Proof that L, ,_ys = {w | n,(w) = ny(w)} is a Context Free Language
By William Gasarch

1 Introduction

Def 1.1 If F'is a finite set then a string over F' is a sequence of elements of F'. For example, if
F ={a,b, A, B} then aaAba is a string, BaBBaAba is a string.

Def 1.2 The string e is the empty string. Its main property is that for any string of symbols «,
ae = o.

Def 1.3 A language is a set of strings.

Def 1.4 If L is a language then LL = [?> = {xy : x € L Ay € L}. You can define L3, L%, etc.
Note that L' = L and L° = {e}.

Def 1.5 If L is a language then L* = L°U L' U- - - . Note that L* is the set of all strings of symbols
from L.

Def 1.6 If « is a string then #,(«) is the number of a’s in . Note that & may have b’s and even
nonterminals (like ) in it. #;(«) is defined similarly.

Def 1.7
1. A Context Free Grammar (henceforth CFG) is a tuple (N, X, R, S) where

(a) N is afinite set of nonterminals. We will denote these by capitol letters.

(b) N is a finite set of ferminals, also called the alphabet. We will denote these by small
letters.

(c) R is a set of rules of the form A — « where A is a nonterminal and « is a string of
terminals and nonterminals.

(d) S is the start nonterminal.

2. Let G be a CFG. We write S = « to mean that if you start with .S you apply the rules
(perhaps many times) and you end up with «. If you use n rules then we write this as
S =, a. We all this a derivation of length n.

3. L(G) is the set of nonterminals that can be generated from S. Formally

L(G)={a:S=a}n¥”



2 ACFGfor Lys—ys ={w | ng(w) = ny(w)}

Let G be the CFG:
S — aSh
S — bSa
S —SS
S —e

Theorem 2.1 L,y = L(G).

Proof:
1) L(G) € Lasys.

KEY: Look at the set L/(G) = {a : S = «}. Note that we DID NOT intersect with >*. This
is ALL of the sequences that can be generated, including those that have S in them.
Claim: For all n, if S =, a then #,(a) = #(«).

We prove this by induction on n.
Base Case: n = 1. S = o means just S — «. The only such « are a.Sb and bSa and SS and e.
All of these strings have an equal number of a’s and b’s.

IH: If S =, athen #,(a) = #().

IS: We show that if S =, « then #,() = #(a).

We decompose S =, a into its first n — 1 steps and its nth step. Since there is an nth step the
(n — 1)st step must result in a string that has an S in it which is then used in a rule to get the nth
step. So we have

S =n—1 ﬁs’y

and then we have the next step. By the TH #,(857) = #4(857). The nth step will be to replace
S with either aSB or bSa or SS or e. Clearly the resulting string will have the same number of
a’sasb’s.

End of Proof of Claim
Since
L'(G)={a€{S,a,b}*: #,(w) = #p(w)}
clearly

L(G) = {a € {a,b} : #a(w) = #(w)}.
Hence L(G) C Lyrs—ys.

2) La’s:b’s g L(G)
We proof this by induction on |w|.
Base Case: If |w| = 0 then use S — e.

IH: All w' such that |w'| = n — 1 and W’ € Ly s—ps are in L(G).

IS: Let w such that |w| = n and w € Lys—ys. We show that w € L(G).

2



Case 1: w = aw'db. Clearly w’ € L(G). By the IH .S = w’. To obtain w we do the following:
S — aSb = aw'b = w.
Case 2: w = bw’a. Similar to Case 1.
Case 3: w = aza.
Claim: w = w'w” where |v'|, |w”| < n, w',w" € Lysys.
Look at the strings
Wy = a
wy = aoy
W9 = 0109

Ww; = a0109 - --0;

Wp—2 = @01+ Op—2

Wp—1 = @01+ Op—2G

Note that

#a(wo) — #p(wp) =1 >0

#a(wn—1> - #b(wn—l) =0

Since w,,_1 = w,_2a, we must also have

#a(wn—Z) - #b(wn—Z) <0

We rewrite just two of the equations:

#a(wo) — #p(wo) > 0

#a(wn—2> - #b(wn—Q) <0

Since each w; is obtained by adding just one letter there must be an ¢ such that

#a(wi) — #o(w;) =0

This w; € Ly s—ps. Since w € L, s—s we must also have that w = w;w” and w” € Lyg—ps.
Let w; = w'.
End of Proof of Claim

So we now have w = w'w” where w' € Ly s—ys and w” € Lys—y,. By the IH S = w' and
S = w". To derive w use

S—SS=uwsS=uvwvv=w
Case 4: w = bxb. Similar to Case 3.



