
Homework 10 Morally Due April 28
FOR THIS HW IF Y IS A SET OF NUMBERS THEN SUM(Y ) IS

THE SUM OF THE ELEMENTS IN Y . For example, if Y = {2, 3, 7} then
SUM(Y ) = 12.

1. (0 points) Where and when is the final?

2. (30 points) Let X = {1, . . . , 20}.

(a) Using the pigeonhole principle show that there are 22 subsets of
X of size 3, which we denote Y1, . . . , Y22, such that SUM(Y1) =
· · · = SUM(Y22).

(b) Using the pigeonhole principle show that there are 24 subsets of
X of size 3, which we denote Y1, . . . , Y24, such that SUM(Y1) =
· · · = SUM(Y24). (HINT: You may want to remove some subsets
and remove some sums.)

(c) You did the last two problems with the Pigeon Hole Prin, hence
you did not actually FIND triples with the same sum. Find and
list out 30 triples that have the same sum. (For Fun but not to
hand in: See how many triples you can find that have the same
sum.)

SOLUTION TO PROBLEM TWO

a) The number of subsets of X of size 3 is
(
20
3

)
= 20×19×18

3×2
= 10×19×6 =

1140.

The MIN sum of three elements of X is 1 + 2 + 3 = 6.

The MAX sum of three elements of X is 18 + 19 + 20 = 57.

Hence the number of possible sums is 57− 5 = 52.

Therefore there are
⌈
1140
52

⌉
= 22 subsets of size 3 with the the same

sum. (There could be more.)

b) Of the 1140 different subsets of size 3 there is

one that has sum 6: {1, 2, 3}.
one that has sum 7: {1, 2, 4}.
one that has sum 57: {18, 19, 20}.
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one that has sum 56: {17, 19, 20}.
The number of subsets that are NOT one of those four is 1140 − 4 =
1136.

The MIN sum of subsets that are NOT one of those four is 8.

The MAX sum of subsets that are NOT one of those four is 55.

Hence the number of possible sums is 55− 7 = 48.

Therefore if we restrict to all subsets of size 3 EXCEPT those four we
have that there must be

⌈
1136
48

⌉
= 24 that have the same sum.

c) The MIN sum is 6, the MAX sum is 57, so we look for a sum thats
roughly in the middle, we’ll use 31. There are 42 triples that add up
to 31. We list them.

{1, 10, 20}.
{1, 11, 19}.
{1, 12, 18}.
{1, 13, 17}.
{1, 14, 16}.

{2, 9, 20}.
{2, 10, 19}.
{2, 11, 18}.
{2, 12, 17}.
{2, 13, 16}.
{2, 14, 15}.

{3, 9, 19}.
{3, 10, 18}.
{3, 11, 17}.
{3, 12, 16}.
{3, 13, 15}.
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{4, 7, 20}.
{4, 8, 19}.
{4, 9, 18}.
{4, 10, 17}.
{4, 11, 16}.
{4, 12, 15}.
{4, 13, 14}.

{5, 6, 20}.
{5, 7, 19}.
{5, 8, 18}.
{5, 9, 17}.
{5, 10, 16}.
{5, 11, 15}.
{5, 12, 14}.

{6, 7, 18}.
{6, 8, 17}.
{6, 9, 16}.
{6, 10, 15}.
{6, 11, 14}.
{6, 12, 13}.

{7, 8, 16}
{7, 9, 15}
{7, 10, 14}
{7, 11, 13}

{8, 9, 14}
{8, 10, 13}
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{8, 11, 12}

{9, 10, 12}
END OF SOLUTION TO PROBLEM TWO

3. (30 points)

(a) Using the pigeonhole principle show that there are 90 subsets of
X, which we denote Y1, . . . , Y90, such that SUM(Y1) = · · · =
SUM(Y90).

(b) Find numbers a, b such that ANY 3-coloring of the a× b grid has
a monochromatic rectangle.

4. (30 points)

(a) Let x = {1, . . . , 13} (NOTE- I THINK I MAY HAVE ASEKD
ABOUT {1, . . . , 20} ON THE ORIGINAL HW BUT IT SEEMS
TO HAVE BEEN MANGLED WHEN I WROTE THE SOLU-
TION SET. I”LL DO BOTH HERE.) Using the pigeonhole princi-
ple show that there are 90 subsets of X, which we denote Y1, . . . , Y90,
such that SUM(Y1) = · · · = SUM(Y90).

