Honors HW04. Morally DUE Mon Mar 28

A linear ordering \(L \) has the **Levin property** if the following hold:

- There exists a \(MIN \) element.
 Formally
 \[
 (\exists x)(\forall y)[x \leq y].
 \]
 In later problems we will call this \(x \ MIN \).

- There exists a \(MAX \) element.
 Formally
 \[
 (\exists y)(\forall x)[x \leq y].
 \]
 In later problems we will call this \(x \ MAX \).

- For all \(y \neq MIN \) there is an element \(x \) such that \(x < y \) and there is nothing inbetween \(x \) and \(y \).
 Formally
 \[
 (\forall y \neq MIN)(\exists x)[x < y \land (\forall z)[(z \leq x) \lor (z \geq y)]].
 \]

- For all \(x \neq MAX \) there is an element \(y \) such that \(x < y \) and there is nothing inbetween \(x \) and \(y \).
 Formally
 \[
 (\forall x \neq MAX)(\exists y)[x < y \land (\forall z)[(z \leq x) \lor (z \geq y)]].
 \]

1. (50 points) Give an example of an ordering \(L \) with the Levin Property such that \(E \) wins the Emptier-Filler game with ordering \(L \).

2. (50 points) Give an example of an ordering \(L \) with the Levin Property such that \(F \) wins the Emptier-Filler game with ordering \(L \).