Examples of Three Person Cake Cutting With Uniform Valuations

William Gasarch-U of MD

Credit Where Credit is Due

The paper

How to Cut a Cake Before the Party Ends by

David Kurokawa, John K. Lai, Ariel Procaccia has a protocol for envy-free cake cutting with piecewise linear valuations. Their paper inspired these slides. We refer to their paper as ENDS.

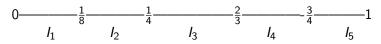
Alice, Bob, Carol

Alice's tastes are uniform on $[\frac{1}{8}, 1]$. Multiplier: $\frac{8}{7}$.

Bob's tastes are uniform on $[0, \frac{2}{3}]$. Multiplier: $\frac{3}{2}$.

Carol's tastes are uniform on $\left[\frac{1}{4}, \frac{3}{4}\right]$. Multiplier: 2.

Intervals



- ▶ How much of *I*₁ should Alice get?
- ▶ How much of *l*₁ should Bob get?
- ▶ How much of *I*₁ should Carol get?
- ▶ How much of *l*₂ should Alice get?
- ▶ How much of *I*₂ should Bob get?
- ▶ How much of *l*₂ should Carol get?
- ► Etc.

Variables

```
x_{1A} is how much Alice gets of I_1.
x_{1B} is how much Bob gets of I_1.
x_{1C} is how much Carol gets of I_{1}.
x_{2A} is how much Alice gets of I_2.
x_{2B} is how much Bob gets of I_2.
x_{2C} is how much Carol gets of I_2.
x_{iP} is how much Person P gets of I_i.
NOTE: x_{1A} = x_{4B} = x_{5B} = x_{1C} = x_{2C} = x_{5C} = 0.
Example: x_{2A} = \frac{1}{10} \rightarrow \text{Alice gets subinterval of } I_2 \text{ of length } \frac{1}{10}.
```

Equations: The x_{iP} Make Sense

$$I_1$$
 of length $\frac{1}{8}$: $0 \le x_{1B} \le \frac{1}{8} - 0 = \frac{1}{8}$

$$I_2$$
 of length $\frac{1}{8}$: $0 \le x_{2A}, x_{2B} \le \frac{1}{4} - \frac{1}{8} = \frac{1}{8}$.

$$I_3$$
 of length $\frac{5}{12}$: $0 \le x_{3A}, x_{3B}, x_{3C} \le \frac{2}{3} - \frac{1}{4} = \frac{5}{12}$

$$I_4$$
 of length $\frac{1}{12}$: $0 \le x_{4A}, x_{4C} \le \frac{3}{4} - \frac{2}{3} = \frac{1}{12}$

$$I_5$$
 of length $\frac{1}{4}$: $0 \le x_{5A} \le 1 - \frac{3}{4} = \frac{1}{4}$

We will not mention these again for a while.

Equations: The x_{iP} Make Sense

$$I_1$$
 of length $\frac{1}{8}$: $x_{1B} = \frac{1}{8}$

$$I_2$$
 of length $\frac{1}{8}$: $x_{2A} + x_{2B} = \frac{1}{8}$

$$I_3$$
 of length $\frac{5}{12}$: $x_{3A} + x_{3B} + x_{3C} = \frac{5}{12}$

$$I_4$$
 of length $\frac{1}{12}$: $x_{4A} + x_{4C} = \frac{1}{12}$

$$I_5$$
 of length $\frac{1}{4}$: $x_{5A} = \frac{1}{4}$

We set

$$x_{1B} = \frac{1}{8}$$
 $x_{5A} = \frac{1}{4}$.

The first and fifth equation are now satisfied.

Equations: Getting Everyone $\geq \frac{1}{3}$

Alice gets
$$\geq \frac{1}{3}$$
: $\frac{8}{7}(x_{2A} + x_{3A} + x_{4A} + \frac{1}{4}) \geq \frac{1}{3}$
$$\frac{8}{7}(x_{2A} + x_{3A} + x_{4A}) \geq \frac{1}{21}$$

Bob gets
$$\geq \frac{1}{3}$$
: $\frac{3}{2}(\frac{1}{8} + x_{2B} + x_{3B}) \geq \frac{1}{3}$
 $\frac{3}{2}(x_{2B} + x_{3B}) \geq \frac{7}{48}$

