
Proportional Division
Exposition by William Gasarch

1 Introduction

Whenever we say something like Alice has a piece worth 1/2 we mean worth
1/2 TO HER.

Lets say we want Alice, Bob, Carol, to split a cake so that each one
thinks they got ≥ 1/3. This is called a proportional division. More generally,
if A1, . . . , An want to split a cake so that they all get ≥ 1/n, that is called a
proportional division.

For two people we can always use cut-and-choose which takes just one
cut.

In all protocols we describe what the players DO and put in parenthesis
advice as to what they SHOULD DO in their own best interest. If they have
to choose a piece and the advice is to pick the bigger one, we omit the advice.

The players will be denoted Alice, Bob, Carol if there are 3 of them, and
A1, . . . , An if there are n of them. If we need to number pieces we will all
them P1, P2, . . .. There is no connection between person Ai and piece Pi.

For each protocol we will usually leave the following to the reader:

1. For each player Ai, if Ai follows the advice then, no matter what the
other players do, Ai will get a proportional share.

2. For each player Ai, if Ai does not follow the advice then there is a
scenario where they get less than a proportional share.

2 COME LATE Protocol

We present the 3-person COME LATE protocol and the n-person COME
LATE protocol. It is called COME LATE since if (say) 8 people have already
divided a cake so that each has 1/8 but they have not eaten it yet, then it
someone else comes in (a ninth person) they can continue the protocol even
though he was not there at the beginning.

Theorem 2.1 There is a discrete protocol for 3 people to achieve a propor-
tional division which uses 5 cuts.
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Proof:
Here is the protocol:

1. Alice and Bob do cut-and-choose (fairly). Alice has piece P1, Bob has
piece P2. One cut.

2. Carol and Alice divide P1 in ratio (1:2).

3. Carol and Alice divide P1 in ratio (1:2).

Note that there are 5 cuts total.
We show that if Carol follows the advice then she gets ≥ 1/3 independent

of what anyone else does.
Say Carol values P1 as v1 and P2 as v2. All we know is that v1 + v2 = 1.

If Carol cuts P1 and P2 into thirds equally then Carol gets

(1/3)v1 + (1/3)v2 = (1/3)(v1 + v2) = 1/3.

Theorem 2.2 For all n ≥ 2 there is a discrete protocol for n people to
achieve a proportional division which always uses approximately n2 log n.

Proof:
For n = 2 people we use cut-and-choose. Note that this take one cut.

Assume we already have a protocol for n− 1 people.

1. A1, . . . , An−1 do the protocol for n − 1 people. For 1 ≤ i ≤ n − 1 Ai

has Pi and values it as ≥ 1
n−1

.

2. For 1 ≤ i ≤ n− 1,

(a) An cuts and Ai divide Pi in ratio (1 : n− 1).

We show that Carol gets ≥ 1/n.
Say that, for all 1 ≤ i ≤ n− 1, Carol values Pi as vi. All we know is that

v1 + v2 + · · ·+ vn−1 = 1. If Carol cuts each Pi into n equal pieces then Carol
gets
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(1/n)v1 + (1/n)v2 + · · · + (1/n)vn−1 = (1/n)(v1 + v2 + · · · + vn−1) = 1/n.

How many cuts were used. Let C(n) be the number of cuts for n people.
C(2) = 1.
For n people the protocol first uses C(n− 1) cuts and then uses, for each

1 ≤ i ≤ n− 1, n− 1 cuts. Hence

C(n) ≤ C(n− 1) + (n− 1) log n.

One can show that C(n) ≤ n2 log n + A for some constant A which we
don’t care about.

Some notes.

1. No matter what the tastes are of A1, . . . , An this protocol will take
roughly n2 log n) cuts. So this numbers is the best case as well as the
worst case.

2. Is there a protocol that takes substantially less than n2 log n cuts? YES-
in the next section!

3 TRIM Protocol

We present the 3-person TRIM protocol and the n-person TRIM protocol. It
is called TRIM since the players may do a lot of trimming of pieces of cake.

Theorem 3.1 There is a discrete protocol for 3 people to achieve a propor-
tional division which uses 3 cuts.

