, b)-Divisions

4.1 A Motivating Example

The logarithmic bound is not always tight. At certain times it is possible to
acheive a ratio in many fewer cuts than the previous method by selecting the
cutoff value carefully. So, when reduced to lowest terms, they are much smaller.

A simple example of this approach doing better than the cut-near-halves
algorithm is given for the ratio (9, 8):

(9,8)

(8,4)= (2,1)

(1,0)(1,1)

(0,1)(1,0)

(9,3) = (3,1)

(1,1)

(0,1)(1,0)

(1,1)

(0,1)(1,0)

We see that by having one person cut off 5
17 initially. Depending on whether the

other person thinks it is less than or greater than 5
17 , we get the subproblems

(9, 3) and (4, 8) which are equivalent to (3, 1) and (2, 1) respectively.
So, by selecing the cutoff carefully, we were able to acheive (9, 8) in only 3

cuts instead of 5 cuts. By computer search we also found many much larger
ratios, for example, with six cuts, we can get a (58470565, 72019008)-division
instead of the twenty eight cuts that cut near halves would require. We will be
investigating a generalization of this type of selection of the amount to be cut
off, and also give a lower bound on f(a, b) in terms of a + b (of course, we are
still assuming (a, b) is in lowest terms throughout).
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4.2 Foundation

Although standard protocols allow for arbitrary sequences of evaluation of pieces
and asking a person to cut off a piece of a given size, our situation can only
benefit from a more restricted set of operations. Since we only have two people,
the only evaluations it will be helpful to ask for are those from the person who
didn’t make the cut. Also, after a piece is cut, and evaluations are made, one
of the pieces must be allocated to a person, and the procedure continues only
on the other piece.

Lemma 1. Any optimal (a, b)-division can be rewritten as sequences of ProcA(c)
and ProcB(c), each time picking some c

Proof. Suppose that the ratio to be divided is (a, b) wlog a < b (if a = b, do
cut-and-choose which is ProcA( 1

2 )). So, the basic operation we are left with

takes three forms, depending on what fraction k
d we ask a person to make first.

Case 1: a
a+b < k

d < b
a+b

Notice in this case that both pieces produced are > a
a+b so, the piece to be

allocated can’t be to Alice. If Bob evaluates the piece cut off to be ≥ k
d he

takes that piece, otherwise he takes the other piece, which is necessarily ≥
d−k
d . Then, they procede to divide the unallocated piece in the ratio either

(a ∗ d, b ∗ d− k ∗ (a+ b)) or (a ∗ d, k ∗ (a+ b)− a ∗ d) depending wether Bob took
the piece Alice valued at k

d or the piece she valed at d−k
d , respectively

Case 2: k
d ≤

a
a+b < b

a+b
Notice that the piece that is not cut off is greater than either person’s due share,
so, the only possibility is that the piece allocated is the one that Alice cut off.
If Bob evaluates that piece to be ≥ k

d then he is allocated that piece, otherwise
Alice is allocated that piece. Then, The ratio in which to divide the unallocated
is either (a ∗ d, b ∗ d − k ∗ (a + b)) or (a ∗ d − k ∗ (a + b), b ∗ d) depending on
whether Bob or Alice got the piece, respectively.
Case 3: a

a+b < b
a+b < k

d

This is symmetric to Case 2 because we have 1 − k
d ≤

a
a+b < b

a+b so the only
difference from Case 2 is that we consider the remaining piece that was not cut
off, instead of the piece that was.

Corollary 1. We get one of the following two relations, depending on our choice
of k

d at each operation

f(a, b) = 1+max{f(a∗d, b∗d−k∗(a+b)), f(a∗d, k∗(a+b)−a∗d)} a
a+b < k

d < b
a+b

f(a, b) = 1+max{f(a∗d−k∗(a+b), b∗d), f(a∗d, b∗d−k∗(a+b))} k∗(a+b)
d ≤ a, b

Proof. Each operation takes a single cut, and leaves you with one of two ratios
left to divide, depending on the preferences of the non-cutter. Since there is no
control of their preference in the protocol, either ratio could need to be acheived
by the protocol.
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Lemma 2. Let (a1, b1) and (a2, b2) be two ratios. Take (a, b) a ratio in lowest
terms that can reduce to either (a1, b1) and (a2, b2) as described in Corollary 1.
Then (a, b) is one of (a1, b1) ∗1 (a2, b2) , (a1, b1) ∗2 (a2, b2) , or (a1, b1) ∗3 (a2, b2)