Carol gets $\geq \frac{1}{3}$:

$$2(x_{3C}+x_{4C})\geq \frac{1}{3}$$

ALL the Equations

All vars ≥ 0 .

$$x_{2A} + x_{2B} = \frac{1}{8}$$

$$x_{3A} + x_{3B} + x_{3C} = \frac{5}{12}$$

$$x_{4A} + x_{4C} = \frac{1}{12}$$

$$\frac{8}{7}(x_{2A} + x_{3A} + x_{4A}) \ge \frac{1}{21}$$

$$\frac{3}{2}(x_{2B} + x_{3B}) \ge \frac{7}{48}$$

$$2(x_{3C} + x_{4C}) \ge \frac{1}{3}$$

Can solve by REASONING or by an LP package.

Reasoning- Carol First

Reasoning:

- Give Carol first— she has largest multiplier.
- ▶ Give Carol from I_4 , only Alice competes there.
- ► Giver her ALL of I_4 since still does not get Carol $\frac{1}{3}$.
- ► Recall:

$$\begin{array}{rcl} x_{4A} + x_{4C} & = \frac{1}{12} \\ 2(x_{3C} + x_{4C}) & \geq \frac{1}{3} \end{array}$$

- ► Set $x_{4C} = \frac{1}{12}$. Forces $x_{4A} = 0$.
- $ightharpoonup 2(x_{3C} + \frac{1}{12}) \ge \frac{1}{3}$
- Set $x_{3C} = \frac{1}{6} \frac{1}{12} = \frac{1}{12}$.
- \triangleright Carol has 1/3, Interval I_4 is allocated.

Making Bob Happy

Plugging in $x_{4A} = 0$, $x_{4C} = \frac{1}{12}$, $x_{3C} = \frac{1}{12}$ yields:

$$x_{2A} + x_{2B} = \frac{1}{8}$$

$$x_{3A} + x_{3B} = \frac{1}{3}$$

$$\frac{8}{7}(x_{2A} + x_{3A}) \ge \frac{1}{21}$$

$$\frac{3}{2}(x_{2B} + x_{3B}) \ge \frac{7}{48}$$

Satisfy Bob: Give Bob from smaller interval I_2 (makes math easier) give him ALL of it: $x_{2B} = \frac{1}{8}$. Forces $x_{2A} = 0$.

Making Bob Happy

Plug in $x_{2B} = \frac{1}{8}$ and $x_{2A} = 0$.

$$x_{3A} + x_{3B} = \frac{1}{3}$$

$$\frac{8}{7}(x_{3A}) \geq \frac{1}{21}$$

$$\frac{3}{2}(\frac{1}{8}+x_{3B}) \geq \frac{7}{48}$$

Give Bob enough of I_2 so that he is happy:

$$\frac{1}{8}+x_{3B}\geq\frac{7}{72}$$

$$x_{3B} \ge \frac{55}{576}$$

Set $x_{3B} = \frac{55}{576}$. Forces $x_{3A} = \frac{1}{3} - \frac{55}{576} = \frac{137}{576}$. Does this work?

Final Reckoning

Alice:
$$x_{1A} = 0$$
, $x_{2A} = 0$, $x_{3A} = \frac{137}{576}$, $x_{4A} = 0$, $x_{5A} = \frac{1}{4}$.

$$\frac{8}{7}(0+0+\frac{137}{576}+0+\frac{1}{4})\sim 0.5575$$

Bob:
$$x_{1B} = \frac{1}{8}$$
, $x_{2B} = \frac{1}{8}$, $x_{3B} = \frac{55}{576}$, $x_{4B} = 0$, $x_{5B} = 0$.

$$\frac{3}{2}(\frac{1}{8}+0+\frac{1}{8}+\frac{55}{576}+0+0)\sim 0.5182$$

Carol:
$$x_{1C} = 0$$
, $x_{2C} = 0$, $x_{3C} = \frac{1}{12}$, $x_{4C} = \frac{1}{12}$, $x_{5C} = 0$.

$$2(0+0+\frac{1}{12}+\frac{1}{12}+0)=\frac{1}{3}\sim 0.3333$$

TOTAL:

$$0.5575 + 0.5182 + 0.3333 = 1.409$$

MOST UNHAPPY: Carol with 0.33333.

