The Muffin Problem

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz-University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)
How it Began

A Recreational Math Conference
(Gathering for Gardner)
May 2016

I found a pamphlet:
The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles
Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets \(\frac{5}{3} \) where nobody gets a tiny sliver?
Five Muffins, Three Students, Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{1}{3}$
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?
Work on it with your neighbor.
YES WE CAN!

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>(\frac{6}{12} + \frac{7}{12} + \frac{7}{12})</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>(\frac{6}{12} + \frac{7}{12} + \frac{7}{12})</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>(\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12})</td>
</tr>
</tbody>
</table>

Smallest Piece: \(\frac{5}{12} \)
Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor.
NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.
NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$.

5 Muffins, 3 People—Can’t Do Better Than $\frac{5}{12}$
5 Muffins, 3 People—Can’t Do Better Than \(\frac{5}{12} \)

NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets \(\frac{5}{3} \) muffins, smallest piece \(N \). We want \(N \leq \frac{5}{12} \).

Case 0: Some muffin is uncut. Cut it \((\frac{1}{2}, \frac{1}{2}) \) and give both \(\frac{1}{2} \)-sized pieces to whoever got the uncut muffin. (Note \(\frac{1}{2} > \frac{5}{12} \).) Reduces to other cases.

(Henceforth: All muffins are cut into \(\geq 2 \) pieces.)

Case 1: Some muffin is cut into \(\geq 3 \) pieces. Then \(N \leq \frac{1}{3} < \frac{5}{12} \).

(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: Someone gets \(\geq 4 \) pieces. He has some piece

\[
\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}
\]

Great to see \(\frac{5}{12} \)
What Happened Next?
What Happened Next?

Yada Yada Yada- in 2020:
What Happened Next?

Yada Yada Yada- in 2020:

MATHEMATICAL MUFFIN MORSELS: NOBODY WANTS A SMALL PIECE

William Gasarch, Erik Metz, Jacob Prinz, Daniel Smolyak
University of Maryland, USA

In this book we consider THE MUFFIN PROBLEM: what is the best way to divide up m muffins for s students so that everyone gets m/s muffins, with the smallest pieces maximized.

This problem takes us through much mathematics of interest, for example, combinatorics and optimization theory.

228pp
978-981-121-597-1(pbk) US$28 / £25 / SGD41
978-981-121-517-9 US$58 / £50 / SGD86
978-981-121-519-3(mbook) US$22 / £20 / SGD33

Is there a way to divide five muffins for three students so that everyone gets 5/3, and all pieces are larger than 1/3? Spoiler alert: Yes!

Get 20% OFF
Promo code: WSMTH1220

https://doi.org/10.1142/11689
General Problem

$f(m, s)$ be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide m muffins among s students so that everyone gets $\frac{m}{s}$.

We have shown $f(5, 3) = \frac{5}{12}$ here.

We have two proofs that shown $f(m, s)$ exists, is rational, and is computable.
One use Linear Programming.
One use Integer Programming.
Amazing Results!/Amazing Theorems!

1. $f(43, 33) = \frac{91}{264}$.
2. $f(52, 11) = \frac{83}{176}$.
3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant!
Amazing Results!/Amazing Theorems!

1. \(f(43, 33) = \frac{91}{264} \).
2. \(f(52, 11) = \frac{83}{176} \).
3. \(f(35, 13) = \frac{64}{143} \).

All done by hand, no use of a computer
by Co-author Erik Metz is a muffin savant!

Have **General Theorems** from which **upper bounds** follow.
Have **General Procedures** from which **lower bounds** follow.
What if $m < s$?
What if $m < s$?

Duality Theorem: $f(m, s) = \frac{m}{s} f(s, m)$.
What if $m < s$?

Duality Theorem: $f(m, s) = \frac{m}{s} f(s, m)$.

Hence we will just look at $m > s$.
Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

$$f(m, s) \leq FC(m, s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s\lceil 2m/s\rceil}, 1 - \frac{m}{s\lfloor 2m/s\rfloor}\right\}\right\}.$$
Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

$$f(m, s) \leq FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.
Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

\[f(m, s) \leq \text{FC}(m, s) = \max\left\{ \frac{1}{3}, \min\left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}. \]

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.
Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

$$f(m, s) \leq FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}. $$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.
Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

\[f(m, s) \leq FC(m, s) = \max\left\{ \frac{1}{3}, \min\left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}. \]

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Someone gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor}$.

Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

$$f(m, s) \leq FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Someone gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Someone gets $\leq \left\lfloor \frac{2m}{s} \right\rfloor$ pieces. \exists piece $\geq \frac{m}{s} \left\lfloor \frac{1}{\lceil 2m/s \rceil} \right\rfloor = \frac{m}{s \lfloor 2m/s \rfloor}$.
Floor-Ceiling Thm Generalizes $f(5, 3) \leq \frac{5}{12}$

$$f(m, s) \leq FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $\left(\frac{1}{2}, \frac{1}{2}\right)$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Someone gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Someone gets $\leq \left\lfloor \frac{2m}{s} \right\rfloor$ pieces. \exists piece $\geq \frac{m}{s} \left\lfloor 2m/s \right\rfloor = \frac{m}{s \lfloor 2m/s \rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s \lfloor 2m/s \rfloor}$.
FC Gives Upper Bound

Give m, s:

$$FC(m, s) = \max\left\{ \frac{1}{3}, \min\left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}$$

Gives an upper bound. So we know

$$(\forall m, s)[f(m, s) \leq FC(m, s)].$$

Is the following true?

$$(\forall m, s)[f(m, s) = FC(m, s)]$$
FC Gives Upper Bound

Give m, s:

$$FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}$$

Gives an upper bound. So we know

$$(\forall m, s)[f(m, s) \leq FC(m, s)].$$

Is the following true?

$$(\forall m, s)[f(m, s) = FC(m, s)]$$

No: If so my book would be about 20 pages.
THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

\[f(1, 3) = \frac{1}{3} \]

\[f(3k, 3) = 1. \]

\[f(3k + 1, 3) = \frac{3k - 1}{6k}, \quad k \geq 1. \]

\[f(3k + 2, 3) = \frac{3k + 2}{6k + 6}. \]

Note: A Mod 3 Pattern.

Theorem: For all \(m \geq 3 \), \(f(m, 3) = \text{FC}(m, 3) \).
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

\[f(4k, 4) = 1 \] (easy)

\[f(1, 4) = \frac{1}{4} \] (easy)

\[f(4k + 1, 4) = \frac{4k-1}{8k}, \quad k \geq 1. \]

\[f(4k + 2, 4) = \frac{1}{2}. \]

\[f(4k + 3, 4) = \frac{4k+1}{8k+4}. \]

Note: A Mod 4 Pattern.

Theorem: For all \(m \geq 4, \) \(f(m, 4) = FC(m, 4). \)
FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For \(k \geq 1 \), \(f(5k, 5) = 1 \).

For \(k = 1 \) and \(k \geq 3 \), \(f(5k + 1, 5) = \frac{5k+1}{10k+5} \). \(f(11, 5) \)?

For \(k \geq 2 \), \(f(5k + 2, 5) = \frac{5k-2}{10k} \). \(f(7, 5) = \text{FC}(7, 5) = \frac{1}{3} \)

For \(k \geq 1 \), \(f(5k + 3, 5) = \frac{5k+3}{10k+10} \)

For \(k \geq 1 \), \(f(5k + 4, 5) = \frac{5k+1}{10k+5} \)

Note: A Mod 5 Pattern.

Theorem: For all \(m \geq 5 \) except \(m=11 \), \(f(m, 5) = \text{FC}(m, 5) \).
What About FIVE students, ELEVEN muffins?

1. We have a procedure which shows $f(11, 5) \geq \frac{13}{30}$.
2. $f(11, 5) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{11}{5\lceil22/5\rceil}, 1 - \frac{11}{5\lfloor22/5\rfloor}\right\}\right\} = \frac{11}{25}$.

So
\[
\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff= 0.006666...}
\]

Options:
1. $f(11, 5) = \frac{11}{25}$. Need to find procedure.
2. $f(11, 5) = \frac{13}{30}$. Need to find new technique for upper bounds.
3. $f(11, 5)$ in between. Need to find both.
4. $f(11, 5)$ unknown to science!

Vote
What About FIVE students, ELEVEN muffins?

1. We have a procedure which shows $f(11, 5) \geq \frac{13}{30}$.
2. $f(11, 5) \leq \max\{\frac{1}{3}, \min\{\frac{11}{5\lceil22/5\rceil}, 1 - \frac{11}{5\lfloor22/5\rfloor}\}\} = \frac{11}{25}$.