Proof. wlog, take b1a2 ≥ a1b2. Let k
d the piece that is cut off. Then, since

neither b2
a2

= b
a nor b

a = b1
a1

is not possible by Corollary 1, there are three cases
for ordering the ratios:
Case 1 : b2

a2
< b

a < b1
a1

In this case, we have to be using the second case of Corollary 1 in which
k < a,k < b. This means that there are some factors s1, s2 such that s1 ∗
(a1, b1) = (a ∗ d− k ∗ (a + b), b ∗ d) and s2 ∗ (a2, b2) = (a ∗ d, b ∗ d− k ∗ (a + b))
so, we get the system:

s1a1 = a ∗ d− k ∗ (a + b)
s1b1 = b ∗ d
s2a2 = a ∗ d
s2b2 = b ∗ d− k ∗ (a + b)

which gets us that

a = (a1 + b1)a2
b = (a2 + b2)b1

so, in this case, the only ratio that can depend on (a1, b1) and (a2, b2) is ((a1 +
b1) ∗ a2, (a2 + b2) ∗ b1) = (a1, b1) ∗1 (a2, b2)
Case 2: b

a < b2
a2
≤ b1

a1

In this case, we know as well that we must have a cutoff that makes b decrease
in both cases, as there is no hope of ending up in either ratio if we decrease a
but not b, this means that we are int the case of Corollary 1 with k

d > a
a+b .

Note, we have two choices of k
d symmetric about 1

2 but, a and b are still unique
up to a common scaling factor.

s1a1 = a ∗ d
s1b1 = k ∗ (a + b)− a ∗ d
s2a2 = a ∗ d
s2b2 = b ∗ d− k ∗ (a + b)

which gets us a solution that

a = a1a2
b = a1a2 + b2a1 + a2b1

So, the only ratio that can depend on (a1, b1) and (a2, b2) is (a1 ∗ a2, a1 ∗ a2 +
b2 ∗ a1 + a2 ∗ b1) = (a1, b1) ∗2 (a2, b2)
Case 3: b2a2

≤ b1
a1

< b
a

symmetric to case 2, we get that the only ratio that can depend on (a1, b1) and
(a2, b2) is (a1 ∗ b2 + b1 ∗ a2 + b2 ∗ b1, b2 ∗ b1) = (a1, b1) ∗3 (a2, b2)
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All ratios are achievable by these three relations, along with the fact that
for no cuts, (0, 1) and (1, 0) are achievable, as they correspond to giving it all
to one participant. This also gives a method to, for any n, construct all ratios
(a, b) that have f(a, b) ≤ n.

Notice that even if the two smaller ratios are in lowest terms, these products
aren’t necesarily in lowest terms. However, in showing the next proposition,
we use ∗2 and show that it does produce a ratio in lowest terms in a certain
construction.

4.3 Bounds on f(a, b)

Theorem 1. There exists an infinite sequence of ratios (an, bn) in lowest terms

with, for all n, 22
n−1

= an + bn and f(an, bn) ≤ n

Proof. Base case: take n = 1, then we can achieve (1, 1) in a single cut via
cut-and-choose. This meets the assumption for n = 1 that a + b = 1 + 1 =
22

1−1

= 22
n−1

Inductive step: assume (an−1, bn−1) satisfy 22
n−2

= an−1 + bn−1 and are al-
ready in lowest terms. We claim (an, bn) = (an−1, bn−1) ∗2 (bn−1, an−1) satisfies
the criteria.
We have, (an−1, bn−1) ∗2 (bn−1, an−1) = (an−1bn−1, an−1bn−1 + a2n−1 + b2n−1)
First, we show that this is in lowest terms. Assume not, that 1 6= d =
gcd(an−1bn−1, an−1bn−1+a2n−1+b2n−1) Then, take a prime p|d. Because d|an−1bn−1

and 1 = gcd(an−1, bn−1) either p|an−1 or p|bn−1 but not both, wlog, con-
sider, p|an−1. Then, p|an−1bn−1 + a2n−1 + b2n−1. So, since p|an−1bn−1 + a2n−1

we must have that p|b2n−1. but, we have that p - bn−1, a contradiction, so,
d = 1, so, (an, bn) is in lowest terms. Now, we just note that an + bn =

an−1bn−1 + an−1bn−1 + a2n−1 + b2n−1 = (an−1 + bn−1)2 = (22
n−2

)2 = 22
n−1

.
Lastly, since f(an−1, bn−1) ≤ n− 1 and we are reducing (an, bn) to (an−1, bn−1)
in a single cut, f(an, bn) ≤ n, completing the induction.