Linear Programming

The Linear Programming Problem Maximize (or Minimize) a LINEAR function relative to LINEAR constraints.

Example

Maximize

$$4x + 8y - 7z$$

Relative to

$$-3x + 5y - 8z \le 20$$

$$x + y + z \le 5$$

$$2x + y + 18z \le 100$$

$$7x + 29y + 178z \le 193$$

- ▶ VERY practical problem. Many REAL applications.
- ► There are MANY PACKAGE for it that are easy to use: http://www3.nd.edu/~jeff/mathprog/mathprog.html

Linear Programming

We want x_{2A} , x_{2B} , x_{3A} , x_{3B} , x_{3C} , x_{4A} , x_{4C} that satisfies:

$$0 \le x_{2A}, x_{2B} \le \tfrac{1}{8}$$

$$0 \le x_{3A}, x_{3B}, x_{3C} \le \frac{5}{12}$$

$$0 \leq x_{4A}, x_{4C} \leq \frac{1}{12}$$

$$x_{2A} + x_{2B} = \frac{1}{8}$$

$$x_{3A} + x_{3B} + x_{3C} = \frac{5}{12}$$

$$x_{4A} + x_{4C} = \frac{1}{12}$$

$$x_{4A} + x_{4C} = \frac{1}{12}$$

$$\frac{\frac{8}{7}(x_{2A} + x_{3A} + x_{4A} + \frac{1}{4}) \ge \frac{1}{3}}{\frac{3}{2}(\frac{1}{8} + x_{2B} + x_{3B}) \ge \frac{1}{3}}$$

$$2(x_{3C} + x_{4C}) \ge \frac{1}{3}$$

What to Maximize?- TOTAL Happiness

Our Goal is WEAKER than Linear Programming- all we want to do is find SOME point.

But can use this framework:

MAXIMIZE total happiness

or

MINIMIZE individual unhappiness

$$\frac{8}{7}(x_{2A} + x_{3A} + x_{4A} + \frac{1}{4}) + \frac{3}{2}(\frac{1}{8} + x_{2B} + x_{3B}) + 2(x_{3C} + x_{4C})$$

Maximizing Total Happiness

Plugged into an LP package:

A:
$$x_{1A} = 0$$
, $x_{2A} = 0.0277$, $x_{3A} = 0.0138$, $x_{4A} = 0$. $x_{5A} = 0.25$

$$\frac{8}{7}(0+0.0277+0.0138+0+0.25)=0.333$$

B:
$$x_{1B} = 0.125$$
, $x_{2B} = 0.0972$, $x_{3B} = 0$, $x_{4B} = 0$, $x_{5B} = 0$.

$$\frac{3}{2}(0.125 + 0.0972 + 0 + 0 = 0) = 0.333$$

C:
$$x_{1C} = 0$$
, $x_{2C} = 0$, $x_{3C} = 0.403$, $x_{4C} = 0.083$, $x_{5C} = 0$.

$$2(0+0+0.403+0.083+0)=0.972$$

TOTAL:

$$0.3333 + 0.3333 + 0.97222 = 1.638$$

MOST UNHAPPY: Alice and Bob 0.3333.

Minimize Unhappiness

Add a variable t.

$$\frac{8}{7}(x_{2A} + x_{3A} + x_{4A} + \frac{1}{4}) \ge t$$
 $\frac{3}{2}(\frac{1}{8} + x_{2B} + x_{3B}) \ge t$
 $2(x_{3C} + x_{4C}) \ge t$
Maximize t

Minimizing Ind. Unhappiness

Plugged into an LP package:

A:
$$x_{1A} = 0$$
, $x_{2A} = 0$, $x_{3A} = 0.17857$, $x_{4A} = 0$. $x_{5A} = 0.25$

$$\frac{8}{7}(0+0+.178587+0.25)=0.4898$$

B:
$$x_{1B} = 0.125$$
, $x_{2B} = 0.125$, $x_{3B} = 0.076531$, $x_{4B} = 0$, $x_{5B} = 0$.

$$\frac{3}{2}(0.125 + 0.125 + 0.076531 + 0 + 0) = 0.4898$$

C:
$$x_{1C} = 0$$
, $x_{2C} = 0$, $x_{3C} = 0.16156$, $x_{4C} = 0.083$, $x_{5C} = 0$.

$$2(0+0+0.16156+0.083+0)=0.4898.$$

TOTAL:

$$0.4898 + 0.4898 + 0.4898 = 1.4694$$

MOST UNHAPPY: ALL have 0.4898.

