
Proof that La′s=b′s = {w | na(w) = nb(w)} is a Context Free Language
By William Gasarch

1 Introduction

Def 1.1 If F is a finite set then a string over F is a sequence of elements of F . For example, if
F = {a, b, A,B} then aaAba is a string, BaBBaAba is a string.

Def 1.2 The string e is the empty string. Its main property is that for any string of symbols α,
αe = α.

Def 1.3 A language is a set of strings.

Def 1.4 If L is a language then LL = L2 = {xy : x ∈ L ∧ y ∈ L}. You can define L3, L4, etc.
Note that L1 = L and L0 = {e}.

Def 1.5 If L is a language then L∗ = L0∪L1∪· · · . Note that L∗ is the set of all strings of symbols
from L.

Def 1.6 If α is a string then #a(α) is the number of a’s in α. Note that α may have b’s and even
nonterminals (like S) in it. #b(α) is defined similarly.

Def 1.7

1. A Context Free Grammar (henceforth CFG) is a tuple (N,Σ, R, S) where

(a) N is a finite set of nonterminals. We will denote these by capitol letters.

(b) N is a finite set of terminals, also called the alphabet. We will denote these by small
letters.

(c) R is a set of rules of the form A → α where A is a nonterminal and α is a string of
terminals and nonterminals.

(d) S is the start nonterminal.

2. Let G be a CFG. We write S ⇒ α to mean that if you start with S you apply the rules
(perhaps many times) and you end up with α. If you use n rules then we write this as
S ⇒n α. We all this a derivation of length n.

3. L(G) is the set of nonterminals that can be generated from S. Formally

L(G) = {α : S ⇒ α} ∩ Σ∗

1

2 A CFG for La′s=b′s = {w | na(w) = nb(w)}

Let G be the CFG:
S → aSb
S → bSa
S → SS
S → e

Theorem 2.1 La′s=b′s = L(G).

Proof:
1) L(G) ⊆ La′s=b′s.

KEY: Look at the set L′(G) = {α : S ⇒ α}. Note that we DID NOT intersect with Σ∗. This
is ALL of the sequences that can be generated, including those that have S in them.
Claim: For all n, if S ⇒n α then #a(α) = #b(α).

We prove this by induction on n.
Base Case: n = 1. S ⇒1 α means just S → α. The only such α are aSb and bSa and SS and e.
All of these strings have an equal number of a’s and b’s.

IH: If S ⇒n−1 α then #a(α) = #b(α).

IS: We show that if S ⇒n α then #a(α) = #b(α).
We decompose S ⇒n α into its first n− 1 steps and its nth step. Since there is an nth step the

(n − 1)st step must result in a string that has an S in it which is then used in a rule to get the nth
step. So we have

S ⇒n−1 βSγ

and then we have the next step. By the IH #a(βSγ) = #b(βSγ). The nth step will be to replace
S with either aSB or bSa or SS or e. Clearly the resulting string will have the same number of
a’s as b’s.
End of Proof of Claim

Since
L′(G) = {α ∈ {S, a, b}∗ : #a(w) = #b(w)}
clearly
L(G) = {α ∈ {a, b} : #a(w) = #b(w)}.
Hence L(G) ⊆ La′s=b′s.

2) La′s=b′s ⊆ L(G).
We proof this by induction on |w|.

Base Case: If |w| = 0 then use S → e.

IH: All w′ such that |w′| = n− 1 and w′ ∈ La′s=b′s are in L(G).

IS: Let w such that |w| = n and w ∈ La′s=b′s. We show that w ∈ L(G).

2

Case 1: w = aw′b. Clearly w′ ∈ L(G). By the IH S ⇒ w′. To obtain w we do the following:
S → aSb⇒ aw′b = w.

Case 2: w = bw′a. Similar to Case 1.
Case 3: w = axa.
Claim: w = w′w′′ where |w′|, |w′′| < n, w′, w′′ ∈ La′s=b′s.

Look at the strings
w0 = a
w1 = aσ1
w2 = aσ1σ2
...
wi = aσ1σ2 · · · σi
...
wn−2 = aσ1 · · · σn−2
wn−1 = aσ1 · · · σn−2a
Note that
#a(w0)−#b(w0) = 1 > 0
#a(wn−1)−#b(wn−1) = 0
Since wn−1 = wn−2a, we must also have
#a(wn−2)−#b(wn−2) < 0
We rewrite just two of the equations:
#a(w0)−#b(w0) > 0
#a(wn−2)−#b(wn−2) < 0
Since each wi is obtained by adding just one letter there must be an i such that
#a(wi)−#b(wi) = 0
This wi ∈ La′s=b′s. Since w ∈ La′s=b′s we must also have that w = wiw

′′ and w′′ ∈ La′s=b′s.
Let wi = w′.
End of Proof of Claim

So we now have w = w′w′′ where w′ ∈ La′s=b′s and w′′ ∈ La′s=b′s. By the IH S ⇒ w′ and
S ⇒ w′′. To derive w use

S → SS ⇒ w′S ⇒ w′w′′ = w
Case 4: w = bxb. Similar to Case 3.

3