So

$$\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots$$

Options:

1. $f(11, 5) = \frac{11}{25}$. Need to find procedure.
2. $f(11, 5) = \frac{13}{30}$. Need to find new technique for upper bounds.
3. $f(11, 5)$ in between. Need to find both.
4. $f(11, 5)$ unknown to science!

Vote WE SHOW $f(11, 5) = \frac{13}{30}$. Exciting new technique!
Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M. The other piece from muffin M is the **buddy of x**.

Note that the **buddy** of x is of size

$$1 - x.$$
$f(11, 5) = \frac{13}{30}$, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.
There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. $N \leq \frac{1}{3} < \frac{13}{30}$.
There is a procedure for 11 muffins, 5 students where each student gets \(\frac{11}{5} \) muffins, smallest piece \(N \). We want \(N \leq \frac{13}{30} \).

Case 0: Some muffin is uncut. Cut it \(\left(\frac{1}{2}, \frac{1}{2} \right) \) and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into \(\geq 3 \) pieces. \(N \leq \frac{1}{3} < \frac{13}{30} \).

(\textbf{Negation of Case 0 and Case 1:} All muffins cut into 2 pieces.)
$f(11, 5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

$$N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets ≤ 3 pieces.

One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.$$
\[f(11, 5) = \frac{13}{30}, \text{ Easy Case Based on Students} \]

Case 2: Some student gets \(\geq 6 \) pieces.

\[N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}. \]

Case 3: Some student gets \(\leq 3 \) pieces.

One of the pieces is

\[\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}. \]

That pieces **buddy** is of size:

\[\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}. \]
\(f(11, 5) = \frac{13}{30} \), Easy Case Based on Students

Case 2: Some student gets \(\geq 6 \) pieces.

\[N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}. \]

Case 3: Some student gets \(\leq 3 \) pieces.
One of the pieces is

\[\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}. \]

That piece is buddy is of size:

\[\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}. \]

Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.
\[
 f(11, 5) = \frac{13}{30}, \text{ Fun Cases}
\]

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note \(\leq 11 \) pieces are \(> \frac{1}{2} \).
$f(11, 5) = \frac{13}{30}$, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- s_4 is number of students who get 4 pieces
- s_5 is number of students who get 5 pieces
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- s_4 is number of students who get 4 pieces
- s_5 is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22 \\
s_4 + s_5 = 5
\]
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are > $\frac{1}{2}$.

- s_4 is number of students who get 4 pieces
- s_5 is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22 \\
\quad s_4 + s_5 = 5
\]

$s_4 = 3$: There are 3 students who have 4 shares.
$s_5 = 2$: There are 2 students who have 5 shares.
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note \(\leq 11 \) pieces are \(> \frac{1}{2} \).

- \(s_4 \) is number of students who get 4 pieces
- \(s_5 \) is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22 \\
s_4 + s_5 = 5
\]

\(s_4 = 3 \) : There are 3 students who have 4 shares.
\(s_5 = 2 \) : There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a \textbf{4-share}.
We call a share that goes to a person who gets 5 shares a \textbf{5-share}.
$f(11, 5) = \frac{13}{30}$, Fun Cases

Case 4.1: Some 4-share is $\leq \frac{1}{2}$.
$f(11, 5) = \frac{13}{30}, \text{ Fun Cases}$

Case 4.1: Some 4-share is $\leq \frac{1}{2}$.
Alice gets w, x, y, z and $w \leq \frac{1}{2}$.
Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$

$$x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$$
\[f(11, 5) = \frac{13}{30}, \text{ Fun Cases} \]

Case 4.1: Some 4-share is \(\leq \frac{1}{2} \).

Alice gets \(w, x, y, z \) and \(w \leq \frac{1}{2} \).