Protocol

Protocol for n players, all have uniform valuations.

- 1. Every player simul reveals their valuation. (honestly)
- 2. Players form LP program to satisfy that all have $\geq 1/n$, vars make sense, and total is maximized (OR to minimize Unhappiness). They solve the LP.
- 3. Player make the cuts as the LP solution dictates.
- ▶ How many cuts? $\leq 2n-1$ intervals, $\leq n-1$ cuts. PLUS the cuts at each interval, $\leq 2n-2$ cuts. TOTAL NUMBER OF CUTS: $\leq (2n-1)(n-1)+2n-2=2n^2-n-2$.
- Does this LP always have a solution? Yes.
- ▶ The paper ENDS has an $O(n^2)$ protocol for envy-free (hence prop) but does not maximize total. Extends to piece-wise valuations but with diff bound depending on number-of-pieces.

Can we make Division Envy-Free?

Inequalities for Envy Free:

Alice not envious of Bob: $x_{2A} + x_{3A} + x_{4A} + \frac{1}{4} \ge x_{2B} + x_{3B}$.

Alice not envious of Carol: $x_{2A} + x_{3A} + x_{4A} + \frac{1}{4} \ge x_{3C} + x_{4C}$.

Bob not envious of Alice: $\frac{1}{8} + x_{2B} + x_{3B} \ge x_{2A} + x_{3A}$

Bob not envious of Carol: $\frac{1}{8} + x_{2B} + x_{3B} \ge x_{3C}$

Carol not envious of Alice: $x_{3C} + x_{4C} \ge x_{3A} + x_{4A}$

Carol not envious of Bob: $x_{3C} + x_{4C} \ge x_{3B}$

All Constraints for Envy Free

$$x_{2A} + x_{2B} = \frac{1}{8}$$

$$x_{3A} + x_{3B} + x_{3C} = \frac{5}{12}$$

$$x_{4A} + x_{4C} = \frac{1}{12}$$

$$x_{2A} + x_{3A} + x_{4A} + \frac{1}{4} \ge x_{2B} + x_{3B}$$

$$x_{2A} + x_{3A} + x_{4A} + \frac{1}{4} \ge x_{3C} + x_{4C}$$

$$\frac{1}{8} + x_{2B} + x_{3B} \ge x_{2A} + x_{3A}$$

$$\frac{1}{8} + x_{2B} + x_{3B} \ge x_{3C}$$

$$x_{3C} + x_{4C} \ge x_{3A} + x_{4A}$$

$$x_{3C} + x_{4C} \ge x_{3B}$$

Final Reckoning- Envy Free

Maximize Total:

Alice:
$$x_{1A} = 0$$
, $x_{2A} = 0$, $x_{3A} = 0.1111$, $x_{4A} = 0$, $x_{5A} = 0.25$.

$$\frac{8}{7}(0+0+0.1111++0+0+0.25)\sim 0.4126$$

Bob:
$$x_{1B} = 0.125$$
, $x_{2B} = 0.125$, $x_{3B} = 0.02777$, $x_{4B} = 0$, $x_{5B} = 0$.

$$\frac{3}{2}(0.125 + 0.125 + 0.02778 + 0 + 0) \sim 0.41667$$

Carol:
$$x_{1C} = 0$$
, $x_{2C} = 0$, $x_{3C} = 0.2777$, $x_{4C} = 0.08333$, $x_{5C} = 0$.

$$2(0+0+0.2777+0.08333)\sim 0.722$$

TOTAL:

$$0.4162 + 0.4166 + 0.722 = 1.5512$$

MOST UNHAPPY: Alice with 0.4126.

Minimize Unhappiness

Got same numbers as wanted just proportional and min unhappiness.

Protocol

Envy Free Protocol for n players, all have uniform valuations.

- 1. Every player simul reveals their valuation. (honestly)
- 2. Players form LP program to satisfy that there is no envy, all vars make sense, and total is maximized. (They set the obv vars to 0 and whatever else is forced.) They solve the LP.
- 3. Player make the cuts as the LP solution dictates.
- ▶ How many cuts? As before $\leq 2n^2 n 2$.
- ▶ Does this LP always have a solution? Yes.
- ▶ The paper ENDS has an $O(n^2)$ protocol for envy-free (hence prop) but does not maximize total. Extends to piece-wise valuations but with diff bound depending on number-of-pieces.

