The Square Theorem

Definition Let \(G \in \mathbb{N} \) and \(c \in N \). Let \(\text{COL}: [G] \times [G] \rightarrow [c] \).

1. A **mono** \(L \) is 3 points

\[(x, y), (x + d, y), (x, y + d)\]

that are all the same color \((d \geq 1) \). This is an isosceles \(L \).

2. A **mono Square** is 4 points

\[(x, y), (x + d, y), (x, y + d), (x + d, y + d)\]

that are all the same color \((d \geq 1) \). This is a square.
The Square Theorem

Theorem There exists G such that for all $\text{COL} : [G] \times [G] \rightarrow [2]$ there exists a mono square.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on G; however, the answer is known to be 15.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on G; however, the answer is known to be 15.

2. We will first prove *For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.*
Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15.

2. We will first prove For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

3. To prove The Square Theorem (about 2-coloring) we need to know that $GG(c)$ exists for a very large c.

Theorem: There exists G such that for all $\text{COL}: [G] \times [G] \to [2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15.

2. We will first prove For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \to [c]$ there exists a mono L.

3. To prove The Square Theorem (about 2-coloring) we need to know that $GG(c)$ exists for a very large c.

4. More Colors: For all c there exists $G = G(c)$ such that for all $\text{COL}: [G] \times [G] \to [c]$ there exists a mono square. Proof needs a larger c' for $GG(c')$.

The L Theorem for $c = 2$

Theorem For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \to [c]$ there exists a mono L.
Theorem For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for $c = 2$. We will set H later. Let $\text{COL}: [H] \times [H] \rightarrow [c]$.

The L Theorem for $c = 2$

Theorem For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for $c = 2$. We will set H later. Let $\text{COL}: [H] \times [H] \rightarrow [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2^9-coloring of the tiles.
Theorem For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for $c = 2$. We will set H later. Let $\text{COL}: [H] \times [H] \rightarrow [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2^9-coloring of the tiles.

This is very typical of VDW-Ramsey Theory: a 2-coloring of BLAH is viewed as a \times-coloring of a different object where \times is quite large.
Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an almost L.
Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an almost L

Goto Zoom-White Board.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 3(2^9 + 1)$.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 3(2^9 + 1)$.

Make H Big Enough To Get Two Tiles Same Color

Take $H = 3(2^9 + 1)$.

Look at the first column of tiles. Two are the same color.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 3(2^9 + 1)$.

Look at the first column of tiles. Two are the same color.

Go to Zoom-White Board.
The L Theorem for $c = 3$

First take 4×4-tiles.
The L Theorem for $c = 3$

First take 4×4-tiles.

Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L
The L Theorem for $c = 3$

First take 4×4-tiles.

Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L.

Goto Zoom-White Board.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 4(3^{16} + 1)$.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of points as $[3^{16} + 1] \times [3^{16} + 1]$ grid of tiles.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of points as $[3^{16} + 1] \times [3^{16} + 1]$ grid of tiles.

Look at the first column of tiles. Two are the same color.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of points as $[3^{16} + 1] \times [3^{16} + 1]$ grid of tiles.

Look at the first column of tiles. Two are the same color.

Go to Zoom-White Board.
Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L’s converging to the same point.
Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L’s converging to the same point.

Go to Zoom-White Board.
Theorem For all c there exists $GG = GG(c)$ such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

We won't prove this but I am sure any of you could prove it given what we have done so far. Would be messy.

Easier to prove it from the Hales-Jewitt Theorem, which we won't be doing.
Full L Theorem

Theorem For all c there exists $GG = GG(c)$ such that for all $COL : [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

- We won’t prove this but I am sure any of you could prove it given what we have done so far. Would be messy.
Theorem For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

- We won’t prove this but I am sure any of you could prove it given what we have done so far. Would be messy.
- Easier to prove it from the Hales-Jewitt Theorem, which we won’t be doing.
The Square Theorem

Theorem There exists G such that for all $\text{COL} : [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof

G will be $G(2) \times G(2)$.

Tile the $G \times G$ plane with $G(2) \times G(2)$ tiles.

View the 2-coloring of $G \times G$ as a 2-coloring of the tiles.

For any 2-coloring of $G \times G$:

- Every tile has a mono tile.
- There is a mono tile of tiles.

Go to Zoom Whiteboard for rest of proof.
The Square Theorem

Theorem There exists G such that for all $\text{COL} : [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Zoom Whiteboard for rest of proof.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \to [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$-coloring of the tiles.
Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$-coloring of the tiles.

For any 2-coloring of $[G] \times [G]$:
- Every tile has a mono L
- There is a mono L of tiles.
Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$-coloring of the tiles.

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- There is a mono L of tiles.

Go to Zoom Whiteboard for rest of proof.