Since \(w + x + y + z = \frac{11}{5} \) and \(w \leq \frac{1}{2} \),

\[
x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}
\]

Let \(x \) be the largest of \(x, y, z \)

\[
x \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}
\]
\[f(11, 5) = \frac{13}{30}, \text{ Fun Cases} \]

Case 4.1: Some 4-share is \(\leq \frac{1}{2} \).
Alice gets \(w, x, y, z \) and \(w \leq \frac{1}{2} \).
Since \(w + x + y + z = \frac{11}{5} \) and \(w \leq \frac{1}{2} \)

\[
x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}
\]

Let \(x \) be the largest of \(x, y, z \)

\[
x \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}
\]

The **buddy** of \(x \) is of size

\[
\leq 1 - x = 1 - \frac{17}{30} = \frac{13}{30}
\]
\(f(11, 5) = \frac{13}{30} \), Fun Cases

Case 4.1: Some 4-share is \(\leq \frac{1}{2} \).

Alice gets \(w, x, y, z \) and \(w \leq \frac{1}{2} \).

Since \(w + x + y + z = \frac{11}{5} \) and \(w \leq \frac{1}{2} \)

\[
x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}
\]

Let \(x \) be the largest of \(x, y, z \)

\[
x \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}
\]

The **buddy** of \(x \) is of size

\[
\leq 1 - x = 1 - \frac{17}{30} = \frac{13}{30}
\]

GREAT! This is where \(\frac{13}{30} \) comes from!
Case 4.2: All 4-shares are $\geq \frac{1}{2}$. There are $4s_4 = 12$ 4-shares. There are ≥ 12 pieces $> \frac{1}{2}$. Can’t occur.
HALF Method

The above reasoning can be used to verify that $f(11, 5) \leq \frac{13}{30}$ but could not generate the upper bound $\frac{13}{30}$.

Can modify the method so that we have an easily computable function $\text{HALF}(m, s)$ such that

$\forall m, s \left[f(m, s) \leq \min\{\text{FC}(m, s), \text{HALF}(m, s)\} \right]$

Is the following true?

$\forall m, s \left[f(m, s) = \min\{\text{FC}(m, s), \text{HALF}(m, s)\} \right]$

No:
If so my book would be about 40 pages.

For $f(24, 11)$ it fails!
HALF Method

The above reasoning can be used to verify that \(f(11, 5) \leq \frac{13}{30} \) but could not generate the upper bound \(\frac{13}{30} \).

Can modify the method so that we have an easily computable function HALF\((m, s)\) such that

\[
(\forall m, s)[f(m, s) \leq \min\{FC(m, s), \text{HALF}(m, s)\}]
\]
HALF Method

The above reasoning can be used to verify that \(f(11, 5) \leq \frac{13}{30} \) but could not generate the upper bound \(\frac{13}{30} \).

Can modify the method so that we have an easily computable function \(\text{HALF}(m, s) \) such that

\[
(\forall m, s)[f(m, s) \leq \min\{\text{FC}(m, s), \text{HALF}(m, s)\}]
\]

Is the following true?

\[
(\forall m, s)[f(m, s) = \min\{\text{FC}(m, s), \text{HALF}(m, s)\}]
\]
HALF Method

The above reasoning can be used to verify that $f(11, 5) \leq \frac{13}{30}$ but could not generate the upper bound $\frac{13}{30}$.

Can modify the method so that we have an easily computable function $\text{HALF}(m, s)$ such that

$$(\forall m, s)[f(m, s) \leq \min\{\text{FC}(m, s), \text{HALF}(m, s)\}]$$

Is the following true?

$$(\forall m, s)[f(m, s) = \min\{\text{FC}(m, s), \text{HALF}(m, s)\}]$$

No: If so my book would be about 40 pages.
HALF Method

The above reasoning can be used to verify that $f(11, 5) \leq \frac{13}{30}$ but could not generate the upper bound $\frac{13}{30}$.

Can modify the method so that we have an easily computable function $\text{HALF}(m, s)$ such that

$$(\forall m, s)[f(m, s) \leq \min\{\text{FC}(m, s), \text{HALF}(m, s)\}]$$

Is the following true?

$$(\forall m, s)[f(m, s) = \min\{\text{FC}(m, s), \text{HALF}(m, s)\}]$$

No: If so my book would be about 40 pages.
For $f(24, 11)$ it fails!
\[f(24, 11) \leq \frac{19}{44} \]

Assume \((24, 11)\)-procedure with smallest piece \(> \frac{19}{44}\).
Can assume all muffin cut in two and all student gets \(\geq 2\) shares.
We show that there is a piece \(\leq \frac{19}{44}\).
Assume \((24, 11)\)-procedure with smallest piece \(> \frac{19}{44}\).

