Combinatorial Identities

250H
Prove: $2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$
Prove: $2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$.

Proof (1): The number of subsets of \{1, 2, ... , n\} is 2^n. From that set we can choose 0 elements or 1 elements or ... or n elements. Thus, $2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$. ✸
Prove: \(2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} \)

Proof (1): The number of subsets of \{1, 2, \ldots, n\} is \(2^n \). From that set we can choose 0 elements or 1 elements or \ldots\ or \(n \) elements.

Thus, \(2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} \). ★

Proof (2): Consider the identity, \((x + y)^n = \sum\binom{n}{i} x^i y^{n-i}\)

Choose \(x = y = 1 \). Now we have \((1 + 1)^n = \sum\binom{n}{i} 1^i 1^{n-i}\) or \(2^n = \sum\binom{n}{i}\).

Thus, \(2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} \). ★
There are n boys and n girls. We want to pick out n people. How many ways can we do this?
There are n boys and n girls. We want to pick out n people. How many ways can we do this?

Option 1: Let's ignore gender. Then we have a total of $2n$ people.

So we have $\binom{2n}{n}$ ways.
There are n boys and n girls. We want to pick out n people. How many ways can we do this?

Option 1: Lets ignore gender. Then we have a total of $2n$ people.
So we have $\binom{2n}{n}$ ways.

Option 2: We can pick 0 girls and n boys, 1 girl and $n-1$ boys, ..., n girls and $n-1$ boys.
So we have $\sum \binom{n}{i}^2$ ways.
There are n boys and n girls. We want to pick out n people. How many ways can we do this?

Option 1: Let's ignore gender. Then we have a total of $2n$ people.

So we have $\binom{2n}{n}$ ways.

Option 2: We can pick 0 girls and n boys, 1 girl and $n-1$ boys, ..., n girls and $n-1$ boys.

So we have $\sum \binom{n}{i}^2$ ways.

This is another identity: $\sum \binom{n}{i}^2 = \binom{2n}{n}$.
Combinatorial Identities

1. \((x + y)^n = \sum \binom{n}{i} x^i y^{n-i}\)

2. \(\sum \binom{n}{i}^2 = \binom{2n}{n}\)