Proof that \(L_{a'b'=b'a} = \{ w \mid n_a(w) = n_b(w) \} \) is a Context Free Language

By William Gasarch

1 Introduction

Def 1.1 If \(F \) is a finite set then a *string over* \(F \) is a sequence of elements of \(F \). For example, if \(F = \{ a, b, A, B \} \) then \(aaAba \) is a string, \(BaBBaAba \) is a string.

Def 1.2 The string \(e \) is the empty string. Its main property is that for any string of symbols \(\alpha \), \(\alpha e = \alpha \).

Def 1.3 A *language* is a set of strings.

Def 1.4 If \(L \) is a language then \(LL = L^2 = \{ xy : x \in L \wedge y \in L \} \). You can define \(L^3 \), \(L^4 \), etc. Note that \(L^1 = L \) and \(L^0 = \{ e \} \).

Def 1.5 If \(L \) is a language then \(L^* = L^0 \cup L^1 \cup \cdots \). Note that \(L^* \) is the set of all strings of symbols from \(L \).

Def 1.6 If \(\alpha \) is a string then \(\#_a(\alpha) \) is the number of \(a \)'s in \(\alpha \). Note that \(\alpha \) may have \(b \)'s and even nonterminals (like \(S \)) in it. \(\#_b(\alpha) \) is defined similarly.

Def 1.7

1. A *Context Free Grammar (henceforth CFG)* is a tuple \((N, \Sigma, R, S) \) where
 (a) \(N \) is a finite set of *nonterminals*. We will denote these by capitol letters.
 (b) \(N \) is a finite set of *terminals*, also called the *alphabet*. We will denote these by small letters.
 (c) \(R \) is a set of *rules* of the form \(A \rightarrow \alpha \) where \(A \) is a nonterminal and \(\alpha \) is a string of terminals and nonterminals.
 (d) \(S \) is the *start nonterminal*.

2. Let \(G \) be a CFG. We write \(S \Rightarrow \alpha \) to mean that if you start with \(S \) you apply the rules (perhaps many times) and you end up with \(\alpha \). If you use \(n \) rules then we write this as \(S \Rightarrow_n \alpha \). We all this a *derivation of length* \(n \).

3. \(L(G) \) is the set of nonterminals that can be generated from \(S \). Formally
 \[
 L(G) = \{ \alpha : S \Rightarrow \alpha \} \cap \Sigma^*
 \]
2 A CFG for \(L_{a's} = b's = \{ w \mid n_a(w) = n_b(w) \} \)

Let \(G \) be the CFG:

\[
S \to aSb \\
S \to bSa \\
S \to SS \\
S \to e
\]

Theorem 2.1 \(L_{a's} = b's = L(G) \).

Proof:

1) \(L(G) \subseteq L_{a's} = b's \).

Key: Look at the set \(L'(G) = \{ \alpha : S \Rightarrow \alpha \} \). Note that we DID NOT intersect with \(\Sigma^* \). This is ALL of the sequences that can be generated, including those that have \(S \) in them.

Claim: For all \(n \), if \(S \Rightarrow_n \alpha \) then \(\#_a(\alpha) = \#_b(\alpha) \).

We prove this by induction on \(n \).

Base Case: \(n = 1 \). \(S \Rightarrow_1 \alpha \) means just \(S \to \alpha \). The only such \(\alpha \) are \(aSb \) and \(bSa \) and \(SS \) and \(e \).

All of these strings have an equal number of \(a \)'s and \(b \)'s.

IH: If \(S \Rightarrow_{n-1} \alpha \) then \(\#_a(\alpha) = \#_b(\alpha) \).

IS: We show that if \(S \Rightarrow_n \alpha \) then \(\#_a(\alpha) = \#_b(\alpha) \).

We decompose \(S \Rightarrow_n \alpha \) into its first \(n-1 \) steps and its \(n \)th step. Since there is an \(n \)th step the \((n-1)\)st step must result in a string that has an \(S \) in it which is then used in a rule to get the \(n \)th step. So we have

\[
S \Rightarrow_{n-1} \beta \gamma
\]

and then we have the next step. By the IH \(\#_a(\beta \gamma) = \#_b(\beta \gamma) \). The \(n \)th step will be to replace \(S \) with either \(aSB \) or \(bSa \) or \(SS \) or \(e \). Clearly the resulting string will have the same number of \(a \)'s as \(b \)'s.

End of Proof of Claim

Since

\[
L'(G) = \{ \alpha \in \{ S, a, b \}^* : \#_a(\alpha) = \#_b(\alpha) \}
\]

clearly

\[
L(G) = \{ \alpha \in \{ a, b \} : \#_a(\alpha) = \#_b(\alpha) \}.
\]

Hence \(L(G) \subseteq L_{a's} = b's \).

2) \(L_{a's} = b's \subseteq L(G) \).

We proof this by induction on \(|w| \).

Base Case: If \(|w| = 0 \) then use \(S \to e \).

IH: All \(w' \) such that \(|w'| = n - 1 \) and \(w' \in L_{a's} = b's \) are in \(L(G) \).

IS: Let \(w \) such that \(|w| = n \) and \(w \in L_{a's} = b's \). We show that \(w \in L(G) \).
Case 1: $w = a w' b$. Clearly $w' \in L(G)$. By the IH $S \Rightarrow w'$. To obtain w we do the following:

$$S \rightarrow a S b \Rightarrow a w' b = w.$$

Case 2: $w = b w' a$. Similar to Case 1.

Case 3: $w = a x a$.

Claim: $w = w''$ where $|w'|, |w''| < n$, $w', w'' \in L_{a's=bs}.$

Look at the strings

$$w_0 = a$$
$$w_1 = a \sigma_1$$
$$\vdots$$
$$w_i = a \sigma_1 \sigma_2 \cdots \sigma_i$$
$$\vdots$$
$$w_{n-2} = a \sigma_1 \cdots \sigma_{n-2}$$
$$w_{n-1} = a \sigma_1 \cdots \sigma_{n-2} a$$

Note that

$$\#_a(w_0) - \#_b(w_0) = 1 > 0$$

$$\#_a(w_{n-1}) - \#_b(w_{n-1}) = 0$$

Since $w_{n-1} = w_{n-2} a$, we must also have

$$\#_a(w_{n-2}) - \#_b(w_{n-2}) < 0$$

We rewrite just two of the equations:

$$\#_a(w_0) - \#_b(w_0) > 0$$

$$\#_a(w_{n-2}) - \#_b(w_{n-2}) < 0$$

Since each w_i is obtained by adding just one letter there must be an i such that

$$\#_a(w_i) - \#_b(w_i) = 0$$

This $w_i \in L_{a's=bs}$. Since $w \in L_{a's=bs}$ we must also have that $w = w_i w''$ and $w'' \in L_{a's=bs}.$

Let $w_i = w'$.

End of Proof of Claim

So we now have $w = w' w''$ where $w' \in L_{a's=bs}$ and $w'' \in L_{a's=bs}$. By the IH $S \Rightarrow w'$ and $S \Rightarrow w''$. To derive w use

$$S \rightarrow S S \Rightarrow w' S \Rightarrow w' w'' = w$$

Case 4: $w = b x b$. Similar to Case 3.