Other Valuations

What if Valuation is of $v(c,d) = \int_{c}^{d} (ax + b)dx = \frac{a}{2}(d^2 - c^2) + b(d - c).$

Only makes sense if $1 = v(0,1) = \int_0^1 (ax + b) dx = \frac{a}{2} + b$.

$$1 = \frac{a}{2} + b$$

We do an example.

Example

Let
$$f(x) = 2x$$
, $g(x) = x + \frac{1}{2}$, $h(x) = \frac{x}{2} + \frac{3}{4}$.

Alice's Val: $val_A(b, a) = \int_a^b f(x) = b^2 - a^2$.

Bob's Val: $val_B(b, a) = \int_a^b g(x) = \frac{1}{2}(b^2 - a^2) + \frac{1}{2}(b - a)$.

Carol's Val: $val_C(b, a) = \int_a^b h(x) = \frac{1}{4}(b^2 - a^2) + \frac{3}{4}(b - a)$.

Note: f(x), g(x), h(x) all MEET at $(\frac{1}{2}, 1)$.

Intervals

This is DIFF than before.

- A gets $[x_2, \frac{1}{2}] \cup [\frac{1}{2}, x_3]$
- ▶ $B \text{ gets } [x_1, x_2] \cup [x_3, x_4]$
- ▶ C gets $[0, x_1] \cup [x_4, 1]$

Who Gets What?

A gets

$$\left(\frac{1}{2}\right)^2 - x_2^2 + x_3^2 - \left(\frac{1}{2}\right)^2 = x_3^2 - x_2^2$$

B gets

$$\frac{1}{2}(x_2^2 - x_1^2 + x_4^2 - x_3^2) + \frac{1}{2}(x_2 - x_1 + x_4 - x_3)$$

C gets

$$\frac{1}{4}(x_1^2+1-x_4^2)+\frac{3}{4}(x_1+1-x_4)$$

Alice's View of the World

Alice thinks:

Alice gets
$$x_3^2 - x_2^2$$

Bob gets
$$x_2^2 - x_1^2 + x_4^2 - x_3^2$$

Carol gets
$$x_1^2 + 1 - x_4^2$$
.

Equations so that Alice has no envy:

$$x_3^2 - x_2^2 \ge x_2^2 - x_1^2 + x_4^2 - x_3^2$$

$$x_3^2 - x_2^2 \ge x_1^2 + 1 - x_4^2$$
.

Bob's View of the World

Bob thinks:

Alice gets
$$\frac{1}{2}(x_3^2 - x_2^2) + \frac{1}{2}(x_3 - x_2)$$

Bob gets $\frac{1}{2}(x_2^2 - x_1^2 + x_4^2 - x_3^2) + \frac{1}{2}(x_2 - x_1 + x_4 - x_3)$
Carl gets $\frac{1}{2}(x_1^2 + 1 - x_4^2) + \frac{1}{2}(x_1 + 1 - x_4)$

Equations so that Bob has no envy:

$$(x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3) \ge (x_3^2 - x_2^2) + (x_3 - x_2)$$
$$(x_2^2 - x_1^2 + x_4^2 - x_2^2) + (x_2 - x_1 + x_4 - x_3) \ge (x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4)$$

Carol's View of the World

Carol thinks:

Alice gets
$$\frac{3}{4}(x_3^2 - x_2^2) + \frac{1}{4}(x_3 - x_2)$$

Bob gets $\frac{3}{4}(x_2^2 - x_1^2 + x_4^2 - x_3^2) + \frac{1}{4}(x_2 - x_1 + x_4 - x_3)$
Carol gets $\frac{3}{4}(x_1^2 + 1 - x_4^2) + \frac{1}{4}(x_1 + 1 - x_4)$

Equations so that Bob has no envy:

$$3(x_1^2+1-x_4^2)+(x_1+1-x_4) \ge 3(x_3^2-x_2^2)+(x_3-x_2)$$

$$3(x_1^2+1-x_4^2)+(x_1+1-x_4) \ge 3(x_2^2-x_1^2+x_4^2-x_3^2)+(x_2-x_1+x_4-x_3)$$