Corollary 2. For all M , there exists a, b > M such that gcd(a, b) = 1 and
f(a, b) ≤ 1 + lg(lg(a + b))

Theorem 2. For all ratios that can be acheived in n or less steps, (a, b) we
have that 22

n−1 ≥ a + b

Proof. Base case: Take n = 1, then the only acheivable ratios are (1, 1),(0, 1),
and (1, 0) which satisfy the inequality.
Inductive step: Assume all ratios that can be done in n steps satisfy the
inequality, then, we know from Lemma 2 that all ratios that can be acheived
in n + 1 steps must be obtained from one of the three ways of combining ratios
that can be acheived in ≤ n steps. Let (a, b) be a ratio with f(a, b) = n + 1
steps. Then, we know from Lemma 2 that this depends on two ratios (a1, b1)
and (a2, b2) with f(a1, b1), f(a2, b2) ≤ n in one of three ways:
Case 1:
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(a, b) = (a1, b1) ∗1 (a2, b2) = ((a1 + b1) ∗ a2, (a2 + b2) ∗ b1) which has sum

(a1+b1)∗a2+(a2+b2)∗b1 ≤ 2∗(a1+b1)∗(a2+b2) ≤ 2∗22n−1∗22n−1 = 22
n+1−1

Case 2:
(a, b) = (a1, b1) ∗2 (a2, b2) = (a1 ∗ a2, a1 ∗ a2 + b2 ∗ a1 + a2 ∗ b1) which has
sum a1 ∗ a2 + a1 ∗ a2 + b2 ∗ a1 + a2 ∗ b1 ≤ a1 ∗ a2 + (a1 + b1) ∗ (a2 + b2) ≤
2 ∗ (a1 + b1) ∗ (a2 + b2) ≤ 2 ∗ 22

n−1 ∗ 22
n−1 = 22

n+1−1

Case 3:
(a, b) = (a1, b1) ∗3 (a2, b2) = (a1 ∗ b2 + b1 ∗ a2 + b2 ∗ b1, b2 ∗ b1) which has sum:
a1∗b2+b1∗a2+b2∗b1+b2∗b1 ≤ (a1+b1)∗(a2+b2)+b1∗b2 ≤ 2∗(a1+b1)∗(a2+b2) ≤
2 ∗ 22

n−1 ∗ 22
n−1 = 22

n+1−1

Corollary 3. For any ratio (a, b) in lowest terms, f(a, b) ≥ lg(1 + lg(a + b))

4.4 Actually finding the cuts to make

Since we have that the number of cuts is ≤ lg(a+ b) and there are < 22
n

ratios
achievable in n steps, by enumerating all of the ratios acheivable in ≤ lg(a + b)
cuts, this results in an algorithm that takes O(2a+b) time to run to find the
division procedure. Clearly, this is a rather dumb algorithm.

Unfortunately, the following dynamic programming solution fails: suppose
a < b

f(a, b) = 1 + min{
a

min
i=1
{max{f(a, b− i), f(a− i, b)}},

n
2

min
i=a+1

{max{f(a, b− i), f(a, i− a− 1)}}}

Then, the cut to make would be i
a+b where i corresponds the i in the previous

formula that aceives the minimum
This would cut it down to O(a∗b∗(a+b)) but, it doesn’t work. It assumes that

the amount to be cut off is a multiple of 1
a+b which, if taken as an assumption,

fails to acheive the minimum number of cuts for (5, 14) where the minimum
number of cuts is acheivable only with a first cut of 3

38 , using only 4 cuts, but
the dynamic programming solution produces a procedure using 5 cuts. Since the
amount to be cut off was only a factor of two from being a multiple of 1

a+b there
may be some modification of this dynamic programming solution that works.

5 Open Problems

Obtaining a good algorithm for finding the unfair division procedure with fewest
cuts. The current one just uses the known bound on number of cuts to bound
a brue force search.

It may be possible to apply these lower bounds for unfair (two person) divison
to improving the lower bound on proportional (n person) divison.
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