Proof:

1. Alice cuts a piece (1/3). One cut.

2. Bob either trims the piece and puts the trim aside or not (If the piece
is > 1/3 then trim down to 1/3.) At most one cuts.

3. Carol takes the piece or not.
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(a) If Carol takes the piece then Alice and Bob put the trim (if there
is any) back on the cake and do cut-and choose with what is left.
One cut.

(b) If Carol does not take the piece, and Bob trimmed it, then Bob
gets the piece. Then Alice and Carol do cut-and-choose with
whats left. One cut.

(c) If Carol does not take the piece, and Bob did not trim it, then
Alice gets the piece. Then Bob and Carol do cut-and-choose. One
cut.

Theorem 3.2 For all n ≥ 2 there is a discrete protocol for n people to
achieve a proportional division which uses at most (n−1)n

2
cuts.

Proof:
For n = 2 people we use cut-and-choose. Note that this take one cut

which is what the theorem says it should take. Assume we already have a
protocol for n− 1 people.

1. A1 cuts a piece (1/n). One cut.

2. For 2 ≤ i ≤ n− 1,

(a) Ai either trims the piece and puts the trim aside or not (If the
piece is > 1/n then trim down to 1/n.) At most one cuts for each
i, so at most n− 2 cuts.

3. An takes the piece or not.

(a) If An takes the piece then add the trim back to the rest of the
cake and let A1, . . . , An−1 execute the n− 1 player protocol on all
that An has not taken.

(b) If someone trimmed the cake then let i be the largest index of such
a player. Ai gets the piece. A1, . . . , Ai−1, Ai+1, . . . , An execute the
(n − 1)-player protocol on whats left (including the trim that is
added back).
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How many cuts were used. Let xn be the number of cuts for n people.
x2 = 1.
For n people the protocol first gives has one player cut a piece, and then

offers n − 2 players a chance to trim. Hence in the worse case this phase of
the protocol uses n − 1 cuts. Then the protocol executes the n − 1-player
protocol. Hence

xn = n− 1 + xn−1 = xn−1 + n− 1.

Note the following:

x2 = 1
x3 = x2 + 2 = 1 + 2
x4 = x3 + 3 = 1 + 2 + 3

One can see (formally by induction, but that is not important for this
course) that

xn = 1 + 2 + · · · + (n− 1).

This is a known summation. It is (n−1)n
2

.

Some notes.

1. We will say that this protocol is O(n2). The formal definition is not
important, suffice to say that the protocol takes roughly n2.

2. Depending on the tastes of A1, . . . , An this protocol may take far less
than O(n2) cuts. In the best case this protocol would take n− 1 cuts.

3. Is there a protocol that takes substantially less than O(n2) cuts? YES-
in the next section!

4 DIVIDE & CONQUER (DC) Protocol

In this section we abbreviate DIVIDE & CONQUER by DC. We present
the 4-person DC protocol and then the n-person DC protocol. It is called
DIVIDE & CONQUER since the players split into two groups, one of which
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divides the Left side of the cake, and the other the right side of the cake.
This type of protocol does not work with 3 people. If we (and we will) need
to have some 3-player protocol we will use TRIM.

We denote a cake as a long line and think of it as a long rectangle. The
following denotes that A,B,C made their cuts.

−−−− A−−−−−B −−−−− C −−−−−−−−−−−−−−

Theorem 4.1 There is a discrete protocol for four people to achieve a pro-
portional division which uses 5 cuts.

Proof:
We call the players Alice, Bob, Carol, Donna.

1. Alice, Bob, and Carol all simultaneously cut the cake up and down
(they each cut it in half). Three cuts. We assume just for notation
that Alice’s cut is the left most, then Bob’s, then Carol’s. Hence we
have this:

−−−−A−−−−−B −−−−−C −−−−−−−−−−−−−−
Let L be the piece of cake to the LEFT of B. Let R be the piece of
cake to the RIGHT of B. Not that (1) Alice and Bob both think that
L is ≥ 1/2. (2) Carol and Bob both think that R is ≥ 1/2.

2. Donna picks either L or R.

(a) If Donna picks L then (1) Alice and Donna do cut-and-choose on
L, and (2) and Bob and Carol do cut-and-choose on R. Two cuts.
KEY: Alice and Donna both think L is ≥ 1/2, and Bob and Carol
both think R ≥ 1/2.