Can assume all muffin cut in two and all student gets \(\geq 2\) shares.

We show that there is a piece \(\leq \frac{19}{44}\).

Case 1: A student gets \(\geq 6\) shares. Some piece \(\leq \frac{24}{11 \times 6} < \frac{19}{44}\).
\(f(24, 11) \leq \frac{19}{44} \)

Assume \((24, 11)\)-procedure with smallest piece \(> \frac{19}{44}\). Can assume all muffin cut in two and all student gets \(\geq 2\) shares. We show that there is a piece \(\leq \frac{19}{44}\).

Case 1: A student gets \(\geq 6\) shares. Some piece \(\leq \frac{24}{11 \times 6} < \frac{19}{44}\).

Case 2: A student gets \(\leq 3\) shares. Some piece \(\geq \frac{24}{11 \times 3} = \frac{8}{11}\). Buddy of that piece \(\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}\).
\[f(24, 11) \leq \frac{19}{44} \]

Assume \((24, 11)\)-procedure with smallest piece \(> \frac{19}{44}\). Can assume all muffin cut in two and all student gets \(\geq 2\) shares. We show that there is a piece \(\leq \frac{19}{44}\).

Case 1: A student gets \(\geq 6\) shares. Some piece \(\leq \frac{24}{11 \times 6} < \frac{19}{44}\).

Case 2: A student gets \(\leq 3\) shares. Some piece \(\geq \frac{24}{11 \times 3} = \frac{8}{11}\). Buddy of that piece \(\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}\).

Case 3: Every muffin is cut in 2 pieces and every student gets either 4 or 5 shares. Total number of shares is 48.
How many students get 4? 5? Where are the Shares?

4-students: a student who gets 4 shares. s_4 is the number of them.
5-students: a student who gets 5 shares. s_5 is the number of them.
How many students get 4? 5? Where are the Shares?

4-students: a student who gets 4 shares. s_4 is the number of them.
5-students: a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.
How many students get 4? 5? Where are the Shares?

4-students: a student who gets 4 shares. \(s_4 \) is the number of them.
5-students: a student who gets 5 shares. \(s_5 \) is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

\[
4s_4 + 5s_5 = 48 \\
\quad s_4 + s_5 = 11
\]
How many students get 4? 5? Where are the Shares?

4-students: a student who gets 4 shares. \(s_4 \) is the number of them.

5-students: a student who gets 5 shares. \(s_5 \) is the number of them.

4-share: a share that a 4-student who gets.

5-share: a share that a 5-student who gets.

\[
4s_4 + 5s_5 = 48
\]
\[
s_4 + s_5 = 11
\]

\(s_4 = 7 \). Hence there are \(4s_4 = 4 \times 7 = 28 \) 4-shares.

\(s_5 = 4 \). Hence there are \(5s_5 = 5 \times 4 = 20 \) 5-shares.
Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: ∃ a share ≥ $\frac{25}{44}$. Its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$
Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: \(\exists \) a share \(\geq \frac{25}{44} \). Its **buddy** is

\[
\leq 1 - \frac{25}{44} = \frac{19}{44}
\]

Case 3.2: There is a share \(\leq \frac{19}{44} \). Duh.
Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: ∃ a share $\geq \frac{25}{44}$. Its **buddy** is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.2: There is a share $\leq \frac{19}{44}$. Duh.
Henceforth assume that all shares are in

$$\left(\frac{19}{44}, \frac{25}{44}\right)$$
Case 3.3: Some 5-shares $\geq \frac{20}{44}$

5-share: a share that a 5-student who gets.
Case 3.3: Some 5-shares $\geq \frac{20}{44}$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.
Case 3.3: Some 5-shares $\geq \frac{20}{44}$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 5 pieces A, B, C, D, E and $E \geq \frac{20}{44}$.

Since $A + B + C + D + E = \frac{24}{11}$ and $E > \frac{20}{44}$

$$A + B + C + D < \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$
Case 3.3: Some 5-shares \(\geq \frac{20}{44} \)

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is \(\geq \frac{20}{44} \) then some share \(\leq \frac{19}{44} \).

Proof: Assume that Alice 5 pieces \(A, B, C, D, E \) and \(E \geq \frac{20}{44} \).