(b) Find numbers a, b such that ANY 3-coloring of the a× b grid has
a monochromatic rectangle.

SOLUTION TO PROBLEM THREE

a) IF X = {1, . . . , 13}.
he number of subsets of X is 213 = 8192.

The MIN sum of elements of X is 0 (the empty set).

The MAX sum of elements of X is 1 + 2 + 3 + · · ·+ 13 = 91.

Hence the number of possible sums is 92.

Therefore there are
⌈
8192
92

⌉
= 90 subsets with the the same sum. (There

could be more.)

a) IF X = {1, . . . , 20}.
he number of subsets of X is 220.

The MIN sum of elements of X is 0 (the empty set).
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The MAX sum of elements of X is 1 + 2 + 3 + · · ·+ 20 = 210.

Hence the number of possible sums is 92.

Therefore there are
⌈
220

210

⌉
subsets with the the same sum.

I leave it to the student to estimate that this is at least 90 (its A LOT
bigger than 90).

b) We want a column to have to have a repeat color, so we have columns
of size 11. We want the number of columns to be so large that no matter
how you color them you get a repeat row. So we take size 211 + 1. So
the answer is 11× (211 + 1).

END OF SOLUTION TO PROBLEM THREE

5. (40 points) Below we give sets of function from N to N¿ For each set say
if it is FINITE or COUNTABLE or UNCOUNTABLE and PROVE it.

(a) The set of functions f such that (∀x < y)[f(x) ≤ f(y)].

(b) The set of functions f such that (∀x < y)[f(x) < f(y)].

(c) The set of functions f such that (∀x < y)[f(x) ≥ f(y)].

(d) The set of functions f such that (∀x < y)[f(x) > f(y)].

SOLUTION TO PROBLEM FOUR

a) UNCOUNTABLE. Assume that the set is countable. Let f1, f2, f3, . . .
be a listing of the set. We construct a function that is IN THE SET
but NOT ON THE LIST.

Its NOT GOOD ENOUGH to say F (n) = fn(n) + 1 since this F might
not be increasing. If you did this then you are just copying stuff you
heard in class and do not really understand it. After reading and
understanding this solution set you will understand it.

We define F as follows:

F (1) = f1(1) + 1.

(∀n ≥ 2)[F (n) = max{F (1), F (2), . . . , F (n− 1), fn(n)}+ 1

KEY: The way we define F it is INCREASING.
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KEY: We also made sure that (∀n)[F (n) 6= fn(n)], hence F is not on
the list.

NICE EXTRA: This also solves part b.

b) UNCOUNTABLE. Use construction from part a.

c) COUNTABLE. Think about what a function in this set looks like.
Here is an example:

f(1) = 10

f(2) = 10

f(3) = 9

f(4) = 9

f(5) = 9

f(6) = 7

We’ll stop here. But realize that at some point the function has to be
constant. The co-domain is the naturals! So the lowest you can go is
1. Hence every function in this set can be represented by a sequence
of numbers that are monotone decreasing and then are constant. For
example

(10, 10, 9, 9, 9, 9, 7, 7, 7, 7, 4, 4, 4, 4, . . .).

Let CONST be the set of functions from N to N that are eventually
constant. This is a superset of our set. We will show that CONST is
countable and that will show that our set is countable.

Every element of CONST can be represented by a nonempty finite
sequence of natural numbers which we interpret as in the following
example:

(3, 4, 9, 19)

is the function which maps

1 to 3

2 t0 4

3 t0 9

4,5,6,. . ., all to 19.
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So CONST is the same cardinality as the set of all finite sets of natu-
rals.

We can show that the set of all finite sets of naturals is countable by
looking at

S1 = all sets of naturals that sum to 1

S2 = all sets of naturals that sum to 2

etc.

The set of all finite sets of naturals it the union of these sets. So
CONST is a countable union of finite sets, and hence is countable.

d) FINITE. In fact EMPTY. Try to think of an example. If a function
is strictly decreasing then it must eventually get below 1.
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