(b) If Donna picks R then (1) Alice and Bob do cut-and-choose on L,
and (2) and Carol and Donna do cut-and-choose on R. Two cuts.
KEY: Alice and Bob both think L is ≥ 1/2, and Carol and Donna
both think R ≥ 1/2.

Note that the protocol uses 5 cuts.
KEY: Bob was happy to either share L with one other person or R with

one other people.
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Note 4.2 Compare this number-of-cuts with both the COME LATE and
TRIM for n = 4.

Before we generalize this note that it was important that 4 was even. An
odd number (3) of people initially cut the cake so there was a middle cut that
we could use. What if there is an odd number of people total, so if all but
one cut, there is an even number of people initially cutting the cake? KEY:
The initially cutters won’t be advised to cut evenly. We do the n = 5 case.

Theorem 4.3 There is a discrete protocol for 5 people to achieve a propor-
tional division which uses 5 cuts.

Proof:
We call the players Alice, Bob, Carol, Donna, Edgar.

1. Alice, Bob, Carol, and Edgar all simultaneously cut the cake up and
down (KEY: they each cut it (2/5,3/5).) Four cuts. We assume just
for notation that the cuts are as follows:

−−−−A−−−−−B−−−−−C −−−−−−−−D−−−−−−
Let L be the piece of cake to the LEFT of B. Let R be the piece of cake
to the RIGHT of B. Not that (1) Alice, Bob think that L is ≥ 2/5.
(2) Bob, Carol, Edgar think that R is ≥ 3/5.

2. Edgar picks either L or R. (Edgar picks L if he thinks L ≥ 2/5 and R
if he thinks R ≥ 3/5. Note that he has to think one of these two.)

(a) If Edgar picks L then (1) Alice and Edgar do cut-and-choose on
L, and (2) Bob, Carol, Donna do a 3-person TRIM protocol on R.
Four cuts (one for cut-and-choose, 3 for TRIM). KEY: Alice and
Edgar think L is ≥ 2/5, and Bob, Carol, Donna think R ≥ 3/5.

(b) If Donna picks R then (1) Alice and Bob do cut-and-choose on L,
and (2) Carol, Donna, Edgar do 3-person TRIM protocol on R.
Four cuts. KEY: Alice, Bob both think L is ≥ 2/5, and Carol,
Donna, Edgar both think R ≥ 3/5.

Note that this takes 8 cuts.
KEY: Bob was happy to either share L with one other person or R with

two other people.
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To generalize this protocol for n people we need two protocols: one for n
even and one for n odd.

Theorem 4.4 For all n there is a discrete protocol for n people to achieve
a proportional division which uses O(n log n) cuts.

Proof:
We call the players A1, . . . , An Let the number of cuts be xn.
For n = 2 we use Cut and Choose. For n = 3 we use TRIM. We describe

two algorithms, one for n even and one for n odd. In each case we will call
the protocol itself with a lower value of n. In the prior protocols we called
the protocol itself for n − 1 players. Here we will call it with roughly n/2
players.

n even case. Note that n− 1 is odd

1. A1, . . . , An−1 all simultaneously cut the cake up and down (they each
cut it in half). n− 1 cuts. We assume just for notation that this is the
scenario:

−−A1 −−−A2 − . . .−An
2
−1 −−An

2
−−−An

2
+1 −− . . .−−An−1−

Let L be the piece of cake to the LEFT of An
2
. Let R be the piece of

cake to the RIGHT of An
2
. Note that (1) A1, . . . , An

2
think that L is

≥ 1/2. (2) An
2
, , . . . , An−1 think that R is ≥ 1/2.

2. An picks either L or R.

(a) If An picks L then (1) A1, . . . , An
2
−1, An do the DC protocol with

n/2 players on L, (2) An
2
, An

2
+1, . . . , An−1 do the DC protocol with

n/2 players on R. 2xn/2 cuts. KEY: (1) A1, . . . , An
2
−1, An all think

L ≥ 1/2. (2) An
2
, An

2
+1, . . . , An−1 all think R ≥ 1/2.

