Homework 12 REALLY Due May 12 NOTE- MAY 12 is THE LAST DAY OF CLASS

- 1. (0 points) Where and when is the final?
- 2. (30 points) Give a clean statement of the form $PI \ wins \ NIM(1,k) \ on \ n \ stones \ iff \ XXX$

where XXX depends on k and n.

(HINT: Work out the pattern for NIM(1,2), NIM(1,3), NIM(1,4), NIM(1,5), NIM(1,6) until you see a pattern of patterns. Start at 0.)

SOLUTION TO PROBLEM TWO

For a NIM game let W(n) be who wins if you begin with n on the board. Recall that

$$W(0) = II$$

For $n \geq 1$ W(n) = I if there exists a move getting you to a II-spot, but is I otherwise. More formally if you can remove $\{a_1 < \cdots < a_k\}$ from the board then

$$W(n) = II \text{ if } 0 \le n \le a_1 - 1.$$

For $n \geq a_1$

- W(n) = I if there exists a_i such that $n a_i \ge 0$ and $W(n a_i) = II$
- W(n) = II otherwise.

For NIM(1,2) here is table of who wins

n	0	1	2	3	4	5	6
W	II	I	I	II	Ι	Ι	II

AH-HA: I wins iff $n \equiv 1, 2 \pmod{3}$.

For NIM(1,3) here is table of who wins

n	0	1	2	3	4	5	6
\overline{W}	II	I	II	I	II	I	II

AH-HA: I wins iff $n \equiv 1 \pmod{2}$.

For NIM(1,4) here is table of who wins

n	0	1	2	3	4	5	6	7	8	9
\overline{W}	II	I	II	I	I	II	I	II	I	Ι

AH-HA: I wins iff $n \equiv 1, 3, 4 \pmod{5}$.

For NIM(1,5) here is table of who wins

	n	0	1	2	3	4	5	6
Ì	W	II	I	II	I	II	Ι	II

AH-HA: I wins iff $n \equiv 1 \pmod{2}$.

For NIM(1,6) here is table of who wins

n	1													
W	II	I	II	I	II	I	I	II	I	II	Ι	II	Ι	I

AH-HA: I wins iff $n \equiv 1, 3, 5, 6 \pmod{7}$.

Is there a pattern in all of this? YES

If $L \equiv 0 \pmod{2}$ then

I wins iff $n \equiv 1, 3, \dots, L-1 \pmod{L+1}$ OR $n \equiv L \pmod{L+1}$

If $L \equiv 1 \pmod{2}$ then

 $I \text{ wins iff } n \equiv 1 \pmod{2}$

END OF SOLUTION TO PROBLEM TWO

- 3. (40 points) Read my notes on Mono Squares which is posted. You may use Lemma 2.4 from those notes.
 - (a) Show that there exists a number M such that for all 3-colorings of the $M \times M$ grid there is a mono square.
 - (b) Show that for all c there exists a number M_c such that for all c-colorings of the $M_c \times M_c$ grid there is a mono square.

FOR SOLUTION SEE POSTED NOTES ON MONO SQUARES

- 4. (30 points) Let $A = \{1, 2, 3, 4\}$.
 - (a) How many relations are there over the set A?
 - (b) Of those, how many are functions?
 - (c) If I pick a relation at random what is the probability that its a function?

SOLUTION TO PROBLEM FOUR

A relation of A is a subset of $A \times A$.

- a) $A \times A$ is of size 16. So there are 2^{16} relations over A.
- b) To count the number of functions we count:

How many numbers can 1 map to: 4

How many numbers can 2 map to: 4

How many numbers can 3 map to: 4

How many numbers can 4 map to: 4

So the answer is 4^4 .

c) The probability that you pick a function is

$$\frac{4^4}{2^{16}} = \frac{2^8}{2^{16}} = \frac{1}{2^8} \sim 0.004.$$

JUST CURIOUS: What if the $A = \{1, 2, 3\}$. Then the answer would be

$$\frac{3^3}{2^9} = \frac{27}{512} \sim 0.053.$$

JUST CURIOUS: What if the $A = \{1, 2\}$. Then the answer would be

$$\frac{2^2}{2^4} = \frac{1}{4} = 0.25.$$

END OF SOLUTION TO PROBLEM 4