Example of the Point of the Game

$L_{7}=\{1<2<3<4<5<6<7\}$
$L_{10}=\{1<2<3<4<5<6<7<8<9<10\}$

- SPOIL wants to convince DUP that $L_{a} \neq L_{b}$.
- DUP wants to resist the attempt.

Rules of the Game

Parameter: k The number of rounds.
(1) SPOIL: pick number in one orderings.
(0 DUP: pick number in OTHER ORDERING. DUP will try to play a point that most 'looks like' the other point.

- Repeat the above two steps until k round are complete.
If at the end the three points picked from L_{a} are in the same order as those picked from L_{b} then DUP wins.
Otherwise SPOILER wins.
Play a student $\left.\left(L_{3}, L_{4}, 2\right),(L) 3, L_{4}, 3\right)$
Let Students pick a, b, k to Play

PROBLEM 1

- Who wins ($L_{3}, L_{4}, 2$)? (2 moves).
(Who wins ($L_{8}, L_{10}, 3$)? (3 moves)
- GENERALLY: Who wins $\left(L_{a}, L_{b}, k\right)$.

Generalize

Can use any orderings L, L^{\prime} Play a student N and Z with 1 move, 2 moves

PROBLEM 2

In all problems we want a k such that condition holds.
(0) DUP wins ($\mathrm{N}, \mathrm{Z}, k-1$), SPOIL wins ($\mathrm{N}, \mathrm{Z}, k$).
(2) DUP wins ($\mathrm{N}, \mathrm{Q}, k-1$), SPOIL wins ($\mathrm{N}, \mathrm{Q}, k$).

- DUP wins (Z, Q, $k-1$), SPOIL wins (Z, Q, k).
- DUP wins $\left(L_{10}, \mathrm{~N}+\mathrm{N}^{*}, k-1\right)$, SPOIL wins $\left(L_{10}, \mathrm{~N}+\mathrm{N}^{*}, k\right)$.
- DUP wins ($\mathrm{N}+\mathrm{Z}, \mathrm{N}, k-1$), SPOIL wins $(\mathrm{N}+\mathrm{Z}, \mathrm{N}, k)$.

A Notion of L, L^{\prime} being Similar

Let L and L^{\prime} be two linear orderings.

Definition

If DUP wins the m-round DS-game on L, L^{\prime} then L, L^{\prime} are m-game equivalent (denoted $L \equiv{ }_{m}^{G} L^{\prime}$).

What is Truth?

All sentences use the usual logic symbols and $<$.
Definition
If L is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example

Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$
(1) $\mathrm{Q} \models \phi$
(2) $\mathrm{N} \vDash \neg \phi$

Complexity of Sentences

Definition

The quantifier depth (qd) of a sentence is (informally) the nested depth of quantifiers.

Example

(1) $(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$ has qd 3 .
(2) $(\forall x)(\exists y)[y>x \wedge(\exists z)[x<y<z]$ has qd 3 .

Another Notion of L, L^{\prime} Similar

Let L and L^{\prime} be two linear orderings.
Definition
L and L^{\prime} are m-truth-equiv $\left(L \equiv{ }_{m}^{T} L^{\prime}\right)$

$$
(\forall \phi, q d(\phi) \leq m)\left[L \models \phi \text { iff } L^{\prime} \models \phi\right.
$$

The Big Theorem

Theorem
Let L, L^{\prime} be any linear ordering and let $m \in \mathrm{~N}$. The following are equivalent.
(1) $L \equiv_{m}^{T} L^{\prime}$
(c) $L \equiv{ }_{m}^{G} L^{\prime}$

Applications

(1) Density cannot be expressed with qd 2. (Proof: $Z \equiv{ }_{2}^{G} \mathrm{Q}$ so $Z \equiv_{2}^{T} \mathrm{Q}$).
(2 Well foundedness cannot be expressed in first order at all! (Proof: $(\forall n)[\mathrm{N} G E n \mathrm{~N}+\mathrm{Z}]$).

- Upshot: Questions about expressability become questions about games.