Problem 1:

Problem 1: Does there exist x_1, x_2, x_3, x_4 that satisfies the following inequalities:

$$\begin{split} 0 &\leq x_1 \leq x_2 \leq x_3 \leq x_4 \leq 1 \\ x_3^2 - x_2^2 \geq x_2^2 - x_1^2 + x_4^2 - x_3^2 \\ x_3^2 - x_2^2 \geq x_1^2 + 1 - x_4^2. \\ (x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3) \geq (x_3^2 - x_2^2) + (x_3 - x_2) \\ (x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3) \geq (x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4) \\ 3(x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4) \geq 3(x_3^2 - x_2^2) + (x_3 - x_2) \\ 3(x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4) \geq 3(x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3) \end{split}$$

Note: Can Phrase as Quad Prog Problem.

Quadratic Programming

The Quadratic Programming Problem Maximize (or Minimize) a LINEAR function relative to QUADRATIC constraints.

Example

Maximize

$$4x + 8y - 7z$$

Relative to

$$-3x^{2} + 5y - 8z^{2} \le 20$$

$$x^{2} + y^{2} + z \le 5$$

$$2x + y^{2} + 18z \le 100$$

$$7x + 29y + 178z^{2} \le 193$$

- ▶ NP-Hard. Thought to be HARD.
- ▶ There is ONE PACKAGES for it that I know.

Problem 2:

Problem 2: Maximize

$$\left(\frac{1}{2}\right)^{2} - x_{2}^{2} + x_{3}^{2} - \left(\frac{1}{2}\right)^{2} + x_{3}^{2} - x_{2}^{2} + \frac{1}{2}(x_{2}^{2} - x_{1}^{2} + x_{4}^{2} - x_{3}^{2}) + \frac{1}{2}(x_{2} - x_{1} + x_{4} - x_{3})$$

$$+ \frac{1}{4}(x_{1}^{2} + 1 - x_{4}^{2}) + \frac{3}{4}(x_{1} + 1 - x_{4})$$

while satisfying:

while satisfying.
$$0 \le x_1 \le x_2 \le x_3 \le x_4 \le 1$$

$$x_3^2 - x_2^2 \ge x_2^2 - x_1^2 + x_4^2 - x_3^2$$

$$x_3^2 - x_2^2 \ge x_1^2 + 1 - x_4^2.$$

$$(x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3) \ge (x_3^2 - x_2^2) + (x_3 - x_2)$$

$$(x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3) \ge (x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4)$$

$$3(x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4) \ge 3(x_3^2 - x_2^2) + (x_3 - x_2)$$

$$3(x_1^2 + 1 - x_4^2) + (x_1 + 1 - x_4) \ge 3(x_2^2 - x_1^2 + x_4^2 - x_3^2) + (x_2 - x_1 + x_4 - x_3)$$

NOT a Quad Programming Problem

We want to maximize a **Quadratic function** relative to **Quadratic Constraints**. We call this **Quadratic Quadratic Programming** (QQP).

QQP has not been studied. Rumors of a packages that might solve it.

SOOL? FML? FUBAR? FML!!! My prof wants me to solve a QQP!!!

Protocol

Envy Free Protocol for n players, all have linear valuations.

- 1. Every player simul reveals their valuation. (honestly)
- Players form QQP program to satisfy that there is no envy, all vars make sense, and total is maximized. Solve the QQP.
- 3. If someone starves to death while solving the QQP then remove them and re-do equations. Repeat if needed.
- 4. If there are ≥ 2 people left when solved then use the solution. If there is only 1 person left, he gets it.

Serious Protocol and Open Questions

Envy Free Protocol for *n* players, all have linear valuations.

- 1. Every player simul reveals their valuation. (honestly)
- Players form QQP program to satisfy that there is no envy, all vars make sense, and total is maximized. Solve the QQP.
- 3. Solve it.
- 4. Cut the cake as it dictates.
- Does a QQP of his form always have a solution?
- Is there always a rational point that satisfies the constraints? Unlikely.
- ► Is there an efficient algorithm to find an approx solution to the QQP that arise from this problem? (Do not know?)
- ▶ Will these be solved before or after the Gov. Shutdown ends?

