Fast Exponentiaion Mod n
Exposition by William Gasarch

1 How to Computer 3 (mod 987)

Lets say you want to compute 3% (mod 987). There are three ways to do it: idiotic,
naive, and smart

Idiotic: Compute 3'°°. This will be really big! Then divide it by 987 and find the
remainder. This takes 1000 steps and space of roughly 1000 digits.

Naive: Compute 3 x 3 x 3- BUT whenever the partial product is over 987, mod it
down. This still takes 1000 steps but far less space- about 4 digits.

Smart: Computer
ap = 3 (mod 987) NOTE: aq = 3%.

a; = a2 (mod 987) NOTE: a; = 32" (mod 987).
ay = a? (mod 987) NOTE: a; = 3%° (mod 987).
az = a2 (mod 987) NOTE: a3 = 32" (mod 987).
ay = a2 (mod 987) NOTE: a, = 32° (mod 987).
a5 = a? (mod 987) NOTE: a5 = 3%° (mod 987).
ag = a2 (mod 987) NOTE: a4 = 32" (mod 987).
a7 = a2 (mod 987) NOTE: a; = 32" (mod 987).
as = a2 (mod 987) NOTE: ag = 32° (mod 987).

( )-

ag = a2 (mod 987) NOTE: ay = 3%’
I stop here since 2° < 987 < 210,
Write 987 in base 2. We'll actually do this:

The highest power of 2 that is < 987 is 512. Hence we subtract this to obtain
987 = 512 + 475

The highest power of 2 that is < 475 is 256. Hence we subtract this to obtain
987 = 512 + 256 4 219

The highest power of 2 that is < 219 is 128. Hence we subtract this to obtain
987 = 512 + 256 + 128 + 91

The highest power of 2 that is < 91 is 64. Hence we subtract this to obtain

987 = 512 + 256 4 128 + 64 + 27

The highest power of 2 that is < 27 is 16. Hence we subtract this to obtain

987 =512+ 256 + 128 + 64 + 16 + 11

The highest power of 2 that is < 11 is 8. Hence we subtract this to obtain

987 =512+ 256 + 128 +64 + 16+ 8 + 3

The highest power of 2 that is < 3 is 2. Hence we subtract this to obtain

987 = 512+256+ 128+ 64+ 16+ 8+2+1 =2 +28 4+ 27426 4 24 4 23 4 21 4 20
AH- we have written 987 as a sum of powers of two. Now we get

3%7 (mod 987) = ag X ag X ay X ag X ay X az X az X a; X ag (mod 987)



More geneally, the idiotic and naive methods to computer a™ (mod m) takes
roughly n steps, wheras the method above, called repeated squaring takes roughly
log n steps.

2 How to Compute alOOOOOOOOOOOOOOOOO (mod n)

What if the exponent is really really large. Then we will apply a technique before
using repeated squaring. This requires some math.

Lemma 2.1 Ifn = ’5 15 an integer and p is a prime that divides x but not y then p

divides n.

Proof:  Factor both  and y. There will be a factor of p in x but not in y. When
you reduce to lowest terms all of the prime factors of y will go away. Some of the prime
factors of x will go away, but not p. Hence p will remain. This yields a factorization
of x where p is one of the factors. |

The following lemma you should know from when you studied combinatorics.

Lemma 2.2 The number of ways to choose b items from a items is (‘;) = b!(aaib)!.

Lemma 2.3 For all primes p, for all 1 <y <p—1 p divides (5)

Proof: (5) = ﬁiy)! is an integer where p divides the numerator but not the

denominator. By Lemma 2.1 p divides (Z) |

The following you have surely seen. I may prove it in class

Lemma 2.4 Letn € N. Then (z+y)" =Y 1, (7)a'y" "

=0 \1¢

NOTE- WE HAVE NOT COVERED INDUCTION YET SO JUST TAKE THIS
LEMMA AS TRUE. WE”LL RETURN TO THE PROOF LATER IN THE COURSE.

Lemma 2.5 Let p be a prime and n € N. Then n? =n (mod p).

Proof: = We prove this by induction on n.

Base case: If n =1 then n? = 1?» = n (mod p).

Induction Hypothesis: Assume that n” =1 (mod p) and that n+1 <p— 1.
Induction Step:

p p p—1
(n+1)P = (?)nilpi:Z(]Z)nizlxno—i—Z(f)—i—lxnp.
‘ i=1
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By Lemma 2.3 all of the terms in Y7~} (*) are = 0 (mod p). Hence we have

)

p
(n+1)r=>Y" (p) NPT =14n?.
1

1=0

By the induction hypothesis n? = n (mod p), so we have (n+1)? = n+1 (mod p).

Lemma 2.6 If1<n <p—1 and p is prime then n?~* =1 (mod p).

Proof: By Lemma 2.5 n? =n (mod p). Hence there is a k such that

n? =n+ kp.
Divide by n to obtain
k
nPl =1+ P
n

Since % = Pl — 1, % is an integer. Since n < p — 1, p does not divide the
denominator n, though p clearly divides the numerator kp. Hence we can apply
Lemma 2.1 and conclude that p divides %. Hence

nP"' =1 (mod p).

Lemma 2.7 Let p be a prime. Then a® = q™ (mod =1 (mod p).

Proof:
Let n =n' (mod p — 1) where 0 < n’ <p—1. Hence n =n' + k(p — 1) for some
k. Then

’ _ ’ _ !/ _
a® = a® +Ek(p—1) —q" x ak(p 1) — " x (&p 1>k

(mod p). 1

By Lemma 2.6 ¢! =1 (mod p). Hence we have a" = o™

So, how can we use this? Let p be a prime. Then

n

a (mod p> —q" (mod p—1)

(mod p).

Hence if n is ginormous then we first mod it by p — 1 so it will be < p —1. We
will then use repeated squaring.