(b) If An picks R then (1) A1, . . . , An
2

do the DC protocol with n/2
players on L, (2) An

2
+1, An

2
+1, . . . , An−1, An do the DC protocol

with n/2 players on R. 2xn/2 cuts. KEY: (1) A1, . . . , An
2
, all

think L ≥ 1/2. (2) An
2
+1, . . . , An all think R ≥ 1/2.

Note that the protocol uses n− 1 + 2xn/2 cuts.
KEY: An

2
is happy to either share L with n/2 − 1 other person or share

R with n/2 − 1 other people.

n odd protocol.
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1. A1, . . . , An−1 all simultaneously cut the cake up and down (KEY: They
each cut it (n−1

2n
, n+1

2n
).) We assume just for notation that this is the

scenario:

−A1 −−A2 − . . .−An−1
2

−1 −−−An−1
2

−−−An−1
2

+1 − . . .−An−1 −−

Let L be the piece of cake to the LEFT of An−1
2

. Let R be the piece of

cake to the RIGHT of An−1
2

. Note that (1) A1, . . . , An−1
2

think that L

is ≥ n−1
2n

. n− 1 cuts. (2) An−1
2
, , . . . , An−1 think that R is ≥ n+1

2n
.

2. An picks either L or R. (He picks L if he thinks L ≥ n−1
2n

and R if he
thinks R ≥ n+1

2n
. He must think one of these.)

(a) If An picks L then (1) A1, . . . , An−1
2

−1, An do the DC protocol

with (n − 1)/2 players on L, (2) An−1
2
, An−1

2
+1, . . . , An−1 do the

DC protocol with (n + 1)/2 players on R. x(n−1)/2 + x(n+1)/2

cuts. KEY: (1) A1, . . . , An−1
2

−1, An all think L ≥ (n − 1)/2n.

(2) An−1
2
, An−1

2
+1, . . . , An−1 all think R ≥ (n + 1)/2n. x(n−1)/2 +

x(n+1)/2 cuts.

(b) If An picks R then (1) A1, . . . , An−1
2

do the DC protocol with

(n−1)/2 players on L, (2) An−1
2

+1, An−1
2

+1, . . . , An−1, An do the DC

protocol with (n+1)/2 players on R. x(n−1)/2+x(n+1)/2 cuts. KEY:
(1) A1, . . . , An−1

2
, all think L ≥ (n−1)/2n. (2) An−1

2
+1, . . . , An all

think R ≥ (n + 1)/2n. x(n−1)/2 + x(n+1)/2 cuts.

The KEY to the protocol is that An
2

is happy splitting either L with
(n− 1)/2n people or R with (n + 1)/2n people.

How does xn grow? To recap we have
x2 = 1
x3 = 3
xn = n− 1 + 2xn/2 if n is even
xn = n− 1 + x(n−1)/2 + x(n+1)/2 if n is odd.
Lets first look at what happens when n is a power of 2 to get an idea of

how fast xn grows. Let n = 2k.
x2k = 2k + 2x2k−1

x2k = 2k + 2(2k−1 + 2x2k−2) = 2k + 2k + 22x2k−2 = 2 × 2k + 22x2k−2 .
We can keep doing this:
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x2k = 2 × 2k + 22x2k−2

= 2 × 2k + 22(2k−2 + 2x2k−3)
= 2 × 2k + 2k + 23x2k−3

= 3 × 2k + 23x2k−3

One can see (formally by induction, but that is not important for this
course) that, for all 1 ≤ i ≤ k − 1

x2k = i× 2k + 2ix2k−i .

Plugging in i = k − 1 we obtain

x2k = (k − 1) × 2k + 2k−1x2 = (k − 1)2k + 2k−1.

We want to express this in terms of n using n = 2k and k = lg n.

xn = (lg n− 1)n + n/2.

This is bounded above by O(n log n).
The general case where n is not a power of two is similar but messy. We

can bound it above by O(n log n).
Hence the protocol takes at most O(n log n) cuts.

Some notes:

1. The number of cuts does not depend on peoples tastes. O(n log n) is
both an upper and lower bound.

2. Can we do better? NO- it is KNOWN that using algorithms OF THIS
TYPE it requires roughly n log n cuts.
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