What is Logic?

Definition

Logic is the study of valid reasoning.

- Philosophy
- Mathematics
- Computer science

Definition

Mathematical Logic is the mathematical study of the methods, structure, and validity of mathematical deduction and proof. [Wolfram Mathworld]

Propositions

Definition

A *proposition* is a declaritive sentence that is either true or false.

- Today is Tuesday.
- 5 + 2 = 7
- $3 \cdot 6 > 18$
- Why must I be a teenager in love?
- Triangles.
- Two members of the faculty have the same birthday.
- The current king of France is bald.

AND

Definition

The *AND* of two propostions, p and q, is the proposition "p and q". It is true when both p and q are true. We denote it $p \wedge q$.

Example

s: The sky is blue.

g: The grass is green.

m: The moon is made of cheese.

 $s \wedge g$: The sky is blue and the grass is green.

 $s \wedge m$: The sky is blue and the moon is made of cheese.

OR

Definition

The OR of two propostions, p and q, is the proposition "p or q". It is true when either p or q is true. We denote it $p \lor q$.

Example

s: The sky is blue.

g: The grass is red.

m: The moon is made of cheese.

 $s \lor g$: The sky is blue or the grass is red.

 $g \vee m$: The grass is red or the moon is made of cheese.

NOT

Definition

The *NOT* of one propostions, p is the proposition "NOT p" It is true when p is false. We denote it $\neg p$.

Example

s: The sky is blue.

g: The grass is red.

 $\neg s$: The sky is not blue.

 $\neg g$: The grass is not red.

Propositional Formulas (Prop Fml)

Definition

Informal A *Prop Fml* is variables strung together with

```
\wedge's, \vee's, and \neg's.
```

Formal

- 1) Any variable is a *Prop Fml*
- 2) If $\phi_1(\vec{x})$ and $\phi_2(\vec{x})$ are Prop Fml then the forllowing are *Prop Fml*:

$$(\phi_1(\vec{x}) \wedge \phi_2(\vec{y})),$$

$$(\phi_1(\vec{x}) \vee \phi_2(\vec{y})),$$

 $\neg \phi_1(\vec{x})$

Truth tables (TT)

The meaning of a logical operation can be expressed as its "truth table."

- Construct the TT for AND.
- Construct the TT for OR.
- Construct the TT for NOT.

Do in class.

A worked example

$$(\neg s \wedge t) \vee \neg t$$
.

Do TT in class.

XOR

The word "or" is often used to mean "one or the other," but this is *not* the same meaning of "or" in logic!

Definition

The XOR of two statements p and q is true when either p is true or q is true, but not both. We denote it $p \wedge q$.

р	q	$p \oplus q$
Т	Т	F
Τ	F	T
F	Т	T
F	F	F

Tell Vegetarian Story-Trader Joe's

Logical equivalences

How do we know if two logical statements are equivalent?

Logical equivalences

How do we know if two logical statements are equivalent?

- Construct truth tables for each.
- Check if final columns match.

Logical equivalences

How do we know if two logical statements are equivalent?

- Construct truth tables for each.
- Check if final columns match.

Theorem

Let p and q be statement variables. Then

$$(p\lor q)\land \lnot(p\land q)\equiv p\oplus q$$
 and $(p\land\lnot q)\lor (q\land\lnot p)\equiv p\oplus q$.

Prove in class (using Truth Tables).

Conditional Statements

Hypothesis → Conclusion

Example

- If it is raining, I will carry my umbrella.
- If you don't eat your dinner, you will not get dessert.

p	q	p o q
Т	Т	Т
Т	F	F
F	Τ	Т
F	F	Т

Expressing Conditionals

Conditional can be expressed in many ways:

- if p then q
- p implies q
- q if p
- p only if q
- a sufficient condition for q is p
- ullet a necessary condition for p is q

More on Conditional

In logic the hypothesis and conclusion need not relate to each other.

Example

- If Joe likes cats, then the sky is blue.
- If Joe likes cats, then the moon is made of cheese.

In programming languages "if-then" is a command.

Example

- If it rains today, then buy an umbrella.
- If x > y then z := x + y

Contrapositive

Definition

The *contrapositive* of a conditional statement is obtained by transposing its conclusion with its premise and inverting. So,

Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Example

Original statement: If I live in College Park, then I live in Maryland.

Contrapositive: If I don't live in Maryland, then I don't live in College Park.

Theorem

The contrapositive of an implication is equivalent to the original statement.

Prove in class (using Truth Tables)

Prove in class (using Tortured English)

Converse

Definition

The *converse* of a conditional statement is obtained by transposing its conclusion with its premise.

Converse of $p \rightarrow q$ is $q \rightarrow p$.

Example

Original statement: If I live in College Park, then I live in Maryland.

Converse: If I live in Maryland, then I live in College Park.

The converse is **NOT** equiv to the original.

Prove in class (using Truth Tables).

Prove in class (using common sense).

Biconditional Statements

Example

- I will carry my umbrella, if and only if it is raining.
- You will get dessert, if and only if you eat your dinner.

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Τ	F
F	F	Т

An Applications of Prop Logic

In many programming languages there are conditionals.

Example

If $(x \le y + 3 \text{ AND } z \ge 0) \text{ OR } y \le z \text{ then } \cdots$

Logic useful to figure out what you want.

Can Simplify

If sentences of the form $t_1 \le t_2$ or $t_1 < t_2$ then negations are easy and AND's may become easy:

- $(t_1 < t_2) \equiv t_1 \ge t_2$
- $t_1 < t_2 \land t_2 \le t_3 \equiv t_1 < t_2 \le t_3$

Laws of Logic

Given any statement variables p , q , and r , a tautology t and a contradiction c ,					
the following logical equivalences hold:					
1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$			
2. Associative laws:	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$			
3. Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$			
4. Identity laws:	$p \wedge t \equiv p$	$p \lor c \equiv p$			
5. Negation laws:	$p \lor \neg p \equiv t$	$p \land \neg p \equiv c$			
6. Double Negative law:	$\neg(\neg p) \equiv p$				
7. Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$			
8. DeMorgan's laws:	$\neg(p \land q) \equiv \neg p \lor \neg q$	$\neg(p\lor q)\equiv \neg p\land \neg q$			
9. Universal bounds laws:	$p \lor t \equiv t$	$p \wedge c \equiv c$			
10. Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$			
11. Negations of t and c:	$ eg t \equiv c$	$\neg c \equiv t$			

Use Laws to Simplify

Use Laws to Simplify Fmls. Especially De Morgans and Dist.

$$\neg(\neg x \land y) \lor (x \lor \neg y)$$
Simplify

The SAT Problem

Given a prop fml $\phi(x_1, ..., x_n)$ is there some way to assign T and F to the variables so that it comes out true.

Discuss How to Solve this Problem