Since \(A + B + C + D + E = \frac{24}{11} \) and \(E > \frac{20}{44} \)

\[
A + B + C + D < \frac{24}{11} - \frac{20}{44} = \frac{76}{44}
\]

Assume \(A \) is the smallest of \(A, B, C, D \).

\[
A \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}
\]
Case 3.3: Some 5-shares $\geq \frac{20}{44}$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 5 pieces A, B, C, D, E and $E \geq \frac{20}{44}$.
Since $A + B + C + D + E = \frac{24}{11}$ and $E > \frac{20}{44}$

$$A + B + C + D < \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

Assume A is the smallest of A, B, C, D.

$$A \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

Henceforth we assume all 5-shares are in

$$\left(\frac{19}{44}, \frac{20}{44} \right).$$
Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.
Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.
Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 4 pieces A, B, C, D and $D \leq \frac{21}{44}$. Since $A + B + C + D = \frac{24}{11}$ and $D \leq \frac{21}{44}$

$$A + B + C > \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$
Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 4 pieces A, B, C, D and $D \leq \frac{21}{44}$.

Since $A + B + C + D = \frac{24}{11}$ and $D \leq \frac{21}{44}$

$$A + B + C > \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

Assume A is the largest of A, B, C.

$$A \geq \frac{75}{44} \times \frac{1}{3} = \frac{25}{44}$$

The buddy of A is of size

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$
Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 4 pieces A, B, C, D and $D \leq \frac{21}{44}$. Since $A + B + C + D = \frac{24}{11}$ and $D \leq \frac{21}{44}$

$$A + B + C > \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

Assume A is the largest of A, B, C.

$$A \geq \frac{75}{44} \times \frac{1}{3} = \frac{25}{44}$$

The buddy of A is of size

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Henceforth we assume all 4-shares are in

$$\left(\frac{21}{44}, \frac{25}{44} \right).$$
Case 3.5: 4-shares in $\left(\frac{21}{44}, \frac{25}{44}\right)$, 5-shares in $\left(\frac{19}{44}, \frac{20}{44}\right)$.
Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in \((\frac{21}{44}, \frac{25}{44})\), 5-shares in \((\frac{19}{44}, \frac{20}{44})\).

\[
\left(\begin{array}{c}
\frac{19}{44} \\
\frac{20}{44} \\
\frac{21}{44} \\
\frac{25}{44}
\end{array} \right) \left[\begin{array}{c}
?? 5\text{-shs}
0 \text{ shs}
?? 4\text{-shs}
\end{array} \right]
\]
Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in \((\frac{21}{44}, \frac{25}{44}) \), 5-shares in \((\frac{19}{44}, \frac{20}{44}) \).

\[
\begin{pmatrix}
?? & 5\text{-shs} & 0 \text{ shs} & ?? \\
\frac{19}{44} & \frac{20}{44} & \frac{21}{44} & \frac{25}{44}
\end{pmatrix}
\]

Recall: there are \(4s_4 = 4 \times 7 = 28 \) 4-shares.
Recall: there are \(5s_5 = 5 \times 4 = 20 \) 5-shares.
Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in \((\frac{21}{44}, \frac{25}{44})\), 5-shares in \((\frac{19}{44}, \frac{20}{44})\).

\[
\begin{align*}
(?? & 5\text{-shs})[0 \text{ shs}](?? & 4\text{-shs}) \\
\frac{19}{44} & \quad \frac{20}{44} & \quad \frac{21}{44} & \quad \frac{25}{44}
\end{align*}
\]

Recall: there are \(4s_4 = 4 \times 7 = 28\) 4-shares.

Recall: there are \(5s_5 = 5 \times 4 = 20\) 5-shares.

\[
\begin{align*}
(20 & 5\text{-shs})[0 \text{ shs}](28 & 4\text{-shs}) \\
\frac{19}{44} & \quad \frac{20}{44} & \quad \frac{21}{44} & \quad \frac{25}{44}
\end{align*}
\]
More Refined Picture of What is Going On

\[
\begin{pmatrix}
\frac{19}{44} & 20 & \text{5-shs} & \frac{20}{44} & 0 & \text{shs} & \frac{21}{44} & 28 & \text{4-shs} & \frac{25}{44}
\end{pmatrix}
\]
Claim 1: There are no shares \(x \in \left[\frac{23}{44}, \frac{24}{44} \right]. \)
Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44} \right]$.

If there was such a share then its buddy is in $\left[\frac{20}{44}, \frac{21}{44} \right]$.

More Refined Picture of What is Going On

\[
\begin{pmatrix}
\frac{19}{44} & 20 \text{ 5-shs} & 0 \text{ shs} & \frac{21}{44} & 28 \text{ 4-shs} & \frac{25}{44}
\end{pmatrix}
\]
More Refined Picture of What is Going On

Claim 1: There are no shares \(x \in \left[\frac{23}{44}, \frac{24}{44} \right] \).

If there was such a share then its **buddy** is in \(\left[\frac{20}{44}, \frac{21}{44} \right] \).

The following picture captures what we know so far.

\[
\begin{pmatrix}
\frac{19}{44} & 20 \text{ 5-shs} & 0 \text{ shs} & 28 \text{ 4-shs} & \frac{25}{44} \\
\end{pmatrix}
\]

S4 = Small 4-shares

L4 = Large 4-shares. L4 shares, 5-share: **buddies**, so \(|L4| = 20 \).
Claim 2: Every 4-student has at least 3 L4 shares. If a 4-student had \(\leq 2 \) L4 shares then he has \(< 2 \times (23\,44) + 2 \times (25\,44) = 24\,44\). Contradiction: Each 4-student gets \(\geq 3 \) L4 shares. There are \(s_{4} = 7 \) 4-students. Hence there are \(\geq 21 \) L4-shares. But there are 20.
Claim 2: Every 4-student has at least 3 L4 shares.

(\begin{array}{ccccc}
19 & 20 & 5 \text{-shs} & \mid & 0 \\
\hline
44 & 20 & \mid & 8 & 21 \\
S4 \text{-shs} & \mid & 0 & 23 & 24 \\
\hline
44 & \mid & 20 & L4 \text{-shs} & 25 \\
\end{array})

Contradiction: Each 4-student gets \(\geq 3 \) L4 shares. There are \(s_{4} = 7 \) 4-students. Hence there are \(\geq 21 \) L4-shares. But there are only 20.
Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \(\leq 2 \) L4 shares then he has

\[
< 2 \times \left(\frac{23}{44} \right) + 2 \times \left(\frac{25}{44} \right) = \frac{24}{11}.
\]
Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \(\leq 2 \) L4 shares then he has

\[
< 2 \times \left(\frac{23}{44} \right) + 2 \times \left(\frac{25}{44} \right) = \frac{24}{11}.
\]
Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \(\leq 2 \) L4 shares then he has

\[
< 2 \times \left(\frac{23}{44} \right) + 2 \times \left(\frac{25}{44} \right) = \frac{24}{11}.
\]

Contradiction: Each 4-student gets \(\geq 3 \) L4 shares. There are \(s_4 = 7 \) 4-students. Hence there are \(\geq 21 \) L4-shares. But there are only 20.
More Techniques

We have shown you FC and HALF and (maybe) INT.
More Techniques

We have shown you FC and HALF and (maybe) INT. They did not suffice to solve all problems.
More Techniques

We have shown you FC and HALF and (maybe) INT. They did not suffice to solve all problems. We developed more:
MID, GAP,
EBM (Easy Buddy Match), HBM (Hard Buddy Match), TRAIN
Upshot

Let

\[A = \{(m, s) \mid 2 \leq s \leq 100 \text{ and } s < m \leq 110 \text{ and } m, s \text{ rel prime}\} \]

There are 3520 pairs \((m, s)\) in \(A\). We solved all of them!

- For 2301 of them \(f(m, s) = FC(m, s)\). That is \(\sim 65.37\%\).
- For 329 of them \(f(m, s) = HALF(m, s)\). That is \(\sim 9.35\%\).
- For 186 of them \(f(m, s) = INT(m, s)\). That is \(\sim 5.28\%\).
- For 111 of them \(f(m, s) = MID(m, s)\). That is \(\sim 3.15\%\).
- For 240 of them \(f(m, s) = EBM(m, s)\). That is \(\sim 6.28\%\).
- For 89 of them \(f(m, s) = HBM(m, s)\). That is \(\sim 2.53\%\).
- For 250 of them \(f(m, s) = GAP(m, s)\). That is \(\sim 7.10\%\).
- For 13 of them \(f(m, s) = TRAIN(m, s)\). That is \(\sim 0.40\%\).
Is the following true: For all m, s, $f(m, s)$ is the min of
Is the following true: For all m, s, $f(m, s)$ is the min of $\text{FC}(m, s), \text{HALF}(m, s), \text{INT}(m, s), \text{MID}(m, s), \text{EBM}(m, s), \text{HBM}(m, s), \text{GAP}(m, s), \text{TRAIN}(m, s)$
Is the following true: For all \(m, s, f(m, s) \) is the min of

