Truth Values and Bits

Standard Convention: TRUE is 1, FALSE is 0 **Standard Convention:** *n*-inputs viewed as *n*-bit number. **Prop Formula** is now **Boolean Formula**

Basic Gates

Definition

- AND GATES: k Inputs and outputs AND of them.
- OR GATES: k Inputs and outputs OR of them.
- XOR GATES: k Inputs and outputs XOR of them.
- NOT GATES: 1 Inputs and outputs NEG of it.
- Such devices really exist!
- Oraw on board.

Why AND, OR, XOR?

Discuss why Gates for AND, OR, XOR?

What is a Circuit?

Definition

A **Circuit** has *n* Boolean Inputs which feed into gates and at the end have one or more outputs.

Building a Circuit for a 1-Bit Adder

Definition

A *1-Bit Adder* is a circuit that takes 2 bits and outputs their sum (which will be 2 bits).

Make TT for 1-bit Adder

New Problem

- Old Problem: Given a Fml, find the TT for it.
- New Problem: Given a TT, find a Fml for it.
- New Problem: Given a Fml, find a Circuit for it. (Easy)

Given a TT...

- For each row R of the TT that returns 1 (or T): For each variable x_i L_i = x_i if Row R has x_i = T;
 - $L_i = \neg x_i$ if Row *R* has $x_i = F$.
- Write down mini-fml L₁ ~ · · · ~ L_n
 KEY: This mini-fml is true IFF that row happens.
- Output the OR of all of the minifmls.

The 3-Bit Adder...

We do the following

- Write a TT for a 3-bit adder. Input is a 3-bit number in base 2.
- Write a formula for the 4-outputs of a 3-bit adder.
- Draw a circuit for the 3-bit adder
- Easy to generalize?

Half-Adders and Full-Adders...

Definition

 A Half Adder (HA) is a circuit that has 2 boolean inputs, 2 boolean outputs, and outputs the sum and the carry.

 A Full Adder (FA) is a circuit that has 3 boolean inputs, 2 boolean outputs, and outputs the sum and the carry.

Using HA's and FA's build an *n*-bit Adder