\[
\text{FC}(m, s),\text{HALF}(m, s),\text{INT}(m, s),\text{MID}(m, s),\text{EBM}(m, s),\text{HBM}(m, s),\text{GAP}(m, s),\text{TRAIN}(m, s)
\]

No. Did not work on

- \(f(205, 178) \)
- \(f(226, 135) \)
- \(f(233, 141) \)
Scott Huddleston has an algorithm that is REALLY FAST and seems to ALWAYS WORK. Erik and Jacob understand it, nobody else does. They have replicated his results and think that YES it solves ALL problems.

Richard Chatwin independently came up with the same algorithm and proved it worked, but never coded it up. He tells me its poly time and I believe this can be proved, though its not in his paper. His paper is here: https://arxiv.org/abs/1907.08726
Scott Huddleston has an algorithm that is REALLY FAST and seems to ALWAYS WORK. Erik and Jacob understand it, nobody else does. They have replicated his results and think that YES it solves ALL problems.

Richard Chatwin independently came up with the same algorithm and proved it worked, but never coded it up. He tells me it’s poly time and I believe this can be proved, though it’s not in his paper. His paper is here: https://arxiv.org/abs/1907.08726
Interesting VS Important

A Math problem can be

- Interesting or NOT Interesting.
- Important or NOT Important.

These are not well defined terms but

Interesting Keeps on leading to new mathematics, new techniques, and connections to other fields of Math.

Important Either useful OR about fundamental math concepts.

There are four possibilities.
Interesting VS Important

A Math problem can be

- Interesting or NOT Interesting.
- Important or NOT Important.

These are not well defined terms but

Interesting Keeps on leading to new mathematics, new techniques, and connections to other fields of Math.

Important Either useful OR about fundamental math concepts.

There are four possibilities.

1. Interesting and Important: Calculus, Prime Number Thm.
Interesting VS Important

A Math problem can be
▶ Interesting or NOT Interesting.
▶ Important or NOT Important.

These are not well defined terms but

Interesting Keeps on leading to new mathematics, new techniques, and connections to other fields of Math.

Important Either useful OR about fundamental math concepts.

There are four possibilities.

1. Interesting and Important: Calculus, Prime Number Thm.
2. Interesting but Not Important: FLT, The Muffin Problem.
Interesting VS Important

A Math problem can be

▶ Interesting or NOT Interesting.
▶ Important or NOT Important.

These are **not** well defined terms but

Interesting Keeps on leading to new mathematics, new techniques, and connections to other fields of Math.

Important Either useful OR about fundamental math concepts.

There are four possibilities.

1. Interesting and Important: Calculus, Prime Number Thm.
2. Interesting but Not Important: FLT, The Muffin Problem.
3. Not Interesting but Important: So far P vs NP has had no progress (so not interesting) but its very important.
Interesting VS Important

A Math problem can be

▶ Interesting or NOT Interesting.
▶ Important or NOT Important.

These are **not** well defined terms but

Interesting Keeps on leading to new mathematics, new techniques, and connections to other fields of Math.

Important Either useful OR about fundamental math concepts.

There are four possibilities.

1. Interesting and Important: Calculus, Prime Number Thm.
2. Interesting but Not Important: FLT, The Muffin Problem.
3. Not Interesting but Important: So far P vs NP has had no progress (so not interesting) but its very important.
4. Not Interesting and Not Important: So far $R(5)$ has not lead to any math of interest and is also not important to find.

Same for most Ramsey-type Numbers.
Lessons Learned

I found this problem in a pamphlet at a Recreational math Conference.
Lessons Learned

I found this problem in a pamphlet at a Recreational math Conference.

Math is all around you! Pursue your curiosity!
Lessons Learned

I found this problem in a pamphlet at a Recreational math Conference.

Math is all around you! Pursue your curiosity!

You never know where the next